Haraux-Weissler型方程式の正値球対称解について On the Positve Radial Solutions to the Haraux-Weissler Equation

早稲田大学 理工学部 廣瀬 宗光
Waseda University Munemitsu Hirose

1. Introduction

The aim of this talk is to investigate the structure of positive radial solutions to

(1.1)
$$\Delta u + \frac{1}{2} x \cdot \nabla u + \lambda u + |u|^{p-1} u = 0, \quad x \in \mathbb{R}^n,$$

where p > 1, $n \ge 3$ and $\lambda \ge 0$. Since we are interested in radial solutions (i.e., u = u(r) with r = |x|), we will study the following initial value problem

(IVP)
$$\begin{cases} u_{rr} + \frac{n-1}{r}u_{r} + \frac{r}{2}u_{r} + \lambda u + |u|^{p-1}u = 0, \ r > 0, \\ u(0) = \alpha > 0. \end{cases}$$

Equation (1.1) comes from the study of a semilinear heat equation of the form

(1.2)
$$f_t - \Delta f - |f|^{p-1} f = 0, \quad (t,x) \in (0,\infty) \times \mathbb{R}^n.$$

When we discuss the following function, which is called a self-similar solution,

$$f(t,x):=t^{-1/(p-1)}u(x/\sqrt{t}),$$

it can be seen that f satisfies (1.2) if and only if u satisfies (1.1) with $\lambda = 1/(p-1)$.

In Section 3, it will be shown that (IVP) has a unique solution $u(r) \in C^2([0,\infty))$ with $u_r(0) = 0$, which is denoted by $u(r;\alpha)$. Moreover, if we define $z := \inf\{r > 0 ; u(r;\alpha) = 0\}$, then $u(r;\alpha)$ is decreasing in [0,z). By the decreasing property of $u(r;\alpha)$, we can classify solutions of (IVP) in the following manner:

- (i) $u(r;\alpha)$ is a crossing solution if $0 < z < +\infty$,
- (ii) $u(r;\alpha)$ is a decaying solution if $z = +\infty$, i.e. $u(r;\alpha) > 0$ in $[0,\infty)$.

These terminologies are used by Yanagida and Yotsutani [YY1].

Many authors have studied (IVP). Weissler [W1] has proved that, if $\lambda \ge n/2$, then $u(r;\alpha)$ is a crossing solution for every $\alpha > 0$. For $0 < \lambda < n/2$, the critical exponent p = (n+2)/(n-2) is important. Set $L:=\lim_{r\to\infty} r^{2\lambda}u(r;\alpha)$. In the supercritical case $p \ge (n+2)/(n-2)$, Atkinson and Peletier [AP] and Peletier, Terman and Weissler [PTW] have proved that, if $0 < \lambda \le \max\{1, n/4\}$, then $u(r;\alpha)$ is a decaying solution with $0 < L < +\infty$ for every $\alpha > 0$. Especially in the critical case p = (n+2)/(n-2), Escobedo and Kavian [EK] have got the following result; if $\max\{1, n/4\} < \lambda < n/2$, then there exists a decaying solution with L = 0, i.e.,

$$u(r;\alpha) = C \exp(-r^2/4)r^{2\lambda-n} [1+O(r^{-2})]$$
 as $r \to \infty$,

where C is a positive constant. In the subcritical case $1 , Weissler [W1] has proved that, if <math>\lambda > 0$, then $u(r;\alpha)$ is a crossing solution for sufficiently large α . Moreover, Haraux and Weissler [HW] have given an interesting result. Put

$$\alpha_* := \inf \{ \alpha > 0 ; u(r; \alpha) \text{ is a crossing solution} \}.$$

If $\lambda > 1/2(p-1)$ and $\lambda < n/2$, then $0 < \alpha_* < +\infty$ and $u(r;\alpha_*)$ is a decaying solution with L = 0. Moreover, $u(r;\alpha)$ is a decaying solution with $0 < L < +\infty$ for sufficiently small α .

Although we have picked up a part of known results, it seems that there are no works about the structure of solutions to (IVP) with $\lambda = 0$, and that the complete information for the structure of solutions to (IVP) with $\lambda > 0$ has not known. In this paper, we will show the structure of *positive* radial solutions to (IVP) with $\lambda = 0$, using the classification theorem by Yanagida and Yotsutani (see Section 4). Moreover, we will apply the same argument to (IVP) with $\lambda = 1$, and give more detailed information than the result in [HW].

2. Main Results

Our problem is to decide whether each $u(r;\alpha)$ is a crossing solution or a decaying solution when initial value α moves from 0 to $+\infty$. In the case $\lambda = 0$, we obtain the following result.

Theorem 1. Let $\lambda = 0$.

- (i) If $p \ge (n+2)/(n-2)$, then $u(r;\alpha)$ is a decaying solution for every $\alpha > 0$.
- (ii) If $1 , then there exists a unique positive number <math>\alpha_0$ such that $u(r;\alpha)$ is a decaying solution for every $\alpha \in (0,\alpha_0]$ and a crossing solution for every $\alpha \in (\alpha_0,\infty)$. Moreover, $u(r;\alpha_0)$ is the most rapidly decaying solution among decaying solutions such that $u(r;\alpha_0) = O(r^{-n} \exp(-r^2/4)) \text{ as } r \to \infty.$

In [YY1], Yanagida and Yotsutani have studied the structure of positive radial solutions to the Lane-Emden equation

$$\Delta u + u^p = 0, \ x \in \mathbb{R}^n.$$

A fundamental difference to the structure of positive radial solutions between (1.1) with $\lambda = 0$ and (2.2) appears in the subcritical case 1 because every positive radial solution to (2.2) is a crossing solution.

In the case $\lambda = 1$, we can show a similar result to the case $\lambda = 0$.

Theorem 2. Let $\lambda = 1$.

- (i) If $p \ge (n+2)/(n-2)$, then $u(r;\alpha)$ is a decaying solution for every $\alpha > 0$.
- (ii) If $1 , then there exists a unique positive number <math>\alpha_1$ such that $u(r;\alpha)$ is a decaying solution for every $\alpha \in (0,\alpha_1]$ and a crossing solution for every $\alpha \in (\alpha_1,\infty)$. Moreover, $u(r;\alpha_1)$ is the most rapidly decaying solution among decaying solutions such that

(2.3)
$$u(r; \alpha_1) = O(r^{2-n} \exp(-r^2/4))$$
 as $r \to \infty$.

Theorem 2 gives us more detailed structure of solutions to (IVP) with $\lambda = 1$ than the result established by Haraux and Weissler [HW].

3. Preliminary Results

In this section, we will give some fundamental properties of solutions to (IVP).

