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1 introduction

Kirby-Paris [9] found a certain combinatorial game called Hydra Game whose termina-
tion is true but cannot be proved in $PA$ . Cichon [4] gave a new proof based on Wainer’s
finite characterization of the $\mathrm{P}\mathrm{A}$-provably recursive functions by the use of Hardy func-
tions. Both Kirby-Paris and Cichon’s proofs on the unprovability result were obtained by
a certain investigation on the ordinals less than $\epsilon_{0}$ , the critical ordinal of $\mathrm{P}\mathrm{A}$ , with the
help of the fast and slow growing hierarchies, respectively. On the other hand, Jervell
[7] proposed a combinatorial game, called Gentzen Game, on finite binary labeled trees.
His Game was defined by abstracting some of the proof reduction procedure of Gentzen’s
consistency proof of PA [5], which directly implies Gentzen Game’s unprovability of PA
via G\"odel’s incompleteness theorem. The rules of Gentzen Game look rather artificial and
complicated while those of Kirby-Paris’ are more natural and simpler as a combinatorial
game. Moreover, the modified proof reduction Jervell considered ignores Gentzen’s notion
of potential (or height), which makes the Gentzen Game less complicated but the natural
termination proof requires much larger than $\epsilon_{0}$ . Hence, the resulting Gentzen Game is
much stronger than $\mathrm{P}\mathrm{A}$ , while Kirby-Paris’ Game is considered an optimal game, in the
sense that any sub-game restricted to the hydras with an upper bound size turns out to
be provable in $\mathrm{P}\mathrm{A}$ . On the other hand, Jervell’s unprovability proof (on Gentzen Game)
is direct and clear (thanks to the fact that the Game is directly connected to Gentzen’s
consistency proof) while the unprovability proofs of Kirby-Paris Game are more involved
and complicated. Hence, it is very natural to ask if one can find another way of interpret-
ing Gentzen’s proof-reduction procedure into a more natural combinatorial game such as
Kirby-Paris’, (so that one can get a natural combinatorial game and a direct unprovabil-
ity proof, at the same time). The purpose of the first part (Section 2) of this paper is to
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provide an affirmative answer to this question; We show that Gentzen’s proof reduction
itself is indeed Kirby-Paris Game under a certain simple and natural interpretation. For
that purpose we modify Gentzen’s original notion of potential or height in his consistency
proof of PA and introduce a non unique notion of height. Then the combinatorial principle
Gentzen used implicitly in his proof-reduction for PA becomes exactly Kirby-Paris Game
itself. As a direct corollary with the help of G\"odel’s Incompleteness Theorem Kirby-Paris’
unprovability result follows (without using any argument of the fast or slow growing hi-
erarchy). A related result on a logically stronger system, $\Pi_{1}^{1}CA+BI$ , in connection with
Buchholz’s Hydra Game [3] is given in Hamano-Okada [6]. Here, The difference between
Buchholz’s Hydra Game and Kirby-Paris’ lies on the setting where the former uses labeled
finite trees while the latter uses unlabeled finite trees. Another striking difference between
Buchholz’s and Kirby-Paris’ is that Buchholz’s hydra grows not only in width but also
in height while Kirby-Paris’ glows only in width. Although the logical strength of Buch-
holz’s Game is much stronger than that of Kirby-Paris’ (i.e., $ID_{\omega}$ versus $\mathrm{P}\mathrm{A}$ ), we shall
show in Section 3 that when the height-glowing Buchholz’s Game on labeled trees is re-
stricted to the one-dimensional case, it is just identified with Kirby-Paris Hydra Game (on
two dimensional unlabeled trees), namely the one-dimensional Buchholz’s Hydra Game is
nothing but the usual Kirby-Paris Game.

2 Kirby-Paris’ Hydra Game and Gentzen’s Proof Reduc-
tion for $PA$

2.1 Kirby-Paris’ Hydra Game on Two-dimensional Finite Unlabeled
Trees

In this subsection we shall explain Kirby-Paris’ Hydra Game and the combinatorial prin-
ciple concerning on this game found in [9]. Some derivable rules $\mathrm{h}\mathrm{o}\mathrm{m}$ Kirby-Paris’ Hydra
Game are also considered.

Definition 1 Let $\mathcal{T}$ denote the set of all two-dimensional unlabeled trees. $\mathcal{T}$ is generated
inductively as follows.

$\bullet 0\in \mathcal{T}$

$\bullet$ If $s\in \mathcal{T}$ , then $(s)\in \mathcal{T}$

$\bullet$ If $s,t\in \mathcal{T}$, then $s\neq t\in \mathcal{T}$

A node of a tree $t$ is defined to be an occurrence of $()$ or $0$ in $t\in \mathcal{T}$ . A head of $t$ is defined
to be such a node of the form $0$ . A root of $t$ is defined to be an outer-most occurrence of
a node of $t$ . A connected tree is $0$ or a tree of the form $(t)\in T.$ $\mathcal{T}_{KP}$ denotes the set of
all connected trees of $\mathcal{T}$ . Each element of $\mathcal{T}_{KP}$ is interpreted as an ordinal less than $\epsilon_{0}$

inductively as follows.

Definition 2 (Ordinal interpretation of a tree in $\mathcal{T}_{KP}$ . [9]) For a connected tree $t\in$

$\mathcal{T}_{KP}$ , an ordinal $t^{*}$ less than $\epsilon_{0}$ is defined inductively as follows. Let $0,t_{1},$ $\ldots,t_{n}\in \mathcal{T}_{KP}$

where each $t_{i}(1\leq i\leq n)$ is connected.

$\bullet 0^{*}=0$ .
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$\bullet$ $(t_{1}\neq\cdots\neq t_{n})^{*}=\omega t^{\mathrm{s}}1\#\ldots\neq\omega^{t_{n}}*$ . ($\#$ denotes the natural sum.)

In this section a hydra is defined to be an element of $T_{KP}$ . Kirby-Paris’ Hydra Game
is a battle between Hercules and a hydra. At each stage of a battle Hercules chops
off one head of a hydra and chooses a natural number $n$ , then the hydra transforms
itself into a new hydra according to the following Rule (Definition 3). Hercules wins
if after a finite number of stages, nothing is left in the hydra but its root. A strategy
is a series of Hercules’ choice of a head $\sigma$ to chop off and of a natural number $n$ to
choose at each stage: Let $t(\sigma,n)$ denote the transformation of $t$ after Hercules chops
off a head $\sigma$ and chooses a natural number $n$ . A strategy starting from $t$ is defined to
be a (finite or infinite) sequence of the form $(\sigma_{1}, n_{1})\cdots(\sigma_{k}, n_{k})\cdots$ , where each $\sigma_{m+1}$ is
a head of $t(\sigma_{1}, n_{1})\cdots(\sigma_{m}, n_{m})$ . A winning strategy starting from $t$ is a finite sequence
$(\sigma_{1}, n_{1})\cdots(\sigma_{m},n_{m})$ such that $t(\sigma_{1},n_{1})\cdots(\sigma_{m},n_{m})=0$ .

