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A NOTE ON THE CONJECTURE THAT
THIRD-ORDER EFFICIENCY IMPLIES FOURTH-ORDER EFFICIENCY

YuTaka KANO* (KB #)

Abstract. Takeuchi [33] and Pfanzagl [23] proved that any first-order efficient estimators
are second-order efficient. Many authors e.g., Ghosh {12}, have conjectured that any third-
order efficient estimators are fourth-order efficient. Based on concentration probability of
estimators about a true parameter, this paper gives a positive answer to the conjecture in
a curved exponential family with multi-structural parameters. It is seen that choice of bias-
correction factors is critical.

1. Introduction

Let u € R? be a parameter vector of interest and let an open set Q(C RY) be a
parameter space of u. Let ug € €2 be an arbitrarily fixed (inner) point of 2. For every u €
N(w), a neighborhood of ug, assume that random p-vectors Xy,... ,X, are independent
and identically distributed according to a (continuous) curved exponential family with

density

(1.1) exp {6(u)'x — 3(6(u))} u(dx),

where u(-) is a carrier measure on R? (see Amari [5], Section 4.1) and 6(-) is an RP-valued
measurable function from Q(C R?) smooth in u € A(ug). The real-valued function, ¥(6),
is defined as a normalizing constant ¥() = log [, exp(8'x)u(dx). Write ©; = L.6(u),

Ui = %%’ and ¥y = %1'/;—,. It is well-known that
E[x;] = ¥10(0(u)) (=n(u), say) and Cov[x;,x;] = ¥11(6(n)) (= ¥q;, say)
and that the Fisher information matrix is expressed as
ty = O]91;0;.

Assume that ¥q; and 7, are positive definite.
Let x = L 3"  x; and then E[%] = n(u). Let g(-), b(gl)(-) and b§2)(-) be measurable
functions from R? to R?, smooth in A (n(ug)) a neighborhood of n(uy). The statistics
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b(gi)(i)’s are bias-correction factors, possibly to be zero. For given bgi)(i)’s, consider a

class of possibly bias-corrected Fisher consistent estimators for u, defined as
F={g"(® = g®) — 1b{ (%) - ZbP(X)| g(n(w) = u for every ue N (uo) } -

We say that g*(X) is first-order (or second-order) bias corrected if E[g*(%)—u] = O (77) (or
0 (;113—)) The bias-correction factors are not unique, and the class F with one correction-
factor may be different from that with another factor. Discussing fourth-order efficiency
here, we will deal with four different bias-correction factors.

We assume that the MLE G(X) that maximizes the likelihood funcfion

(1.2) L(w) = [ exp{8(u)'x; — $(6(u))} = exp{n(8(u)'% — (6(u))}
=1
exists and that it is Fisher-consistent and smooth in A'(n(u,)) a neighborhood of E(%], with
a large probability for large n. The assumption is met under certain regularity conditions
including strong identifiability (see Kano [16]).
~ Let C be a class of all Borel convex sets of R? including the origin and let Co be a
class of all Borel convex sets 6f R? symmetric about the origin. The class Cy is a subclass

of C. We expand concentration probability of g*(X) about the true parameter vector u as

/e 1 1 1
(1.3) PG(u){\/ﬁ(g (X)—u) € C}=A1 + ﬁAz + ;As + mﬁl‘; +oe

where C belongs to C or to Co. The coefficients Ax’s depend on u, g*(-) and C. The
expansion is made with the help of Edgeworth expansions.

An estimator in F is said to be first-order efficient (LOE) for the class C (or Co) iff it
minimizes 4; among all the estimators in F for every C € C (or C € Cp). A 10E estimator
is said to be second-order efficient (20E) for the class C (or Cp) iff it minimizes A; among
all the 10E estimators in F for every C € C (or C € Cy); 30E and 4OE for the class C (or
Co) are defined consecutively in the same manner.

Whether an estimator in F is 10E does not depend on the bias-corrected factors;
and the factor b(gz)()‘() does not influence upon 20E and 30E.

