0000000000
9130 1995 0 148-168 , 148

Haraux-WeisslerEI 5220 IEAEESEEMEIZ DU T

On the Positve Radial Solutions to the Haraux-Weissler Equation
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1. Imtroduction

The aim of this talk is to investigate the structure of positive radial solutions to
(1.1) Au+-;—x-Vu+/1u+lu|”'lu=0, XER", |
where p >1, n =3 and A =0. Since we are interested in radial solutions ( i.e., ¥ =u(r) with
r=Ix), we wili study the following initial value problem

(vP) {
u(0) = a >0.

n-1 r p-1
u, +Tu, +—2—u, +Au+pl u=0, r>0,

~ Equation (1.1) comes from the study of a semilinear heat equation of the form

(1.2) | £-&0-l1if7"F=0, (¢,x)€(0,2)xR".

When we discuss the following function, which is called a self-similar solution,
Ftx):=Vu(x/ Je),

it éan be seen that f satisfies (1.2) if and only if # satisfies (1.1) with A =1/(p-1).

In Section 3, it will be shown that (IVP) has a unique solution #(r) €C*([0,%)) with
u,(0) =0, which is denoted by u(r;a). Moreover, if we define z=inf{ >0 ; u(r;a) = 0},
then u(r;a) is decreasing in [0,2). By the decreasing property of u(r;@), we can classify

solutions of (IVP) in the following manner:
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(i) u(r;a) is a crossing solution if 0 <z <+
(ii) u(r; @) is a decaying solution if z=+, i.e. ulr;a) > 0 in [0,%0) .

These terminologies are used by Yanagida and Yotsutani [YY1].

Many authors have studied (IVP). Weissler [W1] has proved that, if A = /2, then u(r;a)
is a crossing solution for every a>0. For 0<A<n/2, the critical exponent
p=(0m+2/(n-2) is important. Set L:=lim, 7" u(r;e). In the supercritical case
p=(n+2)/(n-2), Atkinson and Peletier [AP] and Peletier, Terman and Weissler [PTW]
have proved that, if 0 <A <max{1,n /4}, then u(r;a) is a decaying solution with 0 <L < +
for every a > 0. Especially in the critical case p = (n +2) /(n - 2), Escobedo and Kavian [EK]
have got the following result; if max {,n/4} <A <n /2, then there exists a decaying solution
with L =0, i.e.,

| u(r;a) = Cexp(-r*/4)r**™ [1+ O(r‘z)] as r—> o,
where C is a positive constant. In the subcritical case 1<p <(n+2)/(n-2), Weissler [W1]
has proved that, if A >0, then u(r; @) is a crossing solution for sufficiently large @ . Moreover,
Haraux and Weissler [HW] have given an interesting result. Put
a.:= inf {a >0 ; u(r;a) is a crossing solution}.
If A>1/2p-1) and A <n/2, then 0 <@, <+% and u(r;a‘.) is a decaying solution with

L =0. Moreover, u(r; ) is a decaying solution with 0 < L < +o for sufficiently small .

'Although we have picked up a part of known results, it seems that there are no works about
the structure of solutions to (IVP) with A =0, and that the complete information for the
structure of solutions to (IVP) with A >0 has not known. In this paper, we will show the
structure of positive radial solutions to (IVP) with A =0, using the classification theorem by
Yanagida and Yotsutani (see Section 4). Moreover, we will apply the same argument to (IVP)

with A =1, and give more detailed information than the result in [HW].
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2. Main Results

Our problem is to decide whether each u(r; @) is a crossing solution or a decaying solution

‘when initial value @ moves from 0 to +%, In the case A =0, we obtain the following result.

Theorem 1. Let A =0.
@) I p =(n+2)/(n-2), thenulr;a) is a decaying solution for every a>0.
(i) If1<p <(n +2) /(n-2), then there exists a unique positive number @, such that u(r; @) is
a decaying solution for every a €0, ao] and a crossing solution for every a e( ao,w) .
Moreover, u(r; ao) is the most rapidly decaying solution among decaying solutions such that

2.1) ulr;a,) =0(r'" exp(~r* /4)) as r =0,

In [YY1], Yanagida and Yotsutani have studied the structure of positive radial solutions to
the Lane-Emden equation
(2.2) Au+u® =0, xER".
A fundamcntél difference to the structure of positive radial solutions between (1.1) with A =0
and (2.2) appears in the subcritical case 1<p <(n+2)/(n—2) because every positive radial

solution to (2.2) is a crossing solution.

In the case A =1, we can show a similar result to the case A =0.