Definition 3 (Rule of Kirby-Paris’ Hydra Game [9]) Let $\sigma$ denote a head of a hy-
$drat$ and $t^{-}$ denote the remaining hydra of $t$ after $\sigma$ has been chopped off. If Hercules
chops off $\sigma$ and chooses a natural number $n$ , then the hydra transforms itself into a new
hydra $t(\sigma,n)$ as follows. Let $\tau$ denotes the node immediately below $\tau$ . (1) If $\tau$ is the root
of $t$ , then $t(\sigma,n)$ is $t^{-}$ (See the figure (1) below). (2) Otherwise $t(\sigma,n)$ results from $t^{-}$ by
sprouting $n$ copies of $t_{\tau}^{-}$ from the node immediately below $\tau$ , where $t_{\tau}^{-}$ denotes the subtree
of $t^{-}$ detemined by $\tau$ (See the figure (2) below).

(1)

Proposition 1 (Kirby-Paris [9]) Every strategy of Kirby-Paris’ Hydra Game $i_{\mathit{8}}$ a win-
ning strategy.

Proof.
By one step of Kirby-Paris’ Hydra Game the part $((t_{1}\neq\cdots\neq t_{k}\neq 0))$ of a given hydra
changes into the part of the form $(\underline{(t_{1}\#\cdots\# tk)\neq\cdots\#(t_{1}\neq\cdots\neq t_{k})})$ .

n-times
By the correspondence from $T_{KP}$ into the ordinals less than $\epsilon_{0}$ defined in Definition 2, the
above trees are interpreted as ordinals;
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$((t_{1}\neq\cdots\neq t_{k}\#^{0}))^{*}=\omega^{\omega\#}t_{1}^{*}\ldots\#\omega^{t}k\#\omega^{0}*$

$(\underline{(t_{1}\neq\cdots\neq t_{k})\neq\cdots\#(t1\neq\cdots\# t_{k})})*(=\omega\#\#\omega k)\omega 1n\nu^{*}\ldots \mathrm{t}*$.
n-times

The corresponding ordinal is strictly $\dot{\mathrm{d}}$ecreasing by an application of a rule. Hence well-
orderness of the ordinals less than $\epsilon_{0}$ implies the proposition. $\square$

Let $\prec_{KP}$ denote the reduction relation defined as $\prec_{KP}=\{(t(n),t)|0\neq t\in T_{K}p,n\in$

$N\}$ . The above proof of Proposition 1 implies that $\prec_{KP}$ is contained in the ordinals less
than $\epsilon_{0}$ .

Consider the subset $T(n)$ of $T$ defined as $T(n)=\{t\in T|$ No node is more than
$n$ segments away from the root below it.}. Let $KP(n)$ denote the statement “For every
$t\in T(n)$ every recursive strategy starting from $t$ is a winning strategy.”. From the fact
that the transfinite induction up to each ordinal less than $\epsilon_{0}$ is provable in $PA$ , we have
the next proposition.

Proposition 2 $(\mathrm{K}\mathrm{i}\mathrm{r}\mathrm{b}\mathrm{y}- \mathrm{p}_{\mathrm{a}}\mathrm{r}\mathrm{i}\mathrm{S}[9])$ For an arbitrary natural number $n$ ,

$PA\vdash KP(n)$

For convenience in the next section we shall prepare $\mathrm{P}$-Rule and $\mathrm{D}$-Rule which are derivable
by a finite number of steps of Kirby-Paris’ Hydra Game. We use the name KP-Rule to
denote the basic Rule of Kirby-Paris’ Game defined in Definition 3.

$\mathrm{P}$-Rule (Pruning Rule) Let $\tau$ be an arbitrary node (not necessarily a head) of a hydra
$t$ . $t$ transforms itself into such a hydra that is obtained from $t$ by pruning all the
nodes of $t_{\tau}$ (the subtree of $t$ determined by $\tau$ ) except its root $(\mathrm{i}.\mathrm{e}.\tau)$ .

$\mathrm{D}$-Rule (Descending Rule) Let $\sigma$ be a head of a hydra $t$ and $\tau$ a node below $\sigma$ . $t$

transforms itself into such a hydra that is obtained from $t^{-}$ (the resulting hydra
after $\sigma$ has been chopped off) by attaching a copy of $\sigma$ to the node immediately
below $\tau$ .

D-Rule

$arrow$
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Derivability of $\mathrm{P}$-Rule from KP-Rule is trivial from the following: For a given hydra $t$ , let
$m$ denote the number of nodes consisting of this hydra. If Hercules chooses such a strategy
that chooses a natural number $0$ at every stage then he wins after $m+1$ stages against $t$ .
Derivability of $\mathrm{D}$-Rule from KP-Rule is sketched as following figure. From KP-Rule $r_{\mathrm{b}\mathrm{e}\mathrm{e}1}$

transforms itself into Tree 2. From $\mathrm{P}$-Rule Tree 2 transforms itself into Tree 3. Therefore
we can prove the derivability by induction on the number of occurrences of the nodes
between $\sigma$ and $\tau$ .

Tree 1 Tree 2 Tree 3

2.2 Direct Interpretation of Gentzen’s Proof Reductions by Means of
Kirby-Paris’ Hydra Game

In this subsection we shall show that Gentzen’s proof reduction for $PA[5]$ is directly
expressive by reduction relation $\prec_{KP}$ (Theorem 1). As a corollary of Theorem 1 with
the help of G\"odels’ Incompleteness Theorem, Kirby-Paris’ independence result follows
(Proposition 3). In this section by $PA$ we mean Peano Arithmetic in Takeuti [12]. We
assume that the readers are familiar with the notions used in Chapter 2 of Takeuti. [12].

Definition 4 1 A proof $P$ in $PA$ is called a proof with height denoted $by<P,$ $h>if$ for
each sequent $S$ of $P$ a natural number $h(S)$ satisfying the following condition is assigned.
Here $g(D)$ is grade of a formula $D$ .