The limiting distribution of v/n(g*(X) — u) (or equivalently y/n(g(X) — u)) is multi-
variate normal with mean zero and covariance matrix G; V1, G}, where G; = d—g;g’}—)l,-cz,,(u),

and hence

Al :/ Nq(XIO,G]_\I/lng)dX.
C
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It 1s known that
G19,,Gy >4t

and that the equality holds if and only if G; = i o) = éd%(::,——‘-)-|,—(=,,(u), the matrix of the

first-order derivatives of the MLE (%) (see e.g., Takeuchj [33] example 6.5). As a result,

we have
/ Ny(x]0,G1 %11 G} )dx < / N,(x]0,751)dx for every C € C.
C (o]

In other words, the MLE and estimators whose first-order derivatives are identical with
the MLE are all 10E for the class C.
Second-order efficiency has been discussed for a class of first-order bias-corrected

estimators g*(X) which meet
E[g*(x) —u]=0(%).

The 20E of the (bias-corrected) MLE was established by showing that the second term
Ay of the MLE attains the lower bound, which is derived by applying Neymann-Pearson’s
lemma to a certain testing problem (Pfanzagl [22]; Akahira [1]). After the 20E of the
MLE, Takeuchi [33] and Pfanzagl [23] found that the term A, is identical for any 10E
estimators, so that 10E implies 20E and that the notion of 20E cannot distinguish 10E
estimators. The basic results on 20E have been extended to more general and complicated
models by many authors including Akahira and Takeuchi (2,3], Hosoya [15], Taniguchi [34]
and Yoshida [36,37]. v

Consider Takeuchi’s and Pfanzagl’s surprising result via an alternative criterion,

quadratic loss:

(14)  BUVAlg () - WHVAE () ~ W] = By Z=Bs + -Byt —=Byt o,

Higher-order efficiency based on the criterion is defined in the same way as that on con-
centration probability in (1.3). Since B; = G1¥;,G}, the asymptotic covariance matrix
of g(X), we make the same conclusion on 10E as before. We know that B, = 0 for any
estimators in F, which means that 10E implies 20E. Notice that B, = 0 whether or not
bias-correction is made and hence that 20E holds for the class of 10E estimators even
without bias-correction.

Results on 3OE similar to those on 10E hold under first-order bias-correction. That

1s, the MLE and estimators whose second-order derivatives coincide with those of the
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MLE are 30E (e.g., Pfanzagl and Wefelmeyer [25]; Akahira and Takeuchi [3]; Amari [4];
Taniguchi [35]). Rao [26,27,28], Ghosh and Subramanyam [13], Efron [10] and Eguchi [11]

have obtained 30E of the MLE on the basis of quadratic loss or loss of information.

Here is an interesting question; does it hold that 30E implies 40E? On the issue,
Ghosh [12](page 64) mentioned “given that 10E implies 20E, it is natural to conjecture
that 30E implies 40E. The proof of that must be very messy.”

The statement is known to be true if one takes quadratic loss as a criterion, because
B, = 0. This fact would convince us that the conjecture be true under concentration

probability as well as under quadratic loss.

In this paper, we distinguish between asymptotic efficiency for the class C and for the
class Cy. The idea was taken by Akahira and Takeuchi (3] to study 30E of estimators in
models with general density functions. We will show that 30E implies 40E for C or for

Co, depending on a choice of bias-correction factors.

In Section 2, we give pre-liminéry results on matrix derivatives and multivariate Her-
mite polynomials. Section 3 describes main results on asymptotic efficiency up to the

fourth-order under several types of bias-correction factors. Proofs are given in Section 4.

The derivation of this paper is so-called formal, and we do not directly prove validity
of the Edgeworth expansion (1.3). According to general theory, the formal expansion is
actually valid because (i) the continuity of the curved exponential family (1.2) ensures the
Cramer condition: lim supjj5||—co Ele’s'(x=n()] < 1; (ii) the smoothness of ¥(§) and 6(u)
is assumed, so that the moments of any orders exist; (iii) the class C of all measurable
convex sets meets a boundary condition: supcec f(ac)é N,(x]0,I,)dx = O(e) (e | 0). For
details, see Bhattacharya and Denker [9](Remark 1.4.1 and Theorem 2.1).