Proposition 3.1. The following two conditions are equivalent:

- (i) $u(r;\alpha) \in C([0,\infty)) \cap C^2((0,\infty))$ satisfies (IVP).
- (ii) $u(r; \alpha) \in C([0, \infty))$ satisfies

(3.1)
$$u(r;\alpha) = \alpha - \int_0^r dt \int_0^t (s/t)^{n-1} \exp\{(s^2 - t^2)/4\} (\lambda u + |u|^{p-1}u) ds.$$

Moreover, in both cases, the following properties holds;

- (a) $u(r;\alpha)$ is decreasing in [0,z), where $z:=\inf\{r>0 \; ; \; u(r;\alpha)=0\}$. (If $u(r;\alpha)>0$ in $[0,\infty)$, then we put $z=\infty$.)
- (b) $u(r; \alpha) \in C^2([0, \infty))$ and $u_r(0; \alpha) = 0$.
- (c) $|\mu(r;\alpha)| \le C(1+r)^{-2\lambda}$ and $|\mu_r(r;\alpha)| \le C(1+r)^{-2\lambda-1}$ for all $r \ge 0$, where C depends boundedly on α .

Proof. We first show that (i) implies (ii). For this purpose, we begin with the proof of (a). First we note that the equation of (IVP) is equivalent to

(3.2)
$$\left\{ r^{n-1} \exp(r^2/4) u_r \right\}_r + r^{n-1} \exp(r^2/4) \left(\lambda u + |u|^{p-1} u \right) = 0.$$

Integrating (3.2) over $[\theta,r]$ leads to

$$(3.3) r^{n-1} \exp(r^2/4) u_r(r;\alpha) - \theta^{n-1} \exp(\theta^2/4) u_r(\theta;\alpha) = -\int_{\theta}^{r} s^{n-1} \exp(s^2/4) (\lambda u + |u|^{p-1} u) ds.$$

Since $s^{n-1} \exp(s^2/4)(\lambda u + |u|^{p-1}u) \in L^1(0,r)$, there exists $\lim_{\theta \to 0} \theta^{n-1}u_r(\theta;\alpha)$. Now we will prove $\lim_{r \to 0} r^{n-1}u_r(r;\alpha) = 0$ by contradiction. Suppose that

(3.4)
$$\lim_{r\to 0} r^{n-1}u_r(r;\alpha) =: \eta > 0.$$

(We can also derive a contradiction in the case $\eta < 0$.) Let ε be any sufficiently small positive number. From (3.4), we can take sufficiently small $\delta(\varepsilon) > 0$ such that

$$(3.5) r^{1-n}(\eta-\varepsilon) < u_r(r;\alpha) < r^{1-n}(\eta+\varepsilon)$$

for $r \in (0, \delta(\varepsilon))$. Integrating (3.5) from r to δ , we get

$$u(\delta;\alpha)-\frac{\eta+\varepsilon}{n-2}(r^{2-n}-\delta^{2-n})< u(r;\alpha)< u(\delta;\alpha)-\frac{\eta-\varepsilon}{n-2}(r^{2-n}-\delta^{2-n});$$

which implies $\lim_{r\to 0} u(r;\alpha) = -\infty$. Since this is absurd, we get $\lim_{\theta\to 0} \theta^{n-1} u_r(\theta;\alpha) = 0$. Therefore, letting $\theta\to 0$ in (3.3), we obtain

(3.6)
$$u_r(r;\alpha) = -\int_0^r (s/r)^{n-1} \exp\{(s^2 - r^2)/4\} (\lambda u + |u|^{p-1}u) ds.$$

Thus as far as $u(r;\alpha)$ is positive, $u_r(r;\alpha)$ is negative; so that $u(r;\alpha)$ is decreasing in [0,z).

Moreover, Integrating (3.6) over [0,r] and using $u(0) = \alpha$, we get (3.1). Thus we have shown that (i) implies (ii). Conversely, it is readily seen that (ii) implies (i). Concerning the proofs of (b) and (c), see [W2] and [HW], respectively.

Q.E.D.

Proposition 3.2. There exists a unique solution $u(r;\alpha) \in \mathbb{C}^2([0,\infty))$ of (IVP).

Proof. By Proposition 3.1, it is sufficient to show the uniqueness and existence of solutions for (3.1). The uniqueness is easily proved by Gronwall's inequality. The existence is obtained as follows. For $0 \le r \le \delta$ with a suitably small $\delta > 0$, we use the successive approximation method to obtain the local existence. For $r > \delta$, we introduce

$$E(r) := \frac{1}{2} u_r(r;\alpha)^2 + \frac{\lambda}{2} u(r;\alpha)^2 + \frac{1}{p+1} |u(r;\alpha)|^{p+1}.$$

Differentiating E(r), we obtain

$$E'(r) = -\left\{\frac{n-1}{r} + \frac{r}{2}\right\} u_r^2 \le 0.$$

Thus, since $u(r:\alpha)$ and $u_r(r:\alpha)$ can never blow up, the global existence of $u(r:\alpha)$ for every r>0 can be proved in the standard manner. Q.E.D.

4. The Classification Theorem by Yanagida and Yotsutani

In this section, for the purpose to prove Theorems 1 and 2, we will explain the classification theorem by Yanagida and Yotsutani (see [YY2] or [Y]) for the following initial value problem

(4.1)
$$\begin{cases} (g(r)u_r)_r + g(r)K(r)(u^+)^p = 0, r > 0, \\ u(0) = \alpha > 0, \end{cases}$$

where $u^+ = \max\{u, 0\}$. We suppose that g(r) and K(r) satisfy

(g)
$$\begin{cases} g(r) \in C^{1}([0,\infty)); \\ g(r) > 0 \text{ in } (0,\infty); \\ 1/g(r) \notin L^{1}(0,1); \\ 1/g(r) \in L^{1}(1,\infty), \end{cases}$$

and

$$\begin{cases} K(r) \in C(0, \infty); \\ K(r) \ge 0 \text{ and } K(r) \ne 0 \text{ in } (0, \infty); \\ h(r)K(r) \in L^{1}(0, 1); \\ h(r)\left\{h(r) / g(r)\right\}^{p} K(r) \in L^{1}(1, \infty), \end{cases}$$

where

$$h(r):=g(r)\int_{r}^{\infty}\left\{1/g(s)\right\}ds.$$

Moreover, define the following functions

$$G(r) := \frac{2}{p+1} g(r) h(r) K(r) - \int_0^r g(s) K(s) ds,$$

$$H(r) := \frac{2}{p+1} h(r)^2 \left\{ \frac{h(r)}{g(r)} \right\}^p K(r) - \int_r^{\infty} h(s) \left\{ \frac{h(s)}{g(s)} \right\}^p K(s) ds,$$

and set

$$r_G:=\inf\{r\in(0,\infty);\ G(r)<0\},\ r_H:=\sup\{r\in(0,\infty);\ H(r)<0\}.$$

Remark 4.1. We can show that (4.1) has a unique solution $u(r;\alpha)$ for each $\alpha > 0$ under the first, second and third conditions in (K).

Now we will state their result.

Theorem 4.1. ([YY2]) Suppose that $G(r) \neq 0$ in $[0, \infty)$. Let $u(r; \alpha)$ be the solution of (4.1).