1. $h(S)=0$ if $Si_{\mathit{8}}$ the end sequent of $P$ .
2. $h(S)\geq h(S’)$ if $S$ is an upper sequent of an inference except cut and $ind$ where $S’$ is

the lower sequent of the inference.
3. $h(S) \geq\max\{h(s’),g(D)\}$ if $S$ is an upper $\mathit{8}equent$ of cut, where $D$ is the cut formula

of the inference, and $S’$ is the lower sequent of the inference.
4. $h(S) \geq\max\{h(s’),g(D)\}+1$ if $S$ is an upper sequent of an $ind$, where $D$ is the

induction formula of the inference, and $S’$ is the lower sequent of the inference.
Definition 5 For $t\in \mathcal{T}$ , $(t)^{n}$ is defined by induction on $n$ as follow8.

lOur assignment of height is a slight modification of that in Definition 12.4 [12]. Our assignment of height
to each sequence is not uniquely determined. This slight modification becomes essential in interpreting
Gentzen’s Proof Reduction by means of Kirby-Paris’ Hydra Game in (Case 1.2), (Case 2), (Preparation 2)
of Theorem 1.
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$\bullet(t)0=t$ .
$\bullet(t)^{n+1}=(0\neq(t)n)$ .

Definition 6 (Tree interpretation of a proof in $PA$) $Let<P,$ $h>$ be a proof with
height $h$ in $PA$ . Each occurrence of a sequent $S$ $in<P,$ $h>is$ interpreted as $T(S)\in \mathcal{T}$

inductively as follow8. Then we $\mathit{8}hall$ define $T(<P, h>)\in T_{KP}$ as $T(<P, h>)=(T(S))$

where $S$ is the end-8equent $of<P,$ $h>$ .
$\mathit{0}$ . $T(S)=0$ if $S$ is an initial sequent $of<P,$ $h>$ .

Suppose that tree-interpretation $T(S’)$ and $T(S^{\prime/})$ of $S$ ’ and $S$ ” have been assigned.

$\frac{S’(S^{\prime/})}{S}J$

where $S^{\prime/}$ does not exist when $J$ has a unique upper sequent. Then $T(S)$ is determined as
follows.

1. If $J$ is a weak structural inference, then $T(S)=(T(s^{/}))^{h}(s’)-h(s)$

2. If $J$ is $\urcorner,$
$\wedge$ ; le$ft,$ $\vee$ ; right, or $fir\mathit{8}t$ order $\forall$ , then $T(S)=(0\#^{\tau}(s’))^{h}(s’)-h(s)$

3. If $J$ $is\wedge$ ; right, $or\vee$ ; left, then $T(S)=(T(s’)\neq\tau(s’/))h(s’)-h\mathrm{t}s)$

4. If $J$ is an induction, then $T(S)=(0\neq T(S’))h(s’)-h(s)$

5. If $J$ is a cut, then $T(S)=(T(s’)\neq\tau(S/J))^{h(S’})-h(s)$

By the above interpretation a proof with height is interpreted into $T_{KP}$ . The next theorem
asserts that $<\prec_{KP},$ $T_{Kp}>\mathrm{i}\mathrm{s}$ strong enough to prove the consistency of $PA$ by a finitary
method.

Theorem 1 Each $\mathit{8}tep$ of Gentzen’s proof reduction for $PA$ is interpretable by a finite
number of steps of Kirby-Paris’ Hydra Game.

Proof.
By Gentzen’s proof reduction for $PA$ we mean Takeuti’s refinement of it described in
Lemma 12.8 $(\mathrm{p}105 - \mathrm{p}114)$ in $[12].2$ Given a proof $<P,$ $h>$ with height of $PA$ , let
$<P’,$ $h’>$ denote the proof which results from $<P,$ $h>$ through one step of proof
reduction described in Lemma 12.8 $(\mathrm{p}105-\mathrm{p}114)[12]$ .
We shall add the redundant inference; called term-replacement.

$\Gamma_{1},$ $F(_{S}),\mathrm{r}_{2}arrow\Delta$

$\Gamma_{1},$ $F(t),\Gamma_{2}arrow\Delta$

2Here in this section we do not mention explicitly the ordinal assignment to a sequent of a proof but
only mention tree interpretation of it. But note that our ordinal assignment introduced with the bypass of
tree-interpretation of a sequent (Definition 2) becomes slightly different from Takeuti’s in Definition 12.6
[12].
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where $s$ and $t$ are closed terms expressing the same number.
Our definition of the assignment of height to the upper sequent of term-replacement fol-
lows Definition 4 (2), and that of the ordinal assignment of the lower sequent of term-
replacement follows Definition 6 (1).
To obtain the theorem, it suffices to prove Lemma 1.

Lemma 1 Let (a) and (b) are following assertions.

(a) The tree interpretation $of<P’,$ $h’>$ remains the same as that $of<P,$ $h>$ .

(b) The tree interpretation $of<P’,$ $h’>is$ derivable from that $of<P,$ $h>by$ making a
finite number of uses of $KP$-Rule, $P$-Rule and D-Rule.

Then the following holds.

1. In each of the following (Preparation $\mathit{0}$) $\sim$ (Preparation 2), either $(a)$ or $(b)$ holds.

2. In each of the following (Case $\mathit{1}$) $\sim$ (Case 4), $(b)$ holds.

Proof of Lemma 1.
(Preparation $0$ ) Suppose that the end-piece of $P$ contains a free variable which is not
used as an eigenvariable. Then replace this redundant free variable by the constant $0$ .
Obviously by this substitution (a) holds.
(Case 1) Suppose that $P$ contains an application of induction in its end-piece. Let $I$ be
a lower most induction in the end-piece of $P$ .
$<P,$ $h>\mathrm{i}\mathrm{s}$ of the following form. Here $l$ and $m+1$ denote the height of $A(\mathrm{O}),$ $\Gammaarrow\Delta,$ $A(t)$

and of $A(a),$ $\Gammaarrow\Delta,$ $A(a’)$ respectively with $l\leq m$ .