2. Preliminary Results

2.1. Matrix derivatives and symmetric tensor

Let x = [z3,...,2,)" and A(x) = [a;;(x)] be an a; X ay matrix-valued smooth
function. Put aggf:‘) = [?—ag-’z—(;x—)} Define d—%(:;‘l = ad;,-A(x) = [ag‘,fj‘),--- ,égT(:(l], and

LA(x) = (%,—A(x)’)'. The higher-order (matrix) derivatives are defined inductively by

(3%:7)<k> = % (H%)d—b with (a—%)<l> = £7. For such matrix derivatives, see Kano
[17,18] (cf. Bentler and Lee [8]; Magnus and Neudecker [21]). Here we simply note some
formulas on the matrix differentiation. The proof is due to direct calculation (see Kano

[18]). Let x be a p-vector, let A(x) and B(x) be of order a; X as and b; X be and suppose
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that the following matrix products in the LHS are permissible. We then have

dA(x) dB(x)

.
o AEOB()] ==375(0p ® B()) + A(x) =7 7=

3ol ® 801 = (4 0 509) + (4000 L2 (1,y 0 1)

d dB(x) [ dx(t)
E[AB(x(t))C’] =A o (dt’ ®C),

where x(t) is an RP-valued function of t and A and C are constant matrices in the last

formula. Here the matrix K, of order ab is a commutation matrix defined by the relation:
Kuy(b®a)=a®b

for arbitrary a-vector a and b-vector b. See Henderson and Searle [14] and Magnus and

Neudecker [21](page 47) for commutation matrices.
k-fold

e ———
Let us simply write A<¥> = A® .- ® A, k-fold right Kronecker (tensor) product of
the same matrix A. Note A<°> = 1. The symmetric tensor for the Kronecker product of

p-vectors ay, ... ,ax is denoted by N,<k>, which operates as

Np<k>(a1 Q- ak) = Z (aa(l) X Q aa(k)) /k"

where the summation runs over all permutations (o(1),...,0(k)) of (1,...,k). See e.g.
Satake [30](Section 5.3) and Sternberg [31](Section 1.3) for the symmetric tensor. Let g(x)
be an R?-valued analytic function defined on a neighborhood of xy € R?. The Taylor series

of g(x) about x, is expressible in the form:

— : <k> : _
g(x) = E X (x — %) with Gy = (dx’) g(x)

k=0

X=Xy

The matrix of the derivatives, Gy, has an important property:

(2.1) GE.ZVP<I¢> = Gy.
Define
d <k> d <>
(2.2) ‘I’kg = \I/kg(e(u)) = (@) (@) '(/}(9)
6=6(u)
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2.2 Multivariate Hermite polynomials
Let o(s) = e~5 ¥%/2 with s a p-vector and ¥ p x p positive definite. The covariant

Hermite polynomials are defined as

Hi(s|¥) =

4\ <k>
(-) ¢<s>} fols)  (keN),
and the contravariant Hermite polynomials are
Hi(s|®) = (T)<*> Hi(s|¥)  (keN).
The first few polynomials are

H,(s|¥) = Us, Hy(s|¥) = (¥s)<?> — vec(¥);
H3(s|¥) = (\I/S)<3> —3Np<s> (vec(¥) ® ¥s),

and
Hi(s|¥)=s,  Hy(s|¥) =5 —vec(T1);
Hy(s|¥) = s<%> — 3N, <s> (vec(¥ 1) ®s). |

Let z have a multivariate normal distribution N,(0, ¥). We then have E[e*'?] = ¢(s) and

? k
E[eis'zz<k>z<l>l] — z'k+£ _i e ——i < L,Q(S)
ds’' / ds

<>
vt (- D) s

for k,£ =0,1,2,... According to Barndorff-Nielsen and Cox [7](Eq. (5.67)) or Takemura
[32)(page 239), we know that Ele’? Hi(z|¥™1)] = (is)<¥>¢(s), and hence

(2.3) E[e**Hi(z|T™1)] = (i¥s)<F>(s).

We further note that

o ) . g\ <>
(2.4) Bl /1 (2]u1)2<0] = i+ (‘E‘) ()< (s)]
Recall that x1,... ,X, are an i.i.d. sample from the curved exponential family (1.1).