Theorem 2. Let A =1.
() I p=z(n+2)/(n-2), thenu(r;a) is a decaying solution for every a > 0.
() If1<p<(+2)/(n-2), then there exists a unique positive number a, such that u(r; @) is
adecaying solution for every o &0, 0‘1] and a crossing solution for every e( a, ) . Moreover,
u(r;al) is the most rapidly decaying solution among decaying solutions such that

(2.3) ulr;a,) = O(rz_" exp(—rZ/ 4)) as r —> o,
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Theorem 2 gives us more detailed structure of solutions to (IVP) with A =1 than the result

established by Haraux and Weissler [HW] .
3. Preliminary Results
In this section, we will give some fundamental properties of solutions to (IVP).

Proposition 3.1.  The following two conditions are equivalent:
@) ulr;a) €C(l0,2)) N C*((0,)) satisfies (IVP).
(i) u(r; @) €C([0,)) satisfies
(3.1) ulr;a) =a —fdtf (s/8)"" cxp{ s’ - /4} Au+lpf” u)ds
Moreover, in both cases, the following properties holds;
(@) ul(r;) is decreasing in [0,2), where z=inf { >0 ; ulr;@) = 0}. (If u(r; @) > 0 in [0,%0),
then we put z= ) | |
(o) ulr;a) €C*([0,)) and &, (0;c) = 0.
© kr;a)|sC(1+r) and p.(r;e)|<C(1+7)™ for all r 20, where C depends boundedly

on .

Proof. We first show that (i) implies (ii). For this purpose, we begin with the proof of (a).
First we note that the equation of (IVP) is equivalent to
(3.2) {r""l exp(r®/ 4)u, }r +r"exp(r? / 4)(M +fu) =0
Integrating (3.2) over [6,r] leads to
(3.3) r"texp(r?/4)u,(r; @) - 6" exp(6 / 4)u,(6;0) = —f s expl(s® / 4)(Au +l” u)ds
Since s" cxp( / 4)(/111 +f" u) €L'(0,7), there exists lim 4,,6" “u (6;a). Now we will
prove lim,_,r""'&,(r;a) = 0 by contradiction. Suppose that

. n-1 . -
(3.4) lim r u,(r;a) =9 >0.
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(We can also derive a contradiction in the case 7 <0.) Let £ be any sufficiently small positive
number. From (3.4), we can take sufficiently smallé(£) > 0 such that

(3.5) r'(n-¢)<u(r;a) <r'™"(n+e¢)

for r €(0,6(¢)). Integrating (3.5) from r to &, we get

u(d; ) - n+28(f2—" - 6%") <ulr;a) <u(8;0) —Q:—E(rz"‘ ~8%");
n —

n—
which implies lim,_qu(r;a)=-. Since this is absurd, we get lim,.,6" %, (6;a)=0.

Therefore, letting & —> 0 in (3.3), we obtain

(3.6) u (r;a) = —ﬁ:(s /) cxp{(.':2 -r?) /4}(/1u +hf u)ds.

Thus as far as u(r;a) is positive, #, (r;a) is negative; so that u(r;) is decreasing in [0,2).
Moreover, Integrating (3.6) over [0,r] and using «(0) = a, we get (3.1). Thus we have

shown that (i) implies (ii). Conversely, it is readily seen that (ii) implies (i). Concerning the

proofs of (b) and (c), see [W2] and [HW], respectively. Q.E.D.
Proposition 3.2.  There exists a unique solution #(r; ) EC*([0,®)) of (IVP).

Proof. By Proposition 3.1, it is sufficient to show the uniqueness and existence of
solutions for (3.1). The uniqueness is easily proved by Gronwall's inequality. The existence is
obtained as follows. For 0 <r <J with a suitably small 6 >0, we use the successive
approximation method to obtain the local existence. For 7 > 6, we introduce

A .
E):=2u, (500 + Zulr;a) + —=u(rs)f .
2 2 p+1
Differentiating E(r) , we obtain
E(r) = —{t} +-£}uv,2 <0.
ro 2

Thus, since u(r:a) and u, (r:@) can never blow up, the global existence of (r:a) for every

r >0 can be proved in the standard manner. ‘ | Q.E.D.
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4. The Classification Theorem by Yanagida and Yotsutani

In this section, for the purpose to prove Theorems 1 and 2, we will explain the classification

theorem by Yanagida and Yotsutani (see [YY2] or [Y]) for the following initial value problem

@1) {(g (r)u,)r +g(r)K(r)(u*)P =0,r>0,
u(0Q)=a >0,
where #* = max{z,0}. We suppose that g(r) and K(r) satisfy
(g(r)EC([0,));
g(r)>0 in (0,»);
© 1/g(r) €L (0,1);
1/g(r) EL'Q, ),
and
[K(r)EC(0, ©);
K(r)=0 and K(r) #0 in (0,);
&) () K(r) €10, 1)
h(r){r(r) /1g(N} K(r) ELY(1,%),
where

h(r):=g(r) f f1/g(s)}ds.