$\frac{Q(a)}{\frac{A(a),\Gammaarrow\Delta,A(a’)J}{A(0),\Gammaarrow\Delta,A(t)}}.\cdot..$

I
$m+1k+1l$

:
$arrow.\cdot$

(Case 1.1) The case where $t=0$ . $<P’,$ $h’>$ is obtained from replacing the part of
$<P,$ $h>$ above $A(\mathrm{O}),$ $\Gammaarrow\Delta,$ $A(t)$ by

$A(0)arrow A(0)$

$\overline{\frac{A(0),\Gammaarrow\Delta,A(0)}{A(0),\Gammaarrow\Delta,A(t)}}$ term–replacement

In this case the tree interpretation from $<P,$ $h>\mathrm{t}\mathrm{o}<P^{/},$ $h^{/}>\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s}$exactly to our
$\mathrm{P}$-Rule, hence (b) holds.
(Case 1.2) The case where $t\neq 0$ . $<P^{/},$ $h^{/}>\mathrm{i}\mathrm{s}$ obtained by eliminating $J$ by the follow-
ing, where $\mathrm{t}=\mathrm{n}$ for some numeral $\mathrm{n}$ except $0$ .
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..$\cdot$

. $Q(0)$ ...$\cdot$

$Q(0’)$

$k+1$
$\overline{A(0),\Gammaarrow\Delta,A(0/)}J_{0}$ $\overline{A(0’),\mathrm{r}arrow\Delta,A(0’/)}J_{1}$ $m$

$\frac{\overline A(0),\mathrm{r},\Gammaarrow\Delta,\Delta,A(\mathrm{o}^{\prime/})}{A(0),\Gammaarrow\triangle,A(\mathrm{o}’)}\overline{/}m$

.. .... $Q(n-1)$

$A(0),$
$\Gammaarrow.\cdot$.

$\Delta,$ $A(n-1)$ $\overline{A(n-1),\mathrm{r}arrow\Delta,A(n)}J_{n-1}m$

$\underline{A(0),\Gamma,\Gammaarrow\Delta}-,$
$\Delta,$ $A(n)$

$l$

$\frac{A(0),\Gammaarrow\Delta,A(n)}{A(0),\Gammaarrow\Delta,A(t)}$ term–replacement

$arrow::$.

Our tree interpretation from $<P,$ $h>\mathrm{t}\mathrm{o}<P’,$ $h’>\mathrm{i}\mathrm{s}$ divided into the following two cases:

(Case 1.2.1) The case where $A(a),$ $\Gammaarrow\Delta,$ $A(a’)$ is an initial sequent of $<P,$ $h>$ . $<$

$P,$ $h>\mathrm{i}\mathrm{s}$ interpreted as Ikee 1. By pruning two top nodes, bee 1 transforms itself
into Tree 2. By chopping off the top node marked $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\nearrow$ , Tree 2 transforms itself
into Tree 3, which is the interpretation of $<P’,$ $h’>$ . Hence (b) holds.

$’\ovalbox{\tt\small REJECT} \mathscr{N}\infty^{:}::$.
$)$ m-l

Tree 2 Trae 3

(Case 1.2.2) The case where $A(a),$ $\Gammaarrow\Delta,$ $A(a’)$ is not an initial sequent of $<P,$ $h>$ .
Let $J$ be the inference in $P$ whose lower sequent is $A(a),\Gammaarrow\Delta,$ $A(a’)$ . From the
definition of proof with height (Definition 4), the height of an upper sequent of $J$ in
$P$ must be $k+1$ with $m\leq k$ . In $<P’,$ $h’>$ , let $J_{i}$ be a copy of $J$ in $Q(i)$ , and $S_{i}$

be an upper sequent of $J_{i}$ where $0\leq i<n$ . Therefore we shall define height $h’$ in
$<P’,$ $h’>$ as

$\{$

$h’(A(i), \Gammaarrow\Delta, A(i/))=m$

$h’(s_{i})=k+1$

(cf. Definition 4). By virtue of this height $h^{/}$ of $<P’,$ $h’>$ , we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ carry out the
tree transformation as follows.

$<P,$ $h>$ is interpreted as Tree 1. Let $\sigma$ be the top node corresponding to the
indicated $0$ of the tree interpretation of $A(\mathrm{O}),\Gammaarrow\Delta,$ $A(t)$ (cf. Definition 6 (4)). By
chopping off $\sigma$ , we obtain Tree 2, which is exactly the interpretation of $<P’,$ $h^{/}>$ .
because of $h^{/}$ described above. Hence (b) holds.
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(Preparation 1) Suppose that the end-piece of $P$ contains an equality axiom of the form
$s=t,$ $A(s)arrow A(t)$ as an initial sequent with the height $h$ . Let $m$ and $n$ denote numerals
equal to $s$ and $t$ respectively.

If $m=narrow$ is an axiom, then $s=t,$ $A(s)arrow A(t)$ is replaced by

$\frac{m=narrow}{m=n,A(m)arrow A(n)}$ $h..$

.
$\overline{\frac{term-replaCement_{\mathit{8}}}{s=t,A(s)arrow A(t)}}$ $\dot{h}..\cdot$

By virtue of the assignment of tree interpretation regarding with the term-replacement
defined in (Preparation $0$ ), the corresponding tree interpretation of $\mathit{8}=t,$ $A(s)arrow A(t)$

remains the same through this modification; it remains $0$ . Hence (a) holds. It is treated
in the same way as when $arrow m=n$ is an axiom.
(Case 2) The case where the end-piece of $P$ contains a logical initial sequent.
$<P,$ $h>\mathrm{i}\mathrm{s}$ of the following form.

$Darrow D$:: :
;

$\frac{\Gammaarrow\Delta,\tilde{D}\tilde{D},\Piarrow\Lambda 1,\tilde{D},\Lambda_{2}}{\Gamma,\Piarrow\Delta,\Lambda_{1},\tilde{D},\Lambda 2}J$ $m_{l}$

$arrow.’.$.

$<P^{/},$ $h^{/}>\mathrm{i}\mathrm{s}$ as follows. .$\cdot$.$\cdot$
$\Gammaarrow\Delta,\tilde{D}$

$\overline{\Gamma,\mathrm{I}\mathrm{I}arrow\Delta,\Lambda_{1},\tilde{D},\Lambda_{2}}m_{l}$

$arrow.\cdot.$.
Note that our definition of height allows such an assignment $h’$ in $P^{/}$ that $h^{/}$ is the restric-
tion of $h$ in $P$ with respect to $P’$ (cf. Definition 4). Therefore the tree which represents
$<P’,$ $h’>\mathrm{i}\mathrm{s}$ strictly a part of the tree which represents $<P,$ $h>$ . Consequently this proof
reduction from $<P,$ $h>$ to $<P’,$ $h’>$ corresponds exactly to our $\mathrm{P}$-Rule. (Prune the
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forest corresponding to the tree interpretation of $\tilde{D},\Piarrow\Lambda_{1},\tilde{D}$ , A2 in $<P,h>.$ ) Hence
(b) holds.
(Preparation 2) The case where the end-piece of $P$ contains a weakening. Let $I$ be a
lower most weakening inference in the end-piece. Since the end-sequent is empty, there
must exist a cut $J$ below $I$ , whose cut formula is a descendant of the principal formula of
$I:<P,$ $h>\mathrm{i}\mathrm{s}$ of the following form.