Let us replace z with z, = \/n(%X —n(u)), and then the formulas above still hold provided
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that we substitute ¥;; for ¥ and add o(1); for example, the corresponding result to (2.3)

is
(2.5) Ele™® Hi(2a)¥7)] = (:¥118)<*> () + o(1)
with ¢(s) = e—s'Yus/2

3. Main Results ,

We begin with second-order efficiency. Let z, = /n(X — n(u)), Gx = Gi(n(u)) =
()" g(®) ey 224 Gie = Gi(n(w) = (%)< a(=) pyy PTE=01,2, . We
expand g(X) in F and the MLE (%) stochastically in the form:

1 1
vn 6ny/n

N 1 - 1 - _
u(i) =u-+ _Glzn + 5“G2Z§2> + LG3253> N
n n

vn 6ny/n
The first-order bias is given as E[g(X) — u] = 5=G2¥3 + O (Z5) with W3 = vec(¥y;) =

(35)79(0)o=n(w)- .
To discuss 20E, we take b(gl)()‘c) = %Gﬁzo and b;z)()'() to be unspecified. Then,

g(x) =u+ Gaz®> + -

1
Glzn + %GQZ:2> +

(3.1)

7 _ 1 — 1 _
52) g" (%) =g(x) - 5 G2 %20 ~ n—zb(gz)(x),
) .k . 1 _— 1 _

(%) =0(%) ~ 5-Ga¥a0 — — by (%),

and hence

nyn

(3.3) E[va(g"(x) - 2 (%)) = 0 (=) -

Here we do not necessarily specify how to estimate G, ¥o.
Takeuchi [33](page 185) and Pfanzagl [23](Section 7) showed the following theorem.
See also Ghosh [12](Section 6.4).

Theorem 1. Let g*(X) € F and the MLE u*(X) € F be bias-corrected as in (3.2).
Assume that g*(X) 1s 10E. Then,

Py(u)[vn(g"(X) — u) € C] = Py(y)[Vn(a*(%) —u) € C] +0 (ﬁ)

for every C € C and u € N(up), that is, under the bias-correction in (8.2), any 10E
estimators are 20F for the class C.
Can we say something about 20E, without bias-correction? The following theorem

gives a certain answer to the question.
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Theorem 2. Let 4(X) be the MLE. Assume that a Fisher consistent estimator g(X)
15 10E. Then,

Po(oy[V(g(%) — 1) € C] = Poguy[V(i(%) - w) € C] + 0 (x)

for every C € Co and u € N(ug), that is, any 10E estimators are 20E for the class Co.
Some authors must have noticed the result of Theorem 2, but no explicit statement
regarding 20E for the class of no bias-corrected estimators has appeared. The next the-
orem on 30E is well-known (e.g., Pfanzagl and Wefelmeyer [25] Theorem 1; Akahira and
Takeuchi [3] Theorem 5.1.6; Ghosh [12] Chapter 6).
Theorem 3. Let g*(X) € F and the MLE 0*(X) € F be bias-corrected as in (3.2).
Assume that g*(X) is 10E. Then, ‘

Pou[VA(E' (%) — ) € O] = Poguy [VA(K' (%) = w) € C] = ~% e 0 (3)

for every C € Cy and u € N(uy), where Ai,g',c is nonnegative. Further, A%x,g",c =0
for any C € Cq if and only if Gy = G2, that is, under the bias-correction in (3.2), a 10E
estimator is SOE for the class Co if and only if G2 = Ga.

The actual form of Afl; g+,c Will be given in (4.13) in the proof. According to Theorem
3, we see that 30E of g*(X) means G; = G; and G, = Gs.

Now we are in a position to state some results on 40E. The distribution of \/ﬁ(bgl) —
%quj‘zo) = \/-ﬁ(%G;-\I720 — %Gz\llgo) contributes to the terms of order O (n—\l/—ﬁ) of concen-
tration probability, and hence how to estimate G, W2 is quite important to study 40OE.

Consider the following different types of bias-corrections (or different choices of bgl)
and bgz)):

Case (I): first-order bias-correction only

g*(%) = g(X) — £G2¥2;
Case (II): second-order bias-correction (1), the historical one (see e.g., Rao et.al. [29])
g (%) = g(x) — 2 Ca(n(g(%))) Lao(6(8(x)) ~ 725" (%)
so that E[g*(%) — u] = O (%);
Case (III): second-order bias-correction (2), suggested by Kano [17,19)]
g"(%) = 8(%) — 2 G2(X)Tao(#(&())) — 7xby” (%)
so that E[g*(%) —u] = O (%);
Case (IV): second-order bias-correction (3), based on Amari [5)(Eq. (4.27))
g°(%) = 8(%) — 4 Ca(%) U (T35 (%)) — 7rbs” (%)
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so that E[g*(X) —u] = O ().
Here 6 = ¥'(n) is the inverse function of 7 = ¥,((8). For Cases (II)-(IV),

(3.4) Elv/n(g"(%) - 6" (%))] = 0 (727z)

whereas (3.3) holds for Case (I).