- (a) If $r_G = \infty$ (i.e., $G(r) \ge 0$ in $(0, \infty)$), then $u(r; \alpha)$ is a crossing solution for every $\alpha > 0$.
- (b) If $r_G < \infty$ and $r_H = 0$ (i.e., $H(r) \ge 0$ in $(0,\infty)$), then $u(r;\alpha)$ is a decaying solution with $\lim_{r\to\infty} \{g(r)/h(r)\}u(r;\alpha) = \infty$ for every $\alpha > 0$.
- (c) If $0 < r_H \le r_G < \infty$, then there exists a unique positive number α_f such that $u(r;\alpha)$ is a crossing solution for every $\alpha \in (\alpha_f,\infty)$, and a decaying solution with $\lim_{r\to\infty} \{g(r)/h(r)\}u(r;\alpha) = \infty$ for every $\alpha \in (0,\alpha_f)$. Moreover, if $\alpha = \alpha_f$, then $u(r;\alpha)$ is a decaying solution with $0 < \lim_{r\to\infty} \{g(r)/h(r)\}u(r;\alpha) < \infty$, which means that $u(r;\alpha_f)$ is the most rapidly decaying solution among decaying solutions.

Remark 4.2. If $G(r) \equiv 0$ in $[0, \infty)$, then for every $\alpha > 0$, $u(r; \alpha)$ is a decaying solution with $0 < \lim_{r \to \infty} \{g(r) / h(r)\} u(r; \alpha) < \infty$.

5. Proof of Theorem 1

In this section, we will study the following initial value problem

(5.1)
$$\begin{cases} u_{rr} + \frac{n-1}{r}u_{rr} + \frac{r}{2}u_{rr} + (u^{+})^{p} = 0, \quad r > 0, \\ u(0) = \alpha > 0, \end{cases}$$

where $u^{+} = \max\{u, 0\}$. The equation of (5.1) is equivalent to

$$\left\{r^{n-1}\exp(r^2/4)u_r\right\}_r + r^{n-1}\exp(r^2/4)(u^+)^p = 0.$$

If we put $g(r) := r^{n-1} \exp(r^2/4)$ and K(r) := 1 in (4.1), then it is easily seen that g(r) and K(r) satisfy (g) and (K), respectively. Moreover, we obtain

$$G(r) = 2(p+1)^{-1}r^{2n-2}\exp(r^{2}/2)\int_{r}^{\infty}s^{1-n}\exp(-s^{2}/4)ds - \int_{0}^{t}s^{n-1}\exp(s^{2}/4)ds,$$

$$H(r) = 2(p+1)^{-1}r^{2n-2}\exp(r^{2}/2)\left\{\int_{r}^{\infty}s^{1-n}\exp(-s^{2}/4)ds\right\}^{p+2}$$

$$-\int_{r}^{\infty}s^{n-1}\exp(s^{2}/4)\left\{\int_{s}^{\infty}t^{1-n}\exp(-t^{2}/4)dt\right\}^{p+1}ds.$$

After some calculations,

(5.2)
$$G'(r) = 2(p+1)^{-1}r^{n-1}\exp(r^2/4)\{\Phi(r) - (p+3)/2\} = \left\{\int_r^{\infty} s^{1-n}\exp(-s^2/4)ds\right\}^{-p-1}H'(r),$$
 where

(5.3)
$$\Phi(r) := \left\{ 2(n-1) + r^2 \right\} r^{n-2} \exp\left(r^2 / 4\right) \int_r^{\infty} s^{1-n} \exp\left(-s^2 / 4\right) ds.$$

In order to apply Theorem 4.1, we must know the location of r_G and r_H . For this purpose, we will investigate the profiles of G(r) and H(r). In view of (5.2), it is important to study $\Phi(r)$. First we obtain the following lemma.

Lemma 5.1.

(i)
$$\lim_{r\to 0} \Phi(r) = 2(n-1)/(n-2)$$
.

(ii)
$$\Phi(r) = 2 - 4r^{-2} + o(r^{-2})$$
 as $r \to \infty$.

(iii) There exists a unique number $r_0 \in (0, \sqrt{6(n-1)})$ such that $\Phi(r)$ is decreasing in $[0, r_0)$ and increasing in (r_0, ∞) . Moreover, $\Phi(r_0) < 2$.

Proof. (i) By l'Hospital's theorem,

$$\lim_{r \to 0} \Phi(r) = \lim_{r \to 0} \left\{ 2(n-1) + r^2 \right\} r^{n-2} \exp\left(r^2 / 4\right) \int_r^{\infty} s^{1-n} \exp\left(-s^2 / 4\right) ds$$

$$= \lim_{r \to 0} \frac{\left\{ \int_r^{\infty} s^{1-n} \exp\left(-s^2 / 4\right) ds \right\}_r}{\left\{ \left[\left\{ 2(n-1) + r^2 \right\} r^{n-2} \right]^{-1} \right\}_r}$$

$$= \lim_{r \to 0} \frac{4(n-1)^2 + 4(n-1)r^2 + r^4}{2(n-1)(n-2) + nr^2} = \frac{2(n-1)}{n-2}.$$

(ii) Integrating by parts, we obtain

(5.4)
$$\int_{r}^{\infty} s^{1-n} \exp(-s^{2}/4) ds$$

$$= 2r^{-n} \exp(-r^{2}/4) - 2n \int_{r}^{\infty} s^{-1-n} \exp(-s^{2}/4) ds$$

$$= 2r^{-n} \exp(-r^{2}/4) - 4nr^{-n-2} \exp(-r^{2}/4) + 4n(n+2) \int_{r}^{\infty} s^{-3-n} \exp(-s^{2}/4) ds.$$

Thus we get

$$\Phi(r) = 2 - 4r^{-2} - 8n(n-1)r^{-4} + 4n(n+2)\left\{2(n-1) + r^2\right\}r^{n-2} \exp(r^2/4) \int_r^{\infty} s^{-3-n} \exp(-s^2/4) ds,$$
 which implies (ii).