:
:

$\frac{\Pi_{1},arrow\Lambda_{1}}{D,\Pi 1.arrow\Lambda_{1},:}.I$

$mn$

:.$\cdot$

.

$\frac{\Gammaarrow\Delta,\tilde{D}\tilde{D},\mathrm{I}\mathrm{I}arrow\Delta}{\Gamma,\Piarrow\Delta,\Lambda}J$ $kl$

$arrow.\cdot.\cdot$

(Preparation. 2.1) The case where no contraction is applied to a descendant of $D$ from
the inference $I$ through $J$ . By regulating some exchanges from $P,$ $<P’,$ $h^{/}>\mathrm{i}\mathrm{s}$ obtained
as follows.

:
:

$\Pi_{1}arrow\Lambda_{1}$

$–n$$\Pi_{1}arrow\Lambda_{1}m$...$\cdot$

$\Piarrow\Delta$
$l$

$\overline{\Gamma,\mathrm{I}\mathrm{I}arrow\Delta,\Lambda}k$

$arrow...\cdot$

In this case, in the same manner as in Case 2, the tree interpretation from $<P,$ $h>$ to
$<P’,$ $h’>\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{P}^{\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s}}$ exactly to our $\mathrm{P}$-Rule. Hence (b) holds.
(Preparation 2.2) If it is not the case of Preparation 2.1. Let $\tilde{I}$ be the uppermost
contraction applied to a descendant of $D$ . $<P’,$ $h’>\mathrm{i}\mathrm{s}$ obtained by replacing the part of
$<P,$ $h>$ above $\tilde{D},$ $\Piarrow\Lambda$ as follows.

$<P,$ $h>$ $<P’,$ $h’>$...$\cdot$ ....
. $\frac{\mathrm{I}\mathrm{I}_{1}arrow\Lambda_{1}}{D,\Pi_{1}arrow\Lambda_{1}}I$ $mn$

$\overline{\overline{\mathrm{I}\mathrm{I}_{1}arrow\Lambda_{1}}}mn$

$\mathrm{I}\mathrm{I}_{1}arrow\Lambda_{1}$

::.$\cdot$

$\underline{D’,\mathrm{n}_{1}/\cdot.arrow\Lambda_{1}\prime}$

/

$, \frac{D’,D’,\Pi/arrow\Lambda_{1}1/}{D,\Pi/.arrow\Lambda’1,.1}\tilde{I}$
$m’n’$

$\overline{D’,\Pi_{1:}’arrow\Lambda_{1}’}mn$

,.. ..
$\tilde{D},$ $\Piarrow\Lambda$ $\tilde{D},$ $\Piarrow\Lambda$

Through the above modification the corresponding tree interpretation of $\tilde{D},$ $\Piarrow\Lambda$ re-
mains the same; the tree interpretation of $<P’,$ $h’>$ is completely the same as that of
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$<P,$ $h>$ . Hence (a) holds.
(Case 1), (Preparation 1), (Case 2), and (Preparation 2) having been in hand, we can as-
sume that there exists a suitable cut in the end-piece of $P$ (cf. Sublemma 12.9 in Takeuti
[12] $)$ . Now let $J$ be a suitable cut of $<P,$ $h>$ . The essential proof reductions and tree
interpretations are divided into the following two cases (Case 3 and Case 4) according to
the outermost logical symbol of the cut formula of $J$ .
(Case 3) The case where the cut formula of $J$ is of the form $A\wedge B,$ $\neg A,$ A $\mathrm{v}B$ , or $\forall xA(x)$ .
Each proof reduction and tree interpretation are to be treated similarly. Without loss of
generality, we consider the case $A\wedge B$ .
$<P,$ $h>\mathrm{i}\mathrm{s}$ of the following form.

$. \cdot.\frac{\Gamma 1arrow\Delta 1,A1\mathrm{r}2arrow\Delta 2B_{1}}{\Gamma_{1},\Gamma_{2^{arrow}}\Delta_{1}:\Delta_{2},A_{1}\wedge B_{1}}.\cdot.,h_{1}^{1}k$ $\frac{A_{2},\mathrm{I}\mathrm{I}_{2^{arrow\Lambda_{2}}}}{A_{2}\mathrm{A}B_{2},\mathrm{I}\mathrm{I}_{2^{arrow}}\Lambda_{2}}.\cdot.\cdot h_{2}^{2}k$

..
$\Gamma_{3}arrow\Delta_{3},$ $A\wedge B$ $A$ A $B,$ $\mathrm{i}\mathrm{I}_{3}arrow\Lambda_{3}$

$\overline{\Gamma_{3,33}\mathrm{I}\mathrm{I}arrow\Delta,\Lambda_{3}}$

..$-l$
$\Phiarrow.\Psi n$.

$arrow \mathrm{Y}$

$\Phiarrow\Psi$ is upper most sequent below $J$

whose height $n$ is less than $l$ , here $l$ denotes the height of
an upper sequent of $J$ .

Then, $<P’,$ $h’>\mathrm{i}\mathrm{s}$ the following:

$\mathrm{r}_{1}arrow.\cdot$.
$\Delta_{1},$ $A_{1}$ $A_{2},$

$\mathrm{I}\mathrm{I}_{2^{arrow}}^{\cdot}.\cdot\Lambda_{2}$

$k_{1}$ $k_{2}$

$\overline{\Gamma_{1},\Gamma_{2}-A1,.\Delta_{1}..’\Delta_{2},A_{1}\wedge B_{1}}h_{1}$ $\overline{A_{2}\wedge B_{2},\mathrm{I}\mathrm{I}_{2}..’ A_{2^{arrow}}\Lambda_{2}}h_{2}$

$\frac{\mathrm{r}_{31,3}arrow A\Delta:,:A\wedge BA\wedge B,\Pi_{3^{arrow\Lambda}}3}{\Gamma_{3},\Delta_{3^{arrow}}A,\Delta_{3},\Lambda_{3}}$

.
$. \frac{\mathrm{r}_{3}arrow:\Delta_{3},A\wedge BA\wedge B,\mathrm{I}\mathrm{I}3Aarrow\Lambda_{3}}{\Gamma_{3},\mathrm{I}\mathrm{I}_{3}arrow A,\Delta 3,\Lambda \mathrm{s}}.\cdot$,

:
$\underline{\Phiarrow.\cdot\cdot.\overline{A,\Psi}}$

$\underline{\overline{\Phi,Aarrow}.\cdot\Psi m^{l}}$

$\frac{\overline{\Phiarrow\Psi,A}\overline{A,\Phiarrow\Psi}}{\underline{\Phi,\Phiarrow\Psi,\Psi},-}mn$

$\Phiarrow\Psi$

$arrow..\cdot$

.