Moreover, define the following functions

Glr)= g (DA(NK () - [[g (6K (s)s,
p+1 0
2 e [P o - Fneo [T
H(r):= p+1h(r) { } K(r) j:h(s){g(s)} K(s)ds,

g(r)
and set

rg:=inf {r €(0,%); G(r) <0}, ry:=sup{r €(0,%); H(r) <0}.

Remark 4.1. We can show that (4.1) has a unique solution z(r;@) for each & >0 under the

first, second and third conditions in (X).

Now we will state their result.
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Theorem 4.1. ((YY2]) Suppose that G(r) #0 in [0,%). Letu(r;a) be the solution of (4.1).
@) If rg = (i.e., G(r) 20 in (0,%)), then u(r;) is a crossing solution for every a >0.
() If r; < and f,, =0 (i.e., H(r) 20 in (0,%)), then u(r;a) is a decaying solution with
lim,_.. {g(r) /h(r)}idr;a) = o for every a >0.

(©) If 0 <ry sr; <, then there exists a unique positive number ¢, such that u(r;) is a
crossing solution for every «a E(a ,00), and a decaying solution with
lim,....{g(r) /2" }ulr;@) = = for every aE(O,af). Moreover, if o= a,, then u(r;a) is a
decaying solution with 0 <lim, ..., {g(r) /h(r)}ulr;@) <, which means that u(r;c ;) is the

most rapidly decaying solution among decaying solutions.

Remark 4.2. If G(r) =0 in [0,%), then for every a >0, u(r;@) is a decaying solution

with 0 <lim,_, {g(r) /h(r)}ulr;a) <oo.
5. Proof of Theorem 1

In this section, we will study the following initial value problem
n-1 r \P
u, +—u +5ur +(u ) =0, r>0,
r
u(0)=a >0,
where #* = max{z,0} . The equation of (5.1) is equivalent to
{r"'1 exp(r?/ 4)u, }r +r'exp(r? / 4)(u+)p =0.
If we put g(r): =r"" exp(r? /4) and K(r):=1 in (4.1), then it is easily seen that g(r) and K(r)

(5.1)

satisfy (g)and (K), respectively. Moreover, we obtain
G(r) =2(p +1)7 r* Zexplr? /Z)f s"" exp(-s? / 4)ds —Jf)s"'lcxp(s2 /4)ds,
H(r)=2(p+1)7'r 2 expl(r?/ 2) {[ . exp(-s? /4)ds}p+2
- j: Ty expl(s®/4) {ftl'" exp(-£*/ 4)dt}P+lds .

After some calculations,
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(5.2) G'(r) =2(p+1)"r"" exp(r?/4){®(r) - (p +3)/2} = {fsl'" exp(-5? /4)ds}_p_lH' (r),
where
(5.3) (r):={2(n-D +r* jr" 2 exp(r* / 4) fsf'" exp(-s? /4)ds.

In order to apply Theorem 4.1, we must know the location of 7 and ry. For this purpose,
we will investigate the profiles of G(r) and H(r). In view of (5.2), it is important to study

®(r). First we obtain the following lemma.

Lemma 5.1.
(@) lim () =2(n-1)/(n-2).
() (r) =2-4r?+o(r?) as r >,
(iii) There exists a unique number 7, E(O, 6(n—1)) such that ®(r) is decreasing in [0,7,) and

increasing in (ry, %) . Moreover, ®(r,) < 2.

Proof. (i) By I'Hospital's theorem,
lim ®(r) = pl%{z(n ~1 +r2 "2 explr? /4)1?31'" exp(-s* / 4)ds
{I; "5 expl(-s* / 4)ds}
= lim -
o {[{Z(n -1) +r2 "7 }

L An-1)+4n=Dri et 2n-1)

=0 2(n-1)(n-2)+nr’ n-2 '
(ii) Integrating by parts, we obtain '

54 [ 5 expl-s>/4)ds
= 2r " exp(-r®/4)- an.s"l'" exp(-s®/4)ds

= 2r " exp(=r?/4) - 4nr™ P exp(-r* / 4) + dn(n +2) ffh exp(~s" / 4)ds.