We now state the main theorem.

Theorem 4. Let g*(X) € F and the MLE 6*(X) € F be bias-corrected as in one of
the four cases above. Assume that g*(X) is SOE. (1) Under Cases (I) and (II),

(35)  Pawlvn(g"(%) — ) € C] = Paguy[Va(u"(%) — u) € C] + 0 (1)

for every C € Cy and u € N(wg), that is, any SOE estimators are 4OE for the class C,.
(i1) Under Cases (III) and (IV), (3.5) holds for the class C, that is, any SOE estimators
are 4OF for the class C.

Kano [17,19] and Amari [6] have established 50E of the MLE under the bias-
correction (III) or (IV) on the basis of quadratic loss, concentration probability and infor-
mation loss, respectively. |
4. Proofs
4.1 Auxiliary results

Differentiation of both sides in the equality G(¥10(6(n))) = Gi(¥10(6(n))) w.r.t. u’
and use of (2.1) shows that

(4.1a) _ ~ ~
Gl = Gl g (G2 — Gg)(\Illl@l ® Ip) = (GQ — Gg)(Ip ® \IJHG)]) = 0,

(4.1b) ) )
G2 = G2 = (G3 — G3)(‘~I’11@1 X Ip2) = (GQ — Gg)(IP X \1111(91 ® Ip)

= (G2 — G3)(I,2 ® ¥1,0,)
= 0.
These are key relations to our derivation here.
Let t € R? and ¢(s) = e~5'¥115/2, Recall that Gy = iJ10©). It follows from (2.3) and
(4.12) that |
(Gy — B2) B[ 615 (252 — Wpo)] = —(Gs — Ga)(Un1 011z ) 2> (G)t) + o(1)

(4.2a) =o(1)

and hence



(42b) (Gg - Gg)E[Cit'Glz"Z§2>] = (Gg - G2)w206—t'i;1t/2 + 0(1)

Using (2.4), we have

. . d
E[ezt zen(z:2> _ \Ilzo)z’n] — zg [(‘1’115)<2>(p(5)] ] + 0(1)
s=Gt

(4.3a) = ie RN, o [(2‘1111 — U, Gt G ® (Y1 Gllt)] +0o(1),
and hence use of (4.1a) results in
(4.3b) (Gy — Ga)E[e™ G127 (252> — Wy0)z!,] = o(1).
In a similar manner, we have from (2.4) and (4.1a)

(G~ BBl S (25 — W0)a P

. 4\ <>
= @-6) () (W9 o)
s—G'lt

= 2e7Vit2(Gy — G) U + o(1),
from which, it follows that
' (4.4a) (G — G2)E[e™' C12n (252> — W4)252>'|G = o(1)
and

(G — G) E[e C12n (252> — Wy0)(252> — Up0)'|(G2 — G2)'
(4.4b) = 2e7VI2(Gy — Go) U (G2 — Ga)' + o(1),
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We have used that G2 = B(©} ® I,)N,<2> for some B (see Kano [17] Lemma 3.3) and

have applied (4.1a) again to get (4.4a).
Using (2.4) and (4.1b) again, we have

(G3 — G3)E[eitlalz” (2537 —3(Tg ® 2,)z5"")

. ~ d
= 23+8(G3 - G3) <—_d?

(4.5) =o0(1)

for £=0,1,2.

<e&>
) [(T115)<*7¢(s)] + o(1
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4.2 Proofs of the theorems
Theorem 1 is a known result. We will give a proof of Theorem 2 and then note the
distinction between the proofs of Theorems 1 and 2.