Let $h’$ be the height of $P^{/}$ . Then as denoted in the above proof figure, $h^{/}$ is as follows.
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$\bullet$ $h’(\Phiarrow\Psi, A)=h’(A, \Phiarrow\Psi)=m$ with $n\leq m<l$ .
$\bullet$ If $S$ is a sequent of $<P’,$ $d’>$ except $\Phiarrow\Psi,$ $A$ and $A,$ $\Phiarrow\Psi$ , then in $<P,$ $h>$

there exists a sequent $\tilde{S}$ of which $S$ is a copy, and $h’(S)=h(\tilde{S})$ .

By virtue of this height assignment of $<P’,$ $h’>$ , we interprete the tree transformation
from $<P,$ $h>\mathrm{t}\mathrm{o}<P’,$ $h’>$ as follows: We interpret $<P,$ $h>$ as Tree 1, where $T$ is the
element of $\mathcal{T}$ corresponding to the sequent $\Gamma_{2}arrow\Delta_{2},$ $B_{1}$ , and $\rho$ is the head corresponding
to the indicated $0$ of the tree interpretation of $A_{2}\wedge B_{2},$ $\Pi_{2}arrow\Lambda_{2}$ (cf. Definition 6 (2)). By
chopping off the node denoted by $\sigma$ , Tree 1 transforms itself into Tree 2. In Tree 2, let $T’$

be the left-hand side copy of $T$ , and $\rho’$ the right-hand side copy of $\rho$ . By $\mathrm{P}$-Rule, pruning
all the nodes except one of the lowest nodes $\tau$ of $T’$ , we obtain Tree 3. By $\mathrm{D}$-Rule, we
shift $\tau$ and $\rho’$ down respectively to the nodes where $\sigma$ used to be attached. This completes
our tree transformation; $\mathrm{b}\mathrm{e}\mathrm{e}4$ is exactly the interpretation of $<P’,$ $h’>\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{e}$ of the
assignment of $h’$ described above. Hence (b) holds.

Tree 2Tree 1

$\mathrm{O}-\mathrm{O}^{:}\mathrm{T}\mathrm{r}*\cdot 3$

:

$.\mathrm{r}\mathrm{r}\epsilon \mathrm{e}4$

$\square$

From Theorem 1, there exists at least one strategy of Kirby-Paris’ Hydra Game whose
termination guarantees the termination of Gentzen’s proof reduction on his consistency
proof of PA $[5, 12]$ . So by virtue of G\"odel’s Incompleteness Theorem, the statement ‘the
strategy of such a kind is a winning strategy.’ is not provable in $PA$ . Now we reach directly
Kirby-Paris’ independence result as follows.

Proposition 3 $(\mathrm{K}\mathrm{i}\mathrm{r}\mathrm{b}\mathrm{y}-\mathrm{p}_{\mathrm{a}}\mathrm{r}\mathrm{i}\mathrm{S}[9])$ The statement $‘ {}^{t}For$ every hydra $t\in T_{KP}$ every recur-
sive strategy starting from $t$ is a winning $\mathit{8}trategy$

” is not provable in $PA$ .
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3 A Relationship between Kirby-Paris’ Hydra Game and
Buchholz’s Hydra Game.

Buchholz extended Kirby-Paris’ Hydra Game significantly by defining a game on labeled
finite trees in which a hydra grew not only in width but also in height (cf. Buchholz [3],
Hamano-Okada [6] for the definition of the general case of Buchholz’s Hydra Game). In
this section we shall restrict our attention to the one-demensional version of Buchholz’s
Hydra Game, which we shall call one-dimen8ional Buchholz’s Hydra Game and denote
$B_{\omega+1}^{1}$-Game. One dimensional labeled tree is a finite sequence of elements from $\omega+1=$

$\{0,1, \ldots , \omega\}$ . $S_{\omega+1}$ denotes the set of all one-dimensional trees. The root and the head
of an one-dimensional tree is defined to be respectively the beginning and the ending
element of the sequence. An one-dimensional labeled hydra is an one-dimensional labeled
tree whose root is $0$ . We use the notation $\mathcal{H}_{\omega+1}^{1}$ to denote the set of all one-dimensional
hydras labeled from $\omega+1=\{0,1, \ldots,\omega\}$ . One-dimensional version of Buchholz’s Hydra
Game, denoted by $B_{\omega+1}^{1}$ -Game, is a battle between Hercules and one-dimensional hydra.
At each step of a battle Hercules chops off the head of a given hydra $S$ , and chooses a
natural number $n$ , then hydra $S$ transforms itself into a new hydra $S(n)$ in three different
ways according to the labels of the head of the hydra following three rules below. For an
one-dimensional labeled tree $S$ , we use the notation $S^{-}$ and Si to denote respectively the
subsequences of $S$ obtained by deleting its head and by deleting $i$-many nodes from the
root.

Definition 7 (One-dimensional version of Buchholz’s Hydra Game) 3

Rules of $B_{\omega+1}^{1}$ -Game are the following three kinds of rules to transform a hydra $S$ into
$S(n)$ , for an arbitrary chosen natural number $n$ .

Rule 1 The $ca\mathit{8}e$ where the head of a hydra $i_{\mathit{8}}0$ .
$S(n)$ is obtained from $S$ by deleting its head $(i.e.0)$ .

Rule 2 The case where the head of the hydra is $m+1$ .
Let $a_{j}$ be the first occurrence of an element from the head of $S$ such that $a_{j}\leq m$ .
$S(n)$ is the sequence

$S^{-}\underline{mS_{j}^{-}\cdots mS_{j}-}\mathrm{o}$
.

n-times
For example if $S$ is $0,1,2,2$ then $S(n)$ is $0,1,2,1,2\cdots 1,$

$2\sim n-times’ 0$

Rule 3 The case where the head of a hydra is $\omega$ .
$S(n)$ is obtained from $H$ by simply changing the head by $n+1$ .

$\mathrm{L}\mathrm{e}\mathrm{t}\prec_{B_{\omega+1}^{1}}$ denote the reduction relation defined $\mathrm{a}\mathrm{s}\prec_{B_{\omega+1}^{1}}=\{(S(n), s)|0\neq S\in \mathcal{H}_{\omega+1}^{1},$ $n\in$

$N\}$ . Then it is known $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\prec_{B_{\omega+1}^{1}}$ is well founded (cf. [3] [11]). I.e, every recursive strategy
of $B_{\omega+1}^{1}$-Game is a winning strategy.