- Thus we get 7
O(r) =2-4r? - 8nln-Dr™* + dn(n+2{2(n =D +r* "2 exp(r* /4)f s exp(—s® / 4)ds,

which implies (ii).



156

(iii) From (ii), ®(r) is increasing for sufficiently large r and converges to 2. Moreover,
since 2(n-1/(n -2)>2, ®(r) must have a local minimum at some 7, €(0,%), and it is
smaller than 2. We will show that there are no other critical points of ®(r) . By direct calculations,
(5.5) @(r)=-2An-Dr" ~r

+2(n-D0-2) +@n-Dr? +r* /2}r" *exp(r?/ 4)_!;&31'" exp(—s / 4)ds,
(5.6) @"(r)=-2(n -Dn-3r?-2n-r?/2
o+ {2(n D -2 -3)+3n -1 +3nr* /2+r°/ 4}r"'4 exp(r?/ 4)j;w s exp(—s* / 4)ds.
Suppose that there exists a positive number 7 such that ®'(7) = 0. It follows from (5.5) that
- 72 _
7)) P el A)f 57 expl=s®/ a)ds = 2(2n2—r1);4£n4(n1)— Nn-2)
Combining (5.6) and (5.7) leads to

. ~4{F +J6(n-D)(7 - J6ln-1))
(5:8) ) = e o D+ 4 D=2

From (5.8), ®"(F) >0 if 7 €{0,J/6(n—-1) and ®"(7) <0 if 7 €(J6(n -1, ®). Therefore, if

®(r) has a critical point, then it must be a local minimum in (0, J6(z — D) and a local maximum

in (‘/6(11——1) ,°°). This result says that there exist at most one 1oc'al minimum and one local
maximum since a local maximum cannot exist in (0, Jm ) and a local minimum cannot
exist in (m ,°°) . We have already known that ®(r) has a local minimum, and now we
will show that ®(r) cannot have a local maximum. In fact, suppose that there exists a local
maximum. Then ®(r) decreases for large . But it is impossible, because (ii) of this lemma
means that P(r) increasingly converges to 2. Thus we finish the proof of (iii). (See Fig.1.)

Q.E.D.

From Lemma 5.1, since 2<(p +3)/2<2(n-1/(n-2) if 1<p<(n+2)/(n-2), there
exists a unique number . €(0,%) such that ®(r) > (p + 3) /2 in (0,n.), ®(r.) =(p+3)/2 and
®(r)<(p+3)/2 in (rn,®) (see Fig.2). Moreover, since (p +3)/222(n-1/(n-2) if
p2(n+2)/(n-2), ®()<(p+3)/2 in [0,%). Therefore, in view of the expressions of

(5.2), we get the following lemma.
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Lemma 5.2.
@ If p=(n+2)/(n-2), then G(r) and H(r) are decreasing in [0,%).
(i) If 1 <p <(n+2) /(n-2), then there exists a unique number . €(0,%) such that G(r) and

H(r) are increasing in [0,7.) and decreasing in (r.,%).
The behaviors of G(r) and H(r) nearr =0 andr = are shown by the following result.

Lemma 5.3.
@ lm G(r)=-o.
(ii) lim G(r) =0.
(iif) lim inf H(r) 20.
(V) If1<p <(n+2)/(n-2), then lirfx_.s(}po(r) <0.

Remark 5.1. Ifp=(n+2)/(n-2), then H(r) 20 and H(r) # 0 in [0,%0) from Lemma
5.2 (i) and Lemma 5.3 (iii). |

Proof. (i) By Lemma 5.1, {®(r)-(p+3)/2} is finitely negative for sufficiently large r
and does not decay to zero as r — o, Moreover, since lim, .. 7" exp(r2 / 4) =+00_ we obtain
lim, ., G'(r) = —o . Therefore, we get (i).

(i) Since lim,_, Jf) " exp(s® / 4)ds = 0, it is sufficient to show

!i_lgrz"'z explr®/ Z)f s exp(—s* /4)ds =0.
In fact, by I'Hospital's theorem, -

- {L‘ "5 exp(-s? / 4)ds}

r" exp(-r?/ 4)

Pf,r(l) G )r = !]_I,% (2n-2)r 2 =0
@ o P+l
(iii) HE)>-[ s exp(s’ /4){£ £ exp(-£/ 4)dt} ds

>—(n-2)7"" j: " gr1enp+) exp(-ps* / 4)ds.
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Therefore, we get
lim ElfH(r) = —(n- 2)"’—lli_1-.r°1° ras"’“(z"’)(”“)cxp( —ps®/4)ds =0.