Since G; = G for any 10E estimators g(X), the difference is expressed from (3.1) as
(4.6) VA(8(R) — 4(R)) = ——(Cs — G2)z<?> + 0 (&) =0 (%)
. 2\/5 2 2)4n P % p\/n)>
from which, the characteristic function of standardized g(x) can be evaluated in the form:
E[eit'\/f_l(s(i)—ll)] =E[eit'\/ﬁ(ﬁ(i)—u) . eit'\/ﬁ(g(i)—ﬁ(i))]

=E[e VAE® -0 (1 1 it/ /r(g(%) - 4(%)) + O, (1))]
:E[eit’ﬁ(ﬁ(i)—u)]

(4.7) + (i) B[ VR /n(g(z) - a(x)] + 0 () ,
and

E[¢" VM= /n(g(%) — (%)) =

1 . A~ it'G2z
2\/ﬁ(zt)'(Gz — G2)E[e** G "z,f?‘>] +o0 (ﬁ)
e—t'iz t/2

= V(G — O 1

= (i)(G2 = Ga) o + 0 (W)

in view of (4.2b). Thus, we obtain the difference between the two characteristic functions
of g(Xx) and U(X) as

—t'i7lt/2

E[ei V@) -u)) _ pleit vata@-w)) _ &
2v/n

Inversion of the characteristic functions to distribution functions results in
Po(u)[vn(g(X) — u) € C] = Py(u) [Vn(i1(%) ~ u) € C]

— 1 ' = \s 1 .
= -——2\/6\:{’20(G2 — G2) /;XNq(XIO,zu )dX +o0 (_\/_7_1)

(¢t)' (G2 — G2)¥g0 + 0 (ﬁ) )

(4.8)

for every measurable set C C R? meeting a certain condition on the boundary 8C, which
is satisfied by convex sets (see Bhattacharya and Denker [9] Remark 1.4.1 and Theorem
2.1). The integrand in (4.8) is an odd function in x. The RHS in (4.8) vanishes when C

is symmetric about the origin. As a result, we have

Pou [VA(g(%) — w) € C] = Py [v/n(&(%) — u) € C] + 0 ( 3z)

for every C € Cy. This proves Theorem 2. Q.E.D.
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When the bias-correction in (3.2) is made, (4.6) becomes -

(49) V(g (%) — 6°(%)) = 5=(Ga = G)(#5™ ~ ¥n) +0p (7).

and hence we get ,

(4.10) Bl VR = /(g (%) — (%)) = 0 ()

by the virtue of (4.2a). Consequently, the difference between the characteristic functions
is of order o ( \/—) This proves Theorem 1. Q.E.D.

To prove Theorems 3 and 4, we need to investigate the expectation (4.10), a sort of
cross terms, up to higher-order. There are useful lemmas to do so. The basic idea of the
lemmas were originated in Kano [19], who studies fifth-order efficiency. The proof will be
given in Appendix.

Lemma 1. Assume that Xi,...,X, are an i.i.d. random sample from the curved
exponential family (1.1). Let TV = (1)(x1, . ,Xn) and T,(f) = T,(,z)(xl,.... ,Xn) be
random g- and ¢'-vectors which may depend on the sample size n but do not depend on the
parameter u € Q. Let ¢ = ¢(u,t) = Ele it/ \/_(T(l)_“)Tm] Then, ¢ satisfies the following

system of partial dzﬁerentml equations:

(411) 33 ~{(t'ig) ® ¢} + C(u, 1),
where
clwo = —\;:d—(é LBl VAT (r(TD — )~ Grza}]

Lemma 2. Let tg = [t1,... ,t,0,...,0)" and C(u,t) = [c1(u,t),... ,cq(u,t)]. The
solution to (4.11) is expressible as ‘

o q ts ..
B(u,t) = e~/ (¢(u,0> + / ck(u,tk)e*k'u‘wdtk).
. k=1 0

Here we shall use these lemmas to provide a proof of Theorem 3, which is different
and simpler compared to the existing proofs. In a similar way as in (4.7), we have

(4.12)
E[eit’\/?i(g'(i)~u)] _ E[eit’x/ﬁ(ﬁ‘(i)—u)]

= (it) B[ VA7) /n(g" (%) - (%))
5 (i) Bl VR 07 /(g () — (%) V(8" () — & ()it
+o (%)
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The first term in the RHS in (4.12) is of order o (%) as will be shown later and so, use of
(4.9) and (4.4Db) results in

E[eit' \/Tz(s‘(i)—u)]_E[eit' \/ﬁ(ﬁ‘(i)-—u)]

e—tizit/2

= ————(it)'(G2 = G2) ¥ (G2 — G2)'(it) + 0 (1) .