Let $T_{2}$ denote the set of all two dimensional forests each node of which is labeled from
$\{0,1\}$ . Elements of $\mathcal{T}_{2}$ corresponds one to one into the elements of $\mathcal{H}_{\omega+1}^{1}$ as follows. We

3The definition of the following rules are almost the same as those of Buchholz’s Game [3] restricted to
one-dimension except that Rule 2 is the restriction of such the extension of Case 2 of [3] as a hydra grews
up in height also while making n-copies.
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use a white node to describe a node labeled with $0$ and a black node to describe a node
labeled with 1.

Definition 8 (Interpretation of $T_{2}$ into $\mathcal{H}_{\omega+1}^{1}$ ) $\bullet$ The tree consisting of one white
node is interpreted as $0$ .

$\bullet$ The tree $con\mathit{8}i_{S}ting$ of one black node $i_{\mathit{8}}$ interpreted as $0\omega$ .. If a forest $T$ consists of trees $T_{1},$ $T_{2},$
$\ldots,$

$T_{n}$ , and each $T_{i}$ is interpreted as a sequence
$S_{i}$ , then $T$ is interpreted as sequence $S_{1}S_{2}\cdots S_{n}$ .

$\bullet$ If a forest $T$ is a rooted tree of the form
$T_{1}\circ|$

(
$\bullet T_{1}|$

, respectively), and $T_{1}$ is interpreted
as a sequence $S_{1}$ , then $T$ is interpreted as $a$ $\mathit{8}equence0$ Suc $(S_{1})(0\omega \mathrm{s}\mathrm{u}\mathrm{c}(S1),$ re-
spectively). Here, for a sequence $S,$ $\mathrm{S}\mathrm{u}\mathrm{c}(s)denote\mathit{8}$ the sequence resulting from $S$

by replacing each occurrence of a natural number by its successor. Note that an
occurrence of $\omega$ in $S$ remains the $\mathit{8}ame$ in $\mathrm{S}\mathrm{u}\mathrm{c}(s)$ .

Example 1 The following forest corresponds to a hydra of the form $0,1,2,\omega,$ $3,3,\omega,$ $2,0,1,\omega,$ $1$ .

$p\cup\Gamma \mathrm{C}\mathrm{s}11$

Let $\mathcal{H}_{\omega}^{1}$ denote such a subset of $\mathcal{H}_{\omega+1}^{1}$ that consists of all one-dimensional hydras la-
beled from $\omega=\{0,1, \ldots\}$ . As a restricted case of Definition 8, the elements of $\mathcal{T}$

corresponds one to one into the elements of $\mathcal{H}_{\omega}^{1}$ . Let $B_{\omega}^{1}$-Game be the same Game as
Definition 7 with the restriction that the hydras are only the elements ffom $\mathcal{H}_{\omega}^{1}$ ; Rule
3 is not necessary in $B_{\omega}^{1}$ -Game. And $\prec_{B_{\omega}^{1}}$ denotes the reduction relations defined as
$\prec_{B_{\omega}^{1}}=\{(S(n), s)|0\neq S\in \mathcal{H}_{\omega}^{1}, n\in N\}$.

In observing a relationship with $B_{\omega}^{1}$-Game it is natural to slightly extend Kirby-Paris’
Hydra Game over $T$ , i.e., the forests rather than the trees.

Definition 9 (Extended Kirby-Paris’ Hydra Game $[11]\rangle$ Extended Kirby-Paris’ Hy-
$dra$ Game is the same as Definition 3 except that $a$ hydra $t$ denote8 not only an element
of $\mathcal{T}_{KP}$ but $al_{\mathit{8}}o$ an element of $\mathcal{T}$ , and that we add the following case (3) in Definition 3,
in order to deal with a $fore\mathit{8}t$ .
(3) If $\sigma$ is a root of $t$ , then $t(\sigma,n)$ is $t^{-}$ (see the figure below).

In the same manner as in Definition 2, an element from $T$ is interpreted as an ordinal
less than $\epsilon_{0}$ , hence parallel arguments to the proofs of Proposition 1 and Proposition 2
also work. $\mathrm{L}\mathrm{e}\mathrm{t}\prec_{EKP}$ denote the reduction relation defined. $\mathrm{a}\mathrm{s}\prec_{EK}.p=\{(t(n),t)-|0\neq t\in$

$T,$ $n\in N\}$
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$(3\rangle$

$-\approx$

Lemma 2 One step of Extended Kirby-Paris’ Hydra Game corresponds exactly to the one
or two steps of $B_{\omega}^{1}$ -Game; $\prec_{EKP}$ is contained $in\prec_{B_{\omega}^{1}}$ .
Sketch of proof. One can check easily that for example, the following one step transfor-
mation from Tree 1 to Ikee 2 in Kirby-Paris’ Hydra Game corresponds exactly to Rule 2
and Rule 1 in succession in $B_{\omega}^{1}$-Game: Tree 1 is interpreted as $0,1,2,2,3,4,4,3\in \mathcal{H}_{\omega}^{1}$ .
$0,1,2,2,3,4,4,3$ transforms itself into $0,1,2,2,3,4,4,\underline{2,3,4,4,\ldots 2,3,4,4},0$ by Rule 2.

n-times
Then by Rule 1 this hydra transforms itself into

$0,1,2,2,3,4,4, \frac{2,3,4,4,\ldots 2,3,4,4}{n-times}$
.

$\square$

The above interpretation indicates that Kirby-Paris’ Hydra Game is embedded into $B_{\omega^{-}}^{1}$

Game. From Theorem 1, the next theorem follows.

Theorem 2 The statement $tt$ For every $S\in \mathcal{H}_{\omega}^{1}$ , every recursive strategy starting from $S$

is a winning strategy in $B_{\omega}^{1}$ -Game” is not provable in $PA$ .

Let $S_{\omega}$ denote the subset of $S_{\omega+1}$ that consists of all trees labeled from $\omega$ . Let $a_{n}$

denote a node occuring in $S\in S_{\omega}$ . By a node immediately below $a_{n}$ we mean such a node
$a_{m}$ that $a_{m}<a_{n}$ holds with $m<n$ and that $a_{i}\geq a_{n}$ holds for all $i$ with $m<i<n$ ,

By a node immediately above $a_{n}$ we mean such a node $a_{k}$ that $a_{n}$ is the node immedi-
ately beloew $a_{k}$ .
Definition 10 (Interpretation of $\mathcal{H}_{\omega}^{1}$ onto $T$) Let $S=a_{1},$

$\ldots,$
$a_{n}\in S_{\omega}.$ Then $\overline{S}\in S_{\omega}$

is defined so that $S\in \mathcal{H}_{\omega}^{1}implie\mathit{8}\overline{S}\in T$ by the induction on $n$ as follows.
1 If $n=1,$ then $\overline{S}=S$ .
2 If $S=S’,$ $a_{n+1}$ with $S’=a_{1},$

$\ldots,$ $a_{n},$ then $\overline{S}$ is obtained from $\overline{s_{\wedge}/}as$ follows.
2.1 If $a_{n}\geq a_{n+1},$ then $\overline{S}=\overline{S’},$

$a_{n+1}$ .
2.2 If $a_{n}<a_{n+1},$ then $\overline{S}=\overline{S’},$ $a_{n}+1,$

$\ldots,$ $an+1-1,$ $an+1$ .