(iii) From (ii), $\Phi(r)$ is increasing for sufficiently large r and converges to 2. Moreover, since 2(n-1)/(n-2) > 2, $\Phi(r)$ must have a local minimum at some $r_0 \in (0,\infty)$, and it is smaller than 2. We will show that there are no other critical points of $\Phi(r)$. By direct calculations,

(5.5)
$$\Phi'(r) = -2(n-1)r^{-1} - r$$

 $+ \{2(n-1)(n-2) + (2n-1)r^2 + r^4 / 2\}r^{n-3} \exp(r^2 / 4) \int_r^{\infty} s^{1-n} \exp(-s^2 / 4) ds,$

(5.6)
$$\Phi''(r) = -2(n-1)(n-3)r^{-2} - 2n - r^2/2$$

$$+\left\{2(n-1)(n-2)(n-3)+3(n-1)^{2}r^{2}+3nr^{4}/2+r^{6}/4\right\}r^{n-4}\exp(r^{2}/4)\int_{r}^{\infty}s^{1-n}\exp(-s^{2}/4)ds.$$

Suppose that there exists a positive number \tilde{r} such that $\Phi'(\tilde{r}) = 0$. It follows from (5.5) that

(5.7)
$$\tilde{r}^{n-2} \exp(\tilde{r}^2/4) \int_{r}^{\infty} s^{1-n} \exp(-s^2/4) ds = \frac{2\tilde{r}^2 + 4(n-1)}{\tilde{r}^4 + 2(2n-1)\tilde{r}^2 + 4(n-1)(n-2)}.$$

Combining (5.6) and (5.7) leads to

(5.8)
$$\Phi''(\tilde{r}) = \frac{-4(\tilde{r} + \sqrt{6(n-1)})(\tilde{r} - \sqrt{6(n-1)})}{\tilde{r}^4 + 2(2n-1)\tilde{r}^2 + 4(n-1)(n-2)}$$

From (5.8), $\Phi''(\tilde{r}) > 0$ if $\tilde{r} \in (0, \sqrt{6(n-1)})$ and $\Phi''(\tilde{r}) < 0$ if $\tilde{r} \in (\sqrt{6(n-1)}, \infty)$. Therefore, if $\Phi(r)$ has a critical point, then it must be a local minimum in $(0, \sqrt{6(n-1)})$ and a local maximum in $(\sqrt{6(n-1)}, \infty)$. This result says that there exist at most one local minimum and one local maximum since a local maximum cannot exist in $(0, \sqrt{6(n-1)})$ and a local minimum cannot exist in $(\sqrt{6(n-1)}, \infty)$. We have already known that $\Phi(r)$ has a local minimum, and now we will show that $\Phi(r)$ cannot have a local maximum. In fact, suppose that there exists a local maximum. Then $\Phi(r)$ decreases for large r. But it is impossible, because (ii) of this lemma means that $\Phi(r)$ increasingly converges to 2. Thus we finish the proof of (iii). (See Fig.1.) Q.E.D.

From Lemma 5.1, since 2 < (p+3)/2 < 2(n-1)/(n-2) if $1 , there exists a unique number <math>r \in (0,\infty)$ such that $\Phi(r) > (p+3)/2$ in (0,r), $\Phi(r) = (p+3)/2$ and $\Phi(r) < (p+3)/2$ in (r,∞) (see Fig.2). Moreover, since $(p+3)/2 \ge 2(n-1)/(n-2)$ if $p \ge (n+2)/(n-2)$, $\Phi(r) \le (p+3)/2$ in $[0,\infty)$. Therefore, in view of the expressions of (5.2), we get the following lemma.

Lemma 5.2.

- (i) If $p \ge (n+2)/(n-2)$, then G(r) and H(r) are decreasing in $[0,\infty)$.
- (ii) If $1 , then there exists a unique number <math>r \in (0,\infty)$ such that G(r) and H(r) are increasing in [0,r] and decreasing in (r,∞) .

The behaviors of G(r) and H(r) near r=0 and $r=\infty$ are shown by the following result.

Lemma 5.3.

- (i) $\lim_{r\to\infty} G(r) = -\infty$.
- (ii) $\lim_{r\to 0} G(r) = 0$.
- (iii) $\liminf_{r \to \infty} H(r) \ge 0$.
- (iv) If $1 , then <math>\limsup_{r \to 0} H(r) < 0$.

Remark 5.1. If $p \ge (n+2)/(n-2)$, then $H(r) \ge 0$ and $H(r) \ne 0$ in $[0,\infty)$ from Lemma 5.2 (i) and Lemma 5.3 (iii).

Proof. (i) By Lemma 5.1, $\{\Phi(r) - (p+3)/2\}$ is finitely negative for sufficiently large r and does not decay to zero as $r \to \infty$. Moreover, since $\lim_{r \to \infty} r^{n-1} \exp(r^2/4) = +\infty$, we obtain $\lim_{r \to \infty} G'(r) = -\infty$. Therefore, we get (i).

(ii) Since
$$\lim_{r\to 0} \int_0^t s^{n-1} \exp(s^2/4) ds = 0$$
, it is sufficient to show
$$\lim_{r\to 0} r^{2n-2} \exp(r^2/2) \int_r^{\infty} s^{1-n} \exp(-s^2/4) ds = 0.$$

In fact, by l'Hospital's theorem,

$$\lim_{r \to 0} \frac{\left\{ \int_{r}^{\infty} s^{1-n} \exp(-s^{2} / 4) ds \right\}_{r}}{\left(r^{2-2n} \right)_{r}} = \lim_{r \to 0} \frac{r^{1-n} \exp(-r^{2} / 4)}{(2n-2)r^{1-2n}} = 0.$$
(iii)
$$H(r) > -\int_{r}^{\infty} s^{n-1} \exp(s^{2} / 4) \left\{ \int_{s}^{\infty} t^{1-n} \exp(-t^{2} / 4) dt \right\}^{p+1} ds$$

$$> -(n-2)^{-p-1} \int_{r}^{\infty} s^{n-1+(2-n)(p+1)} \exp(-ps^{2} / 4) ds.$$

Therefore, we get

$$\lim_{r\to\infty} \inf_{r\to\infty} H(r) \ge -(n-2)^{-p-1} \lim_{r\to\infty} \int_{r}^{\infty} s^{n-1+(2-n)(p+1)} \exp(-ps^2/4) ds = 0.$$

(iv) Let $p \in (1,(n+2)/(n-2))$. Assume ε be any sufficiently small positive number with $\varepsilon < \{(n+2)-(n-2)p\}/(n-2)(p+1)$ and fix ρ such that $\exp\{-(p+1)\rho^2/4\} > 1-\varepsilon$. Then for $0 < r < \rho$,

$$(5.9) H(r) < \frac{2}{p+1} r^{2n-2} \exp\left(\frac{r^2}{2}\right) \left\{ \int_{r}^{\infty} s^{1-n} \exp\left(-\frac{s^2}{4}\right) ds \right\}^{p+2} \\ - \int_{r}^{\rho} s^{n-1} \exp\left(\frac{s^2}{4}\right) \left\{ \int_{s}^{\rho} t^{1-n} \exp\left(-\frac{t^2}{4}\right) dt \right\}^{p+1} ds \\ < \frac{2}{p+1} r^{2n-2} \exp\left(\frac{r^2}{4}\right) \exp\left\{-\frac{(p+1)r^2}{4}\right\} \frac{1}{(n-2)^{p+2}} r^{(2-n)(p+2)} \\ - \int_{r}^{\rho} s^{n-1} \exp\left(\frac{s^2}{4}\right) \exp\left\{-\frac{(p+1)\rho^2}{4}\right\} \frac{1}{(n-2)^{p+1}} s^{(2-n)(p+1)} \left\{1 - \left(\frac{s}{\rho}\right)^{n-2}\right\}^{p+1} ds.$$