Inverting the characteristic functions to distribution functions, we have
Pyu)[vn(g*(X) — u) € C] = Py(y[Vn(0* (%) —u) € C] — ~A2 agcto(s)
for any Borel convex set C C RY, where
2 1 A \!
ALgrc= ZVGC(Gz - Gy)
(4.13) . <\Ill<12> ®/ (Tu — iuxx'iu)Nq(x|0,z:1)dx> vec(Gq — G2).
c

If C is symmetric about the origin (i.e., C € Cp), the integral above is shown to be
nonnegative; and it is positive, assuming further that the interior point of C is not empty

(see Pfanzagl [24] Lemma 13.2.4). Thus, Theorem 3 follows, provided that

¢ = ¢(u,t) = E[e™ VAT /n(g(%) — &7(%))] = 0 (£).

Applying Lemma 1 [T,(,l) u* (%), TP = vn(g*(X) — 0*(x))] and using (4.9), we can
evaluate C(u,t) in Lemma 1 as
4 dé . i ~ e ~
C(u,t) \/_d¢’ ul "—(GQ - Gz)E[elt Glz"(z:2> - ‘1’20)(Z§2> - \1/20),]G,2 +o0 (%)
i d¢ -1

= Znaw's to(3)

in view of (4.4a). We have from Lemma 2 and a consequence of the bias-correction

o=t (Bl @ - @)+ 2 [ ST ) o

_iel TRt /tkﬁM 201 4o (1)
\/FI’ i=170 du

Substitution of ¢ = o (ﬁ) shown in (4.10) into the integrand in the RHS above leads to
p=o0 ( ) The proof of Theorem 3 is complete. Q.E.D.



125

Now we shall give a proof of Theorem 4. Consider Cases (III) and (IV) first. The

bias-correction factors can be expanded as

1
—=G2(X)¥20(0(g(X))) = G2 ¥y + G2‘1’2191 G12Zn

2vn f

+ _‘G3(\I/20 ® Ip)zn + Op (71{) 9

GQ(X)\Ifgo(\I’ (X)) = GQ\II20 + GZ\I/21 ‘Illl Zn ;

2\/_ \/—

+ ;;G3(‘I’20 ® Ip)zn + 0p (%)

and thus for a 30E estimator g*(X) (i.e., G1 = G; and G; = G2) we have

.

3=

*( = A~k — 1 ~
V(g (%) = 8(%)) = o(Gs — Ga){z5> — (U0 ®20)} +0p (2) = 0y (
for the both cases. For all the cases, we shall write

V(g (%) = 8'(%)) =5 (G — Gs) {25 = 3(Tap @ 20)} + 5= B(wan + 0y (1)
=0y (%) )

where B(u) is a constant matrix of order ¢ x p given as

(4.14)

(Gg - ég)(‘I’zo ® Ip) - 'C%[G;-\ITQO - 62\1’20]15(:"(“) for Case (I)
B(u) = (G3 — 63)(\1’20 ® Ip) - (G3 - 63)(\1/21@161 & ‘1’20) for Case (II)
0 for Cases (III), (IV).

Since /n(g*(X) — 0" (X)) = O, (%), the same derivation as in (4.7) can apply to get

E[eit'\/ﬁ(g*(i)—u)]_E[eit'ﬁ(ﬁ' (i)—U)]

 (it) Bl VA0 (g (1) — ()] + 0 (7).

Put
¢ = ¢(u,t) = B¢’ VM=) /n(g¥(x) - @) (=0 ()

and then the inversion of the Fourier transform is made, so that

Py {Vn(g"(X) —u) € C}
(4.15) = Py {Vn(87(%) — u) € C}

i /c Zz“{l)ﬁ /R et (it)' ¢(u, t)dtdx + o (#)
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for every Borel convex set C C R?. Let us apply Lemmas 1 and 2 to evaluate ¢. We have
iE[eit"/E(ﬁ‘(’_‘)”“)\/ﬁ(g*(i) — & (%) {VA(E"(X) - u) - G12, )
n\/—E[ WG (1(G — Ga) (257> = 3(20 ® 20)) + 1 B()z,}
{3Ca(e — W)} +0 () (by (419)