(iv) Let p €&1,(n+2)/(n ~2)). Assume ¢ be any sufficiently small positive number with
e<{n+2)-(n-2p}/(n-2)(p +1) and fix o such that exp{—(p +1)p*/4}>1-&. Then

2 r’\| = 2\ 1
" +1r2"'2 cxp(—z-) {ﬁ s exp(—T)ds}
a s? - t? g
_J:Ds exp(-z) {ﬂﬂt exp(-—-z) dt} ds

2 o2 (rz) { (p+1)r21 1 @-nXp+2)
<——r""exp| —| expy- =T
p+1 P\%) P 4 J-2r"

n-1 s (P +l)p2] 1 2-n)(p+1) § i
_fs CXP(—Z) exp{— 7 |2 s 1- (;) ds.

First we consider the case 2<p <5 for n=3 and 1<p <(n+2)/(n-2) for n=4. Since

forO<r<p,

(5.9 H)<

p+1<6 and 2-(n -2)p < 0, we obtain

2 (- r?
H - 2-(n-2)p T

2 2 n-276
o _12)p+1 exp(%) exp{—"'——(_p +41)p }fsl""’z”’{l—(%) }ds

< 2 p02p r’
(p+Dn -2’ P\

"o-n- 2);}(n = CXP(;) =) +olr™)
_(n+2)-(n-2)p-en-2)(p+1) »-u-2p (ﬁ) 2-0~2)p
@ +D{n-2)p-2}n-2"" exp| | +olr )

b

so that
lim H(r) = -,
r-=0 )
In the case p =2 for n =3, it follows from the last inequality of (5.9) that
H(r) <2 exp(—r2 /2) /3- exp(r2 /4) exp( -3p° /4)ﬁas'1 {1 —(s/ p)}sds
<2/3-(-¢Xlogp-logr +01)
=(1-¢)logr+0Q1)



159

Then we arrive at the same result as before. It remains to discuss the case 1<p <2 forn =3.

- Since p +1<3, we get

- 2 2 2 +1)p%] » . ?
H(r)<p2+1r2”cxp(%) exp{—-(%}—exp(%) cxp{-(pT)p jjs“’ 1—-;—’ ds
2 4, rX Y. N N L A
<p+1r exp(4) exp(4 (1 £)f s 3 r +3p2 > s

= [{—2—- + }—:f-}rz"’ +o(r*™ )l cxp(f-) - 601~ ) exp(ﬁ) p*?
p+l 2-p) 4) (2-p)3-p)4-p)5-p) "\ 4
from (5.9). Thus we obtain

. : 6(1"8) 2~
lim sup H(r) < - p°7" <0.
ot (2-PX3-P(4-P)5-P)
Q.E.D.
Proof of Theorem 1. From Lemmas 5.2 and 5.3, we can draw the graphs of

G(r) and H(r). Then we obtain 7; =0(< ) and 7, = 0 in the case p =(n+2)/(n-2) (see
Fig.3) and 0 <ry <r; < in the case 1<p <(ﬁ+2)/(n—2) (see Fig.4). So we can apply
Theorem 4.1 to show Theorem 1.
We will show (2.1). From Thcofem 4.1, there exists a positive finite number 8 such that
yﬂ{ﬁmsl'" exp(~s*/ 4)ds}—lu(r;q0) =A.
Moreover, by using the fact that {fsl‘" exp(-s?/ 4)ds}_lu(r;ao) is increasing in [0,%), it
follows from (S.f:) that
ur;a,) <Bf s'" exp(~s” / 4)ds

=28 {r ™ exp(-r? /4) - 2nr " exp(-r? / 4) + 2n(n +2)ﬁ°s'3‘" exp(-s” / 4)ds}. ‘

This implies (2.1). , Q.E.D.
6. Proof of Theorem 2

In this section, we will study (IVP) with A =1. Put
ur):=vir)glr),
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then the equation of (IVP) is rewritten as
v, +(2¢' +—1+£)v +lof M v+ {qz,, (—1 +£) ? . /l}v =0.
@ r 2 @ r 2/ @
Therefore, if we take @(r) which satisfies the following initial value problem

n-1 r
+—+=|@ +Ap=0, r >0,
& ( r 2)¢' 4

‘p(O) = 17 (P,(O) = 0’

6.1)

then W(r) must satisfy

v, +(2?4 +n—_1+-r-)v, +lof W 'v=0, r>0,
@ r 2
- (M0)=a>0.
In the special case A =1, it is possible to express the C[0,) -solution of (6.1) by

@(r) =(n-2r*" exp(-r*/ 4)j:s"'3 expls®/ 4)ds.
Note that @(r) >0 in [0,%). In order to know the structure of solutions to (IVP) with A =1,
we have only to verify whether (7; ) has a zero or not . In this section, we will mainly study
v, +(2¢’ 1+£)v +¢f ( ) =0, r>0,
@ r 2
w0)=a> 0.