First we consider the case 2 for <math>n = 3 and $1 for <math>n \ge 4$. Since p+1 < 6 and 2-(n-2)p < 0, we obtain

$$H(r) < \frac{2}{(p+1)(n-2)^{p+2}} r^{2-(n-2)p} \exp\left(\frac{r^2}{4}\right)$$

$$-\frac{1}{(n-2)^{p+1}} \exp\left(\frac{r^2}{4}\right) \exp\left\{-\frac{(p+1)\rho^2}{4}\right\} \int_{r}^{\rho} s^{1-(n-2)p} \left\{1 - \left(\frac{s}{\rho}\right)^{n-2}\right\}^{\delta} ds$$

$$< \frac{2}{(p+1)(n-2)^{p+2}} r^{2-(n-2)p} \exp\left(\frac{r^2}{4}\right)$$

$$+ \frac{1}{\{2-(n-2)p\}(n-2)^{p+1}} r^{2-(n-2)p} \exp\left(\frac{r^2}{4}\right) (1-\varepsilon) + o(r^{2-(n-2)p})$$

$$= -\frac{(n+2) - (n-2)p - \varepsilon(n-2)(p+1)}{(p+1)\{(n-2)p-2\}(n-2)^{p+2}} r^{2-(n-2)p} \exp\left(\frac{r^2}{4}\right) + o(r^{2-(n-2)p});$$

so that

$$\lim_{r\to 0}H(r)=-\infty.$$

In the case p = 2 for n = 3, it follows from the last inequality of (5.9) that

$$H(r) < 2 \exp(-r^2/2)/3 - \exp(r^2/4) \exp(-3\rho^2/4) \int_r^{\rho} s^{-1} \{1 - (s/\rho)\}^3 ds$$

$$< 2/3 - (1 - \varepsilon)(\log \rho - \log r + 0(1))$$

$$= (1 - \varepsilon) \log r + 0(1)$$

Then we arrive at the same result as before. It remains to discuss the case 1 for <math>n = 3. Since p + 1 < 3, we get

$$H(r) < \frac{2}{p+1} r^{2-p} \exp\left(\frac{r^2}{4}\right) \exp\left\{-\frac{(p+1)r^2}{4}\right\} - \exp\left(\frac{r^2}{4}\right) \exp\left\{-\frac{(p+1)\rho^2}{4}\right\} \int_r^{\rho} s^{1-p} \left(1 - \frac{s}{\rho}\right)^3 ds$$

$$< \frac{2}{p+1} r^{2-p} \exp\left(\frac{r^2}{4}\right) - \exp\left(\frac{r^2}{4}\right) (1-\varepsilon) \int_r^{\rho} \left\{s^{1-p} - 3\frac{s^{2-p}}{\rho} + 3\frac{s^{3-p}}{\rho^2} - \frac{s^{4-p}}{\rho^3}\right\} ds$$

$$= \left[\left\{\frac{2}{p+1} + \frac{1-\varepsilon}{2-p}\right\} r^{2-p} + o(r^{2-p})\right] \exp\left(\frac{r^2}{4}\right) - \frac{6(1-\varepsilon)}{(2-p)(3-p)(4-p)(5-p)} \exp\left(\frac{r^2}{4}\right) \rho^{2-p}$$

from (5.9). Thus we obtain

$$\lim_{r \to 0} \sup H(r) \le -\frac{6(1-\varepsilon)}{(2-p)(3-p)(4-p)(5-p)} \rho^{2-p} < 0.$$
Q.E.D.

Proof of Theorem 1. From Lemmas 5.2 and 5.3, we can draw the graphs of G(r) and H(r). Then we obtain $r_G = 0 < \infty$ and $r_H = 0$ in the case $p \ge (n+2)/(n-2)$ (see Fig.3) and $0 < r_H < r_G < \infty$ in the case 1 (see Fig.4). So we can apply Theorem 4.1 to show Theorem 1.

We will show (2.1). From Theorem 4.1, there exists a positive finite number β such that $\lim_{r\to\infty} \left\{ \int_r^\infty s^{1-n} \exp(-s^2/4) ds \right\}^{-1} u(r;\alpha_0) = \beta.$

Moreover, by using the fact that $\left\{ \int_{r}^{\infty} s^{1-n} \exp(-s^2/4) ds \right\}^{-1} u(r;\alpha_0)$ is increasing in $[0,\infty)$, it follows from (5.4) that

$$u(r;\alpha_0) < \beta \int_r^{\infty} s^{1-n} \exp(-s^2/4) ds$$

$$= 2\beta \left\{ r^{-n} \exp(-r^2/4) - 2nr^{-n-2} \exp(-r^2/4) + 2n(n+2) \int_r^{\infty} s^{-3-n} \exp(-s^2/4) ds \right\}.$$

This implies (2.1). Q.E.D.

6. Proof of Theorem 2

In this section, we will study (IVP) with $\lambda = 1$. Put

$$u(r) := v(r) \varphi(r)$$

then the equation of (IVP) is rewritten as

$$v_{rr} + \left(2\frac{\varphi_r}{\varphi} + \frac{n-1}{r} + \frac{r}{2}\right)v_r + |\varphi|^{p-1}|v|^{p-1}v + \left\{\frac{\varphi_{rr}}{\varphi} + \left(\frac{n-1}{r} + \frac{r}{2}\right)\frac{\varphi_r}{\varphi} + \lambda\right\}v = 0.$$

Therefore, if we take $\varphi(r)$ which satisfies the following initial value problem

(6.1)
$$\begin{cases} \varphi_{rr} + \left(\frac{n-1}{r} + \frac{r}{2}\right)\varphi_{rr} + \lambda\varphi = 0, \quad r > 0, \\ \varphi(0) = 1, \quad \varphi_{rr}(0) = 0, \end{cases}$$

then v(r) must satisfy

$$\begin{cases} v_{rr} + \left(2\frac{\varphi_r}{\varphi} + \frac{n-1}{r} + \frac{r}{2}\right)v_r + |\varphi|^{p-1}|v|^{p-1}v = 0, \quad r > 0, \\ v(0) = \alpha > 0. \end{cases}$$

In the special case $\lambda = 1$, it is possible to express the $C^{2}[0, \infty)$ -solution of (6.1) by

$$\varphi(r) = (n-2)r^{2-n} \exp(-r^2/4) \int_0^r s^{n-3} \exp(s^2/4) ds.$$

Note that $\varphi(r) > 0$ in $[0,\infty)$. In order to know the structure of solutions to (IVP) with $\lambda = 1$, we have only to verify whether $v(r;\alpha)$ has a zero or not. In this section, we will mainly study

(6.2)
$$\begin{cases} v_{rr} + \left(2\frac{\varphi_{r}}{\varphi} + \frac{n-1}{r} + \frac{r}{2}\right)v_{r} + \varphi^{p-1}(v^{+})^{p} = 0, \ r > 0, \\ v(0) = \alpha > 0. \end{cases}$$

The equation of (6.2) is equivalent to

$$\left\{r^{n-1}\exp(r^2/4)\varphi^2\nu_r\right\}_r + r^{n-1}\exp(r^2/4)\varphi^2\cdot\varphi^{p-1}(\nu^+)^p = 0;$$

to which Theorem 4.1 is applicable. In fact, we obtain following proposition.