R B O a5 — w18 +o (1) (by (439)

—t'iTlt/2 '
e “ —_ p— —_ —_
- WB(u) [(2\1111 -V, G'ltt'Gl\I’u) ® (t'Gy ‘1’11)] Glz

+o0 (n\/—) (by (4.3a)).
As a result, the C(u,t) in Lemma 2 can be written as

dé 1 ~t'izlt/2

(4.16) Clw,t) = —==5is + 2 — o BD(, t)+o(7)

where

1 P _ 3
D(u,t) = -7 [(2\1/11 — U, GG T ® (t'GI\IJH)] .

By Lemma 2,
q tr

(817) d(u,) = e (Elﬁ<g*<i> ~wEl+ Y [ Ck<u,tk>et"="*“’2d“) |
— Jo

We know that ¢ = O (%), so that C(u,t) =0 ( \/-) from (4.16), implying ¢ = O (n\/—)
in view of (3.3) and (4.17). Thus, since C(u,t) = g—7l—“\/-;1————B(11)D(u,t) +o (n_ﬁ)’ we

have
—t'izlt/2 E */o . 1 ! e
8(u,t) =e { VAlE ()~ 5 ()] + =B [ dk(u,tk)dtk}

(4.18) +o(z),
where D(u,t) = [d;(u,t),... ,dg(u,t)].

When E[\/n(g*(x) — 0" (X)) = o (ﬁ) and B(u) =0, which is met by Cases (111)
and (IV), we have from (4.18) that ¢ = o(#{). This, along with (4.15), proves the

second statement in Theorem 4. We shall prove Theorem 4-(i). First the reader should
note that ¢(u,t) is even in argument t since D(u, t) is odd in t. Thus, (it)' ¢(u,t) is odd in
t and of order O ( \/—) The second term in the RHS in (4. 15) vanishes if C is symmetric
about the origin. The proof is complete. Q.E.D.
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Kano [19] proved 40E of the MLE for Case (III) as a corollary of his main result on
50E. The proof given here is direct and much simpler.
' Appendix
We shall give proofs of Lemmas 1 and 2.
There is a useful formula in evaluating expectations involving the score function, see

e.g., Akahira and Takeuchi [3](Lemma 5.1.1), Amari [5](page 124) or Kano [17)(Eq.(4.5)):

Jn

where A(z,u) is a matrix-valued function measurable in z in R? and continuously differ-

(A1) E[,0:® A(za,u)] = —= {d—‘lll—,E[A(z,,, W) - E [%A(zn, u)] } ,

entiable in u.

Recall that G; = i;!©). Differentiation of ¢ w.r.t. 3%7 gives

99 _ et VETO-01@) r) _ uy)
dt[ n n ’

= B[ VAT T (/o(TP — u) - Gr2a)]
(A.2) +iE[(2.0;) ® (et VAT - (-1,

Exchangeability of the differentiation and expectation is permitted for exponential families
(see e.g., Lehmann [20] page 59). Application of the formula (A.1) to the second term in
(A.2) leads té
(i Bl VAT ) 7(2)] _ E[_?‘Lez't'\/mTﬁ”—u)Tr(;)]) .~
du’ du’
i do .,

_ t do -1
= \/T_ldu,zu (t'iy" @ ).

Substitution of this into (A.2) gives (4.11) , , Q.E.D.

Let us prove Lemma 2. It suffices to show that the following partial differential

equations (A.3) has the solution (A.6):

Vn

(A3) WO — (i @ 4(0) + C(1)

Put ¢(t) = &(t) - e~t'i't/2 and then we have

~

djt(f) _ et'i";lt/2c(t) (= 6t’i;1t/2[cl(t),... ,Cq(t)], say) .

That is,

(A.4) %’1(:—)- =t 20 (t) (k=1,...,9).
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Using (A.4), we have
8(t) = 4(0) + Z {8(te) = B(te-1)}

=4(0) + Z / k ag&zk)dtk

k=1v0

~ te r -1
(A.5) =¢(0)+Z / cr(tr)ebein t/244,
k=1 0

Conversely, the function (A.5) is actually a solution to (A.4), provided that (A.4) has a

solution. Thus, we obtain

(A.6) B(t) = e7tin /2 ( 0)+Z/ cr(ty)ethia t/2gy )
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