(6:2)

The equation of (6.2) is equivalent to
Frexp(r?/ A o™,} +rexp(r® 1 4)9* ¢ (v*) = 0;

to which Theorem 4.1 is applicable. In fact, we obtain following proposition.

Proposition 6.1.  Put g(r):=r""exp(r®/4)¢* and K(r):=¢@"™. Then g(r) and K(r)

satisfy (g)and (X), respectively.

Proof. We can readily see that g(r) and K(r) satisfy (g),, (g),, (K), and (K),, where
(g), and (K), mean the i-th condition of () and (X), respectively. Moreover,
(g), Since 1/g(r)=r"" +o(r'™) as r =0, we get 1/g(r) EL'(0,1.
(g), Integrating by parts, we obtain
ﬁ:s" S expls?/4)ds=2r""* exp(r®/4) - 4n - 4)r" " exp(r* / 4)
+4(n - A)(n - 6)]: 5" exp(s® / 4)ds +j§s"'3 expls® / 4)ds + (4n-18)e"*
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so that
(6.3) @(r)=2An-2r7 -4 -2)n-4r* +or*) as r >,
From (6.3), since

1/g(r) =r"" exp(-r? /4)1+0(D) / 4(n-2)° as r —>oo,
we have 1/g(r) EL'(1,0). |

(K), Note that
h(r) = g(r)J:m fi/g(9)}ds

r 2 ot s N
=r*" exp(-r®/ 4){!; s" exp(s® / 4)45} [ J: s exp(s®/ 4){’;tn-3 exp(¢’/ 4)dt} ds]
_ . 2
- p3n CXp(—r2 /4){‘;3"'3 cxp(32 / 4)ds} j; (1/ Tz)dT
=r*" exp(-r? /4){]:5"_3 exp(s” / 4)ds} =f<p(r) /(n-2),

‘where 7:= f; 7% exp(£? / 4)dt. So we readily obtain
h(nK(r) =re(r)’ /(n-2) €EL(0,D.
Condition (K), is readily seen by
(R0 7g (DY K() =" exp(-pr? /4)/ (n - 2)"" €)1, ). Q.E.D.

Now we obtain

Glr) =@ -2

;%_‘I r4_,,+(2_,,),,cxp{ (p+1)r? }{ﬁ:s (54_ ) ds}
4 +Q-n)p 2 S n-3 tz
—ﬁ)s @-n) cxp(—p%){j;t CXP(:)“"} ]

1 2 4-n+2-n), (p+1)r2 4 n-3 2
H - - /4 T i AN, —
(r) 2" [p+1r exp{ " J;s exp| ds

- 2
-f shemr exp(—%) ds].

Differentiating G(r) and H(r), we get

Y = 2 +(2-n)p _ﬁ _p+3 = w___];_ o \
(6.4) H'(r) Givn 2 cxp( 4){1%) > } {f (s)ds} G'(r),

where
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(6.5) U(r):=(p+3)- - iz tp(r)[{(n ~p +n—4}+ p;lrzl

by recalling the expression of ¢(r) = (n - 2)r*" exp(-r* / 4) J:: s" expl(s®/ 4)ds.

In order to prove Theorem 2, we will use the same argument as in Section 5. First, we will

investigate the profile of ¥(r).

Lemma 6.1.
(i) FQOIP(r)=2(n -1/(n-2).
(i) ¥() = 2—4prf2 +o(r?) asr—w,

(iii) There exists a unique number 7, E(JZ( p+2){n-2p+n-4y/{p(p+1)}, 00) such that

W(r) is decreasing in [0,7,) and increasing in (r,,%) . Moreover, ¥(r,) <2.

Proof. (i) Since lim,_, ®(r) =1 and lim,_,7’¢(r) = 0, the conclusion easily follows.
0

(ii) Using (6.3) for sufficiently large 7 , we obtain
W) =(p+3)- for? - dln - 2™ +0(’4)}[{(n —2)p+n-4} +‘p2+1"2]

=2-4pr?+o(r™).