Example 2 If $S=0,3,3,5,2\in \mathcal{H}_{\omega}^{1},$ then $\overline{S}=0,1,2,3,3,4,5,2\in \mathcal{T}$ .
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Lemma 3 Each step of $B_{\omega}^{1}$ -Game corresponds to exactly one step of Kirby-Paris’ Hydra
Game under the interpretation defined in Definition 10. $\backslash$.

Proof. In the case where a $\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\acute{\mathrm{n}}$ hydra has $\mathrm{t}\mathrm{h}\mathrm{e}’\dot{\mathrm{h}}$ ead $0$ the theorem $\mathrm{i}_{\mathrm{S}}$ obvious; $\mathrm{R}^{\backslash }\mathrm{u}$le 1 of
Definition 7 corresponds exactly to (3) of Definition 9.
Let us consider the case where a given hydra has the head $i+1$ ; the hydra is of the form
$S=S’jHi+1\in \mathcal{H}_{\omega}^{1}$ , where the indicated $j\dot{\mathrm{i}}\mathrm{s}$ the node immediately below the indicated
head $i+1$ . In $B_{\omega}^{1}$ -Game, one step reduction against $S$ means one step of Rule 2 to be
necessarily followed by one step of Rule 1 described as follows. .. $\sim,$ $\prime\prime^{2}$

$S’jHi+1<_{B_{\omega}^{1}}S’jH \frac{iH\cdots iH}{n-times}0<_{B_{\omega}^{1}}S’jH-iHn-timeSiH$

On the other hand

$\overline{S’jHi+1}$ $=$ $\overline{S’jH}i+1$

$’\overline{S’jHiH\cdots iH\sim\vee_{n-times}}$
$=$

$\overline{S’jH}\overline{iH}\cdot\cdot\vee\cdot\overline{iH}n-times$

’

.

Obviously $\overline{iH}$ is the subtree of $\overline{S}$ determined by the node immediately below its $\hat{\mathrm{h}}\mathrm{e}\dot{\mathrm{a}}\dot{\mathrm{d}}$

$i+\square 1$

.
$\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}\overline{S/jHi+1i!}<_{K}p_{1}$

.
$\overline{S’jH,\cdot\frac{i.H\cdot.\cdot\cdot iH}{n-times}.}$

.

.
$F$

$:’\backslash \cdot$

.
$;_{P}.$. et..

The above lemma implies the following lemma. ..
’:$\ldots\cdot$

.
. $\wedge l,$

$.$ ...
’ .

Lemma 4 $\prec_{EKP}$ is strong enough to prove the well ordemess $of\prec_{B_{\omega}^{1}}$ . $z^{i}\cdot.’..\tau\cdot$ . .

Let $<_{B_{\omega}^{1}}+$ denote the transitive closure of $<_{B_{\omega}^{1}}$ . The following is the Corollary of Lemma 2.

Corollary 1 $If\overline{S_{1}}=\overline{S_{2}}$ with $S_{1},$ $S_{2}\in \mathcal{H}_{\omega}^{1}$ , then neither $S_{1}<_{B_{\omega}^{1}}^{+}S_{2}$ nor $S_{2}<_{B_{\omega}^{1}}+S_{1}$ holds.

Proof. From the proof of Lemma 2, $S_{1}<_{B_{\omega}^{1}}S_{2}$ implies $\overline{s_{1}}<_{KP}\overline{S_{2}}$. Hence the assertion
holds. $\square$

Consider the subset $S_{\omega}(n)$ of $S_{\omega}$ as $S_{\omega}(n)=$ { $S\in S_{\omega}|$ No node of $S$ is more than $n$ . }. It
is easily checked that $T(n)$ is embeded into $S_{\omega}(n)$ under the interpretation of Lemma 2
and that if $S\in S_{\omega}(n),$ then $\overline{s}\in T(n)$ . Consider the statement $B_{\omega}^{1}(n)$ for an fixed natural
number $n$ to denote “For every $S\in S_{\omega}(n)$ every recursive strategy starting from $S$ is a
winning strategy.”. .

Lemma 5 $KP(n)\Leftrightarrow B_{\omega}^{1}(n)$ holds under a weak a$7\dot{?}themeti_{C}$ .
Proof. $\Rightarrow \mathrm{i}\mathrm{s}$ from Lemma 2 $\mathrm{a}\mathrm{n}\mathrm{d}\Leftarrow \mathrm{i}\mathrm{s}$ from Lemma 3. $\square$

Hence $\mathrm{h}\mathrm{o}\mathrm{m}$ Proposition 2 and Lemma 5 the following proposition holds.
$\mathrm{t}$ ,

Proposition 4 For an arbitrary natural number $n$ ,

$PA\vdash B_{\omega}^{1}(n)$

79



Until the above we observe that $B_{\omega}^{1}$-Game is equivalent to Kirby-Paris’ Hydra Game.
Then when it comes to $B_{\omega+1}^{1}$ -Game which is a extension of $B_{\omega}^{1}$-Game, what is a corre-
sponding natural extension of Extended Kirby-Paris’ Hydra Game into $T_{2}$ ? The answer is
following. We define Hydra Game over $T_{2}$ as follows: If the color of the top node Hercules
chops off is white then a tree transforms itself in the same manner as Extended Kirby-
Paris’ Hydra Game (Definition 8). If the color of the top node Hercules chops off is black
then a tree transforms itself in the manner as the following figure; the transformed tree
results ffom a given tree by changing the color of the node Hercules chops off into white
and by sprouting only one new white head.
It is trivial that the above game is embeddable into $B_{\omega+1}^{1}$ -Game. To the contrary, it is

$\backslash \swarrow_{-\approx}\backslash ’@’\swarrow$

easily checked by using D-R\sim ule with respect to the above $\mathrm{g}\mathrm{a}..\mathrm{m}\mathrm{e}$ that the reduction relations
defined in the above game is strong enough to prove the well-orderness $\mathrm{o}\mathrm{f}\prec_{B^{1}+1}.\cdot$
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