Proposition 6.1. Put $g(r) := r^{n-1} \exp(r^2/4) \varphi^2$ and $K(r) := \varphi^{p-1}$. Then g(r) and K(r) satisfy (g) and (K), respectively.

Proof. We can readily see that g(r) and K(r) satisfy $(g)_1$, $(g)_2$, $(K)_1$ and $(K)_2$, where $(g)_i$ and $(K)_i$ mean the i-th condition of (g) and (K), respectively. Moreover,

$$(g)_3$$
 Since $1/g(r) = r^{1-n} + o(r^{1-n})$ as $r \to 0$, we get $1/g(r) \notin L^1(0,1)$.

(g)₄ Integrating by parts, we obtain

$$\int_0^r s^{n-3} \exp(s^2/4) ds = 2r^{n-4} \exp(r^2/4) - 4(n-4)r^{n-6} \exp(r^2/4) + 4(n-4)(n-6) \int_1^r s^{n-7} \exp(s^2/4) ds + \int_0^1 s^{n-3} \exp(s^2/4) ds + (4n-18)e^{1/4};$$

so that

(6.3)
$$\varphi(r) = 2(n-2)r^{-2} - 4(n-2)(n-4)r^{-4} + o(r^{-4}) \text{ as } r \to \infty.$$

From (6.3), since

$$1/g(r) = r^{5-n} \exp(-r^2/4)(1+o(1))/4(n-2)^2$$
 as $r \to \infty$,

we have $1/g(r) \in L^1(1,\infty)$.

 $(K)_3$ Note that

$$h(r) = g(r) \int_{r}^{\infty} \{1/g(s)\} ds$$

$$= r^{3-n} \exp(-r^2/4) \{ \int_{0}^{r} s^{n-3} \exp(s^2/4) ds \}^{2} \left[\int_{r}^{\infty} s^{n-3} \exp(s^2/4) \{ \int_{0}^{s} t^{n-3} \exp(t^2/4) dt \}^{-2} ds \right]$$

$$= r^{3-n} \exp(-r^2/4) \{ \int_{0}^{r} s^{n-3} \exp(s^2/4) ds \}^{2} \int_{\tau}^{\infty} (1/T^2) dT$$

$$= r^{3-n} \exp(-r^2/4) \{ \int_{0}^{r} s^{n-3} \exp(s^2/4) ds \} = r \varphi(r) / (n-2),$$

where $\tau := \int_0^t t^{n-3} \exp(t^2/4) dt$. So we readily obtain

$$h(r)K(r) = r\varphi(r)^{p}/(n-2) \in L^{1}(0,1)$$
.

Condition $(K)_4$ is readily seen by

$$h(r)\{h(r)/g(r)\}^{p}K(r) = r^{1+(2-n)p}\exp(-pr^{2}/4)/(n-2)^{p+1} \in L^{1}(1,\infty).$$
 Q.E.D.

Now we obtain

$$G(r) = (n-2)^{p+1} \left[\frac{2}{p+1} r^{4-n+(2-n)p} \exp\left\{ -\frac{(p+1)r^2}{4} \right\} \left\{ \int_0^r s^{n-3} \exp\left(\frac{s^2}{4}\right) ds \right\}^{p+2} - \int_0^r s^{1+(2-n)p} \exp\left(-\frac{ps^2}{4}\right) \left\{ \int_0^s t^{n-3} \exp\left(\frac{t^2}{4}\right) dt \right\}^{p+1} ds \right\},$$

$$H(r) = \frac{1}{(n-2)^{p+1}} \left[\frac{2}{p+1} r^{4-n+(2-n)p} \exp\left\{ -\frac{(p+1)r^2}{4} \right\} \int_0^r s^{n-3} \exp\left(\frac{s^2}{4}\right) ds - \int_r^\infty s^{1+(2-n)p} \exp\left(-\frac{ps^2}{4}\right) ds \right].$$

Differentiating G(r) and H(r), we get

(6.4)
$$H'(r) = \frac{2}{(p+1)(n-2)^{p+1}} r^{1+(2-n)p} \exp\left(-\frac{pr^2}{4}\right) \left\{ \Psi(r) - \frac{p+3}{2} \right\} = \left\{ \int_r^{\infty} \frac{1}{g(s)} ds \right\}^{p+1} G'(r),$$
 where

(6.5)
$$\Psi(r) := (p+3) - \frac{1}{n-2} \varphi(r) \left[\left\{ (n-2)p + n - 4 \right\} + \frac{p+1}{2} r^2 \right]$$
 by recalling the expression of $\varphi(r) = (n-2)r^{2-n} \exp(-r^2/4) \int_0^r s^{n-3} \exp(s^2/4) ds$.

In order to prove Theorem 2, we will use the same argument as in Section 5. First, we will investigate the profile of $\Psi(r)$.

Lemma 6.1.

(i)
$$\lim_{n\to\infty} \Psi(r) = 2(n-1)/(n-2)$$
.

(ii)
$$\Psi(r) = 2 - 4pr^{-2} + o(r^{-2})$$
 as $r \to \infty$.

(iii) There exists a unique number $r_1 \in \left(\sqrt{2(p+2)\{(n-2)p+n-4\}} / \{p(p+1)\},\infty\right)$ such that $\Psi(r)$ is decreasing in $[0,r_1)$ and increasing in (r_1,∞) . Moreover, $\Psi(r_1) < 2$.

Proof. (i) Since $\lim_{r\to 0} \varphi(r) = 1$ and $\lim_{r\to 0} r^2 \varphi(r) = 0$, the conclusion easily follows.

(ii) Using (6.3) for sufficiently large
$$r$$
, we obtain
$$\Psi(r) = (p+3) - \left\{2r^{-2} - 4(n-4)r^{-4} + o(r^{-4})\right\} \left[\left\{(n-2)p + n - 4\right\} + \frac{p+1}{2}r^{2}\right]$$

$$= 2 - 4pr^{-2} + o(r^{-2}).$$

(iii) Since $\Psi(r)$ increasingly converges to 2 from (ii) and 2(n-1)/(n-2) > 2, $\Psi(r)$ must have a local minimum at some $r_1 \in (0, \infty)$ and $\Psi(r_1) < 2$. We will show that there are no other critical points of $\Psi(r)$. Direct calculations yield