(i) Since ¥(r) increasingly converges to 2 from (ii) and 2(n -1 /(n -2) >2, ¥(r) must
have a local minimum at some r, €(0,®) and ¥(r,) <2. We will show that there are no other

critical points of W(r) . Direct calculations yield
6.6) U()=-{n-2p+n-4pr™-(p+r/2
+n-2{n-2p+n-4} + {n-Np+n-4}r* +(p+1)r'/ 4]

xr'™ exp(-r? /4)];:.5‘"'3 exp(s® / 4)ds,
6.7) () =-D{n-2Dp+n-4}r?+{2n-Dp+2n-9}/2+(p +1)r* /4

+[(1—n)(n -){(n-2)p+n-4}+ {(—3n2+16n -22)p-3n® +20n - 32}r2 /2

+{(3n +1Dp-3n+13}r* /4-(p+1)r®/ g]r™ cxp(—r2 / 4)ﬁ:s"‘3 cxp(s2 / 4)ds.
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Suppose that there exists a positive number 7 such that ¥'(F) = 0. Then by (6.6), we have

(6.8) 7" exp(—F2/4) J(': s" expls® / 4)ds
_ {n-2p+n-4} +(p+1yF*/2
(n-2){n-2)p+n-4}* + {(n-3)p +n-4}* +(p+1)7° /4"
When 2 =3, the right hand side of (6.8) is non-positive for some 7. But the left hand side of

(6.8) is positive for every 7. Therefore, for n =3, we observe that W(r) cannot have any
critical points for r satisfying
@-Dr*-r*+(p+1)r®/4=<0.

Combining (6.7) and (6.8) leads to :
v -Ap+2){(n-2)p +n -4} + p(p+)F?
(6.9) () - (n-2){n-2p+n-4a}+{n-3)p+n-4}f* +(p+1F* /4’

Let rp:=J2(p+2)‘{(n -2)p+n-4}/{p(p+1}. From (6.9), ¥"(F) <0 for fE(O,r,,) and

Yn(#) >0 for F E(rp,QO). Therefore, if W(r) has a critical point, then it must be a local

maximum in (O,rp) and a local minimum in (r ). This result says that there exists at most

p?

one local maximum and one local minimum since a local minimum cannot exist in (O,rp) and a
local maximum cannot exist in (7, ,%). Moreover, we will evaluate the critical value for ¥(r).

Combining (6.5) and (6.8), we get } , ;
(p+1)r“‘/2—{p2 -(2n-7p-2n +8}r’2 +2(n -D{n-2)p+n-4}
(p+1F* 14+ {n-3p+n-4}F* +(n-2{(n-2)p+n-4}

W) -

Define
(p+rt/2-{p> -(2n-Np -2n+8}r* + 20 -D{n-2)p+n-4} 0.0)
(p+Dr /4+ {n-3p +n-&r> +(n-D{(n-2p+rn-4} =

Then v (r) satisfies ¥ (0) =2(n-1)/(n-2), lim,_., ¥(r) =2 and

w(r):=

(6.10) y'(r)
Pl +1)2r[r4 —4{(n-2)p+n-4)r? /p(p+1)-4(p+){n-2p+n-4}"/p(p +1)2]/2
- [(p+Drt/4+{n-3p+n-afr> +(n-2{(n-2)p+n —4}]2

) pp+10)°r[? +2{n-2p+n-4}/(p +D][r +rp)(r—rp)/2
[(p +0r*/4+{(n=-3)p+n-afri+(n -2){(n-2)p +n—4}]2 .
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Since 2{(n-2)p+n-4}>0 for n =3, it follows from (6.10) that 1 (r) is decreasing in
(O,rp) and increasing in (r,, ,°°) . Therefore, ¥(r) has at most one local maximum in (O,rp ), and
it is smaller than 2(n -1 /(n —2). But this is impossible from (i) of Lemma 6.1. Therefore,

W(r) does not have any local maximum. Thus we can finish the proof of (iv). Q.E.D.
Correspondingly to Lemma 5.2, we obtain the following lemma.

Lemma 6.2.
@) Ifp=(n+2)/(n-2), then G(r) and H(r) are decreasing in [0,%).
(ii) If 1<p <(n+2) /(n-2), then there exists a unique number .. €(0,%) such that G(r) and

H(r) are increasing in [0,%..) and decreasing in (.., ).
The behaviors of G(r) and H(r) nearr =0 andr = % are given as follows.

Lemma 6.3.

@ limG(r) =—co.

(if) lim G(r) =0.

(iif) lim inf H(r) = 0.

(iv) If1<p<(n+2)/(n-2), then lillrl_.S&lpH(r) <0.