(6.6)
$$\Psi'(r) = -\{(n-2)p + n - 4\}r^{-1} - (p+1)r/2$$

$$+ \left[(n-2)\{(n-2)p + n - 4\} + \{(n-3)p + n - 4\}r^{2} + (p+1)r^{4}/4\right]$$

$$\times r^{1-n} \exp(-r^{2}/4) \int_{0}^{r} s^{n-3} \exp(s^{2}/4) ds,$$
(6.7)
$$\Psi''(r) = (n-1)\{(n-2)p + n - 4\}r^{-2} + \{(2n-7)p + 2n - 9\}/2 + (p+1)r^{2}/4$$

$$+ \left[(1-n)(n-2)\{(n-2)p + n - 4\} + \{(-3n^{2} + 16n - 22)p - 3n^{2} + 20n - 32\}r^{2}/2\right]$$

$$+ \left\{(-3n + 11)p - 3n + 13\right\}r^{4}/4 - (p+1)r^{6}/8 r^{-n} \exp(-r^{2}/4) \int_{0}^{r} s^{n-3} \exp(s^{2}/4) ds.$$

Suppose that there exists a positive number \hat{r} such that $\Psi'(\hat{r}) = 0$. Then by (6.6), we have

(6.8)
$$\hat{r}^{-n} \exp(-\hat{r}^2/4) \int_0^s s^{n-3} \exp(s^2/4) ds$$

$$= \frac{\{(n-2)p+n-4\} + (p+1)\hat{r}^2/2}{(n-2)\{(n-2)p+n-4\}\hat{r}^2 + \{(n-3)p+n-4\}\hat{r}^4 + (p+1)\hat{r}^6/4}.$$

When n = 3, the right hand side of (6.8) is non-positive for some \hat{r} . But the left hand side of (6.8) is positive for every \hat{r} . Therefore, for n = 3, we observe that $\Psi(r)$ cannot have any critical points for r satisfying

$$(p-1)r^2-r^4+(p+1)r^6/4\leq 0$$

Combining (6.7) and (6.8) leads to

(6.9)
$$\Psi''(\hat{r}) = \frac{-2(p+2)\{(n-2)p+n-4\} + p(p+1)\hat{r}^2}{(n-2)\{(n-2)p+n-4\} + \{(n-3)p+n-4\}\hat{r}^2 + (p+1)\hat{r}^4/4}.$$

Let $r_p := \sqrt{2(p+2)\{(n-2)p+n-4\}} / \{p(p+1)\}$. From (6.9), $\Psi^n(\hat{r}) < 0$ for $\hat{r} \in (0,r_p)$ and $\Psi^n(\hat{r}) > 0$ for $\hat{r} \in (r_p,\infty)$. Therefore, if $\Psi(r)$ has a critical point, then it must be a local maximum in $(0,r_p)$ and a local minimum in (r_p,∞) . This result says that there exists at most one local maximum and one local minimum since a local minimum cannot exist in $(0,r_p)$ and a local maximum cannot exist in (r_p,∞) . Moreover, we will evaluate the critical value for $\Psi(r)$.

Combining (6.5) and (6.8), we get

$$\Psi(\hat{r}) = \frac{(p+1)\hat{r}^4/2 - \{p^2 - (2n-7)p - 2n + 8\}\hat{r}^2 + 2(n-1)\{(n-2)p + n - 4\}}{(p+1)\hat{r}^4/4 + \{(n-3)p + n - 4\}\hat{r}^2 + (n-2)\{(n-2)p + n - 4\}}.$$

Define

$$\psi(r) := \frac{(p+1)r^4/2 - \left\{p^2 - (2n-7)p - 2n + 8\right\}r^2 + 2(n-1)\left\{(n-2)p + n - 4\right\}}{(p+1)r^4/4 + \left\{(n-3)p + n - 4\right\}r^2 + (n-2)\left\{(n-2)p + n - 4\right\}} \quad \text{in } [0,\infty).$$

Then $\psi(r)$ satisfies $\psi(0) = 2(n-1)/(n-2)$, $\lim_{r\to\infty} \psi(r) = 2$ and

(6.10) $\psi'(r)$

$$=\frac{p(p+1)^2r\left[r^4-4\left\{(n-2)p+n-4\right\}r^2/p(p+1)-4(p+2)\left\{(n-2)p+n-4\right\}^2/p(p+1)^2\right]/2}{\left[(p+1)r^4/4+\left\{(n-3)p+n-4\right\}r^2+(n-2)\left\{(n-2)p+n-4\right\}\right]^2}$$

$$=\frac{p(p+1)^2r[r^2+2\{(n-2)p+n-4\}/(p+1)](r+r_p)(r-r_p)/2}{[(p+1)r^4/4+\{(n-3)p+n-4\}r^2+(n-2)\{(n-2)p+n-4\}]^2}.$$

Since $2\{(n-2)p+n-4\} > 0$ for $n \ge 3$, it follows from (6.10) that $\psi(r)$ is decreasing in $(0,r_p)$ and increasing in (r_p,∞) . Therefore, $\Psi(r)$ has at most one local maximum in $(0,r_p)$, and it is smaller than 2(n-1)/(n-2). But this is impossible from (i) of Lemma 6.1. Therefore, $\Psi(r)$ does not have any local maximum. Thus we can finish the proof of (iv). Q.E.D.

Correspondingly to Lemma 5.2, we obtain the following lemma.

Lemma 6.2.

- (i) If $p \ge (n+2)/(n-2)$, then G(r) and H(r) are decreasing in $[0,\infty)$.
- (ii) If $1 , then there exists a unique number <math>r = (0, \infty)$ such that G(r) and H(r) are increasing in [0, r] and decreasing in (r].

The behaviors of G(r) and H(r) near r=0 and $r=\infty$ are given as follows.

Lemma 6.3.

- (i) $\lim_{r\to\infty} G(r) = -\infty$.
- (ii) $\lim_{r\to 0} G(r) = 0$.
- (iii) $\liminf_{r\to\infty} H(r) \ge 0$.
- (iv) If $1 , then <math>\limsup_{r \to 0} H(r) < 0$.

Remark 6.1. If $p \ge (n+2)/(n-2)$, then $H(r) \ge 0$ and $H(r) \ne 0$ in $[0,\infty)$ from Lemma 6.2 (i) and Lemma 6.3 (iii).

Proof. (i) Note that (6.4) can be rewritten as

$$G'(r) = \frac{2}{p+1} (r^2 \varphi(r))^{p+1} r^{n-2p-3} \exp\left(\frac{r^2}{4}\right) \left\{ \Psi(r) - \frac{p+3}{2} \right\}.$$

By Lemma 6.1, $\{\Psi(r) - (p+3)/2\}$ is finitely negative for sufficiently large r and does not

converge to zero as $r \to \infty$. Moreover, since $\lim_{r \to \infty} r^2 \varphi(r) = 2$ from (6.3) and $\lim_{r \to \infty} r^{n-2p-3} \exp(r^2/4) = \infty$, we get (i).