Remark 6.1. If p=(n+2)/(n-2), then H(r) 20 and H(r) # 0 in [0,%0) from Lemma
6.2 (i) and Lemma 6.3 (iii).

Proof. (i) Note that (6.4) can be rewritten as

() = —2 (2 Pl n-2p-3 r_z_ _p+3
60) =2t ;exp(4){q:(r> +3)

By Lemma 6.1, {‘P(r) -(p+3) /2} is finitely negative for sufficiently large 7 and does not
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converge to zero as r—>%, Moreover, since lim,..r’@(r) =2 from (6.3) and
lim,_. " %" c:xp(r-'2 / 4) =, we get (i).

(i) Since lim,_, ﬁ: s exp(-ps® / 4) {I: t"exp(£/ 4)dt}p+lds =0, it is sufficient to
prove

lim P4 exp{-(p + 1)r2/ 4}{’: s exp(s®/ 4)ds}p+2 =0;

which comes from the identity

P e exp{-(p +1)r? / 4} {I;s"'s exp(s®/ 4)ds}p+2 =r"exp(r® /4 @) /(n-2)""2,

(iii) The assertion is readily seen from the following inequality

Hr)>-(n-27"" :, s exp(-ps® / 4)ds .

(iv) Let p €(1,(n+2)/(n -2)). Assume ¢ be any sufficiently small positive number with

e<{n+2-(n-2p}/(n-2)p+1) and fix p such that exp{-(p +1)0*/4}>1-¢. Then

for0<r<p,

2y, 2
(6.11) H(r) < 1 [ 2 pamnr@nyp exp{— (p+Dr }Lsnnscxp(a-)ds

(n-2" p+1 4
2
_fs1+(2—n)p exp(—ps )ds]
r 4 |
2

1 2 2+@-n)p ( pr ) po’ SHznp
¥ R - ds|.
w2 [(p+1)(n—2)’ i s B ey TR

First considering the case 2 <p <5 forn=3 and1<p <(n+2)/(n-2) forn =4, we obtain

<= (n+2)—(n-2)p —e(n-2)(p+1) ;-0-2 ﬁ) 2-(n-2)p .
so that
lim H(r) =-co.

In the case p =2 for n =3, observing that
H(r) <2exp(-r?/2)/3-exp(-p* /2)(logp - logr)

<(1-¢)logr+0(1)
from (6.11), we arrive at the same result as before. Moreover, in the case 1<p <2 forn =3,
we get ‘
1

H(r) < 7 _2)p+1

2 2-p a2 - 1 _ 2 2-p _ 2-p
(2 explop? 14)- S el -pe? 1 4lo™ -7}
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-from (6.11). Thus we obtain

2

1 14 2-p
< —— 0
(2-pYn-27 ‘cxp( 4 )p )

since 2-p>0. Q.E.D.

, lim_.sng(r) <-

In the same way as the proof of Theorem 1, we obtain the following theorem.

Theorem 6.1. The structure of positivé solutions to (6.2) is as follows.
@ If p 2(n+2) /(n-2), then r;a) is a decaying solution for every & >0.
(ii) If 1 < p <(n +2) /(n-2), then there exists a unique positive number @, such that W(r; @) is
adecaying solution for every @ €0, ] and a crossing solution for every & € @,,%) . Moreover,
r;a 1) is the most rapidly decaying solution among decaying solutions and there exists a

positive finite number ¥ such that
tim {(n -2 (5" expls?/ 4)ds}olr, ) = 7.

r

Proof of Theorem 2. ~ The structure of positive solutions to (IVP) with A =1 is
readily obtained by Theorem 6.1. We will show (2.3). Using the fact that
{(n -2)° ﬁ: s"exp(s® / 4)ds}v(r,al) is increasing in [0,%), we get

wr,a) < y{(n —Z)ZJ;rs"'se,xp(s2 / 4)ds}_1.

Therefore, we have
u(r;a,) =v(r;a,)e(r)

r 1 r
< y{(n —2)2.,:]5;""3@xp(s2 / 4)ds} “(n-2)r*" exp(-r*/ 4){/;s"'3 expl(s? /4)ds}
=(n-2)"yr*" exp(-r?/ 4).

This implies (2.3). | Q.E.D.
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7. Appendix
After this talk, I have obtained the following result on the structure of solutions to (IVP).

Theorem 7.1. Suppose that 0<A <(n-2)/2. f1<p <(n+2)/(n-2), then there exists
a unique positive number @, such that u(r;@) is a decaying solution for every @ €0, ] and
a crossing solution for every a E( al,°°). Moreover, u(r;a l) is the most rapidly decaying

solution among decaying solutions.
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