(ii) Since $\lim_{r\to 0} \int_0^r s^{1+(2-n)p} \exp(-ps^2/4) \left\{ \int_0^s t^{n-3} \exp(t^2/4) dt \right\}^{p+1} ds = 0$, it is sufficient to prove

$$\lim_{r\to 0} r^{4-n+(2-n)p} \exp\left\{-(p+1)r^2/4\right\} \left\{\int_0^r s^{n-3} \exp(s^2/4)ds\right\}^{p+2} = 0;$$

which comes from the identity

$$r^{4-n+(2-n)p} \exp\left\{-(p+1)r^2/4\right\} \left\{\int_0^r s^{n-3} \exp(s^2/4)ds\right\}^{p+2} = r^n \exp(r^2/4)\varphi(r)^{p+2}/(n-2)^{p+2}.$$

(iii) The assertion is readily seen from the following inequality

$$H(r) > -(n-2)^{-p-1} \int_{r}^{\infty} s^{1+(2-n)p} \exp(-ps^2/4) ds$$
.

(iv) Let $p \in (1,(n+2)/(n-2))$. Assume ε be any sufficiently small positive number with $\varepsilon < \{(n+2)-(n-2)p\}/(n-2)(p+1)$ and fix ρ such that $\exp\{-(p+1)\rho^2/4\} > 1-\varepsilon$. Then for $0 < r < \rho$,

$$(6.11) H(r) < \frac{1}{(n-2)^{p+1}} \left[\frac{2}{p+1} r^{4-n+(2-n)p} \exp\left\{-\frac{(p+1)r^2}{4}\right\} \int_0^r s^{n-3} \exp\left(\frac{s^2}{4}\right) ds - \int_r^\rho s^{1+(2-n)p} \exp\left(-\frac{ps^2}{4}\right) ds \right] < \frac{1}{(n-2)^{p+1}} \left[\frac{2}{(p+1)(n-2)} r^{2+(2-n)p} \exp\left(-\frac{pr^2}{4}\right) - \exp\left(-\frac{p\rho^2}{4}\right) \int_r^\rho s^{1+(2-n)p} ds \right].$$

First considering the case 2 for <math>n = 3 and $1 for <math>n \ge 4$, we obtain

$$H(r) < -\frac{(n+2)-(n-2)p-\varepsilon(n-2)(p+1)}{(p+1)\{(n-2)p-2\}(n-2)^{p+2}}r^{2-(n-2)p}\exp\left(\frac{r^2}{4}\right) + o\left(r^{2-(n-2)p}\right);$$

so that

$$\lim_{r\to 0}H(r)=-\infty.$$

In the case p = 2 for n = 3, observing that

$$H(r) < 2 \exp(-r^2/2)/3 - \exp(-\rho^2/2)(\log \rho - \log r)$$

 $< (1 - \varepsilon) \cdot \log r + O(1)$

from (6.11), we arrive at the same result as before. Moreover, in the case 1 for <math>n = 3, we get

$$H(r) < \frac{1}{(n-2)^{p+1}} \left\{ \frac{2}{p+1} r^{2-p} \exp(-pr^2/4) - \frac{1}{2-p} \exp(-p\rho^2/4) (\rho^{2-p} - r^{2-p}) \right\}$$

Q.E.D.

from (6.11). Thus we obtain

$$\lim_{r \to 0} \sup H(r) \le -\frac{1}{(2-p)(n-2)^{p+1}} \exp\left(-\frac{p\rho^2}{4}\right) \rho^{2-p} < 0$$
 since $2-p > 0$. Q.E.D.

In the same way as the proof of Theorem 1, we obtain the following theorem.

Theorem 6.1. The structure of positive solutions to (6.2) is as follows.

- (i) If $p \ge (n+2)/(n-2)$, then $v(r;\alpha)$ is a decaying solution for every $\alpha > 0$.
- (ii) If $1 , then there exists a unique positive number <math>\alpha_1$ such that $v(r;\alpha)$ is a decaying solution for every $\alpha \in (0,\alpha_1]$ and a crossing solution for every $\alpha \in (\alpha_1,\infty)$. Moreover, $v(r;\alpha_1)$ is the most rapidly decaying solution among decaying solutions and there exists a positive finite number γ such that

$$\lim_{r \to \infty} \left\{ (n-2)^2 \int_0^r s^{n-3} \exp(s^2/4) ds \right\} v(r, \alpha_1) = \gamma.$$

Proof of Theorem 2. The structure of positive solutions to (IVP) with $\lambda = 1$ is readily obtained by Theorem 6.1. We will show (2.3). Using the fact that $\left\{ (n-2)^2 \int_0^t s^{n-3} \exp(s^2/4) ds \right\} v(r,\alpha_1)$ is increasing in $[0,\infty)$, we get

$$v(r,\alpha_1) < \gamma \left\{ (n-2)^2 \int_0^t s^{n-3} \exp(s^2/4) ds \right\}^{-1}.$$

Therefore, we have

$$u(r;\alpha_1) = v(r;\alpha_1)\varphi(r)$$

$$<\gamma \left\{ (n-2)^2 \int_0^r s^{n-3} \exp(s^2/4) ds \right\}^{-1} \cdot (n-2)r^{2-n} \exp(-r^2/4) \left\{ \int_0^r s^{n-3} \exp(s^2/4) ds \right\}$$

$$= (n-2)^{-1} \gamma r^{2-n} \exp(-r^2/4).$$

This implies (2.3).

7. Appendix

After this talk, I have obtained the following result on the structure of solutions to (IVP).

Theorem 7.1. Suppose that $0 \le \lambda \le (n-2)/2$. If $1 , then there exists a unique positive number <math>\alpha_{\lambda}$ such that $u(r;\alpha)$ is a decaying solution for every $\alpha \in (0,\alpha_{\lambda}]$ and a crossing solution for every $\alpha \in (\alpha_{\lambda},\infty)$. Moreover, $u(r;\alpha_{\lambda})$ is the most rapidly decaying solution among decaying solutions.

References

- [AP] F.V.Atkinson and L.A.Peletier, Sur les solutions radiales de l'equation $\Delta u + (x \cdot \nabla u)/2 + \lambda u/2 + |u|^{p-1}u = 0$, C. R. Acad. Sci. Paris Ser. I, 302 (1986), 99-101.
- [EK] M.Escobedo and O.Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal., 11 (1987), 1103-1133.
- [HW] A.Haraux and F.B.Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189.
- [PTW] L.A.Peletier, D.Terman and F.B.Weissler, On the equation $\Delta u + (x \cdot \nabla u) / 2 + f(u) = 0$, Arch. Rational Mech. Anal., 94 (1986), 83-99.
- [W1] F.B.Weissler, Asymptotic analysis of an ODE and non-uniqueness for a semilinear PDE, Arch. Rational Mech. Anal., 91 (1986), 231-245.
- [W2] F.B.Weissler, Rapidly decaying solutions of an ODE with application to semilinear elliptic on parabolic PDEs., Arch. Rational Mech. Anal., 91 (1986), 247-266.
- [YY1] E.Yanagida and S.Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal., 124 (1993), 239-259.
- [YY2] E.Yanagida and S.Yotsutani, A unified approach to the structure of radial solutions to semilinear elliptic problems, in preparation.
- [Y] S.Yotsutani, Pohozaev identity and its applications, Kyoto University Sûrikaisekikenkyûsho Kôkyûroku, 834 (1993), 80-90.

