On uniformly convex functions

Yoshimi Ucnoyama(和歌山大. 教育. 上野山 好美)*

Abstract

A.W.Goodman[1] introduced the geometrically defined class *UCV* of uniformly convex functions on the unit disk; he established some theorems for this class. Recently, some mathematicians showed one-variable characterization for function in *UCV* which are closely related to Goodman's characterizations, for example Ma and Minda[2], Ronning[3].

In this short paper, we give a examples and conjectured necessary and sufficient condition of the class UCV_p .

1 Introduction

Let A denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. Let S denote the class of normalized analytic and univalent functions in U. We denote the subclass of S as follows:

(1.2)
$$K = \left\{ f(z) \in A : \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \quad z \in U \right\}.$$

^{*}Faculty of Education. Wakayama University, Wakayama 640. Japan

K is called the usual class of convex functions.

Definition 1. A function f is said to be uniformly convex in U if f(z) is a normalized (f(0) = f'(0) - 1 = 0) convex function and has the property that for every circular arc γ contained in U, with center also in U, the image arc $f(\gamma)$ is a convex arc.

$$(1.3)$$

$$UCV = \left\{ f(z) \in K : \Re \left\{ 1 + \frac{(z - \zeta)f''(z)}{f'(z)} \right\} \ge 0, \qquad ((z, \zeta) \in U \times U) \right\}$$

So far this two-variable characterization has not led to any sharp estimates for the class UCV. Ma and Minda introduced one-variable characterization for functions in UCV which are closely related to Goodman's characterizations.

Theorem A. Assume that f(z) is holomorphic and locally univalent in U with f(0) = f'(0) - 1 = 0. Then the following are equivalent:

(i)
$$f(z) \in UCV$$
.

(ii)
$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \left|\frac{zf''(z)}{f'(z)}\right| \qquad (z \in U).$$

2 A example

The following example will be useful. Goodman proved that

Theorem B. The function

(2.1)
$$f(z) = \frac{z}{1 - Az} = z + \sum_{n=2}^{\infty} A^{n-1} z^n$$

is in UCV iff $|A| \leq \frac{1}{3}$.

It is clear from theorem B that the function $f(z) = \frac{z}{1-z}$ is not in UCV, but it is in K. We have

Example 1. If $0 < r \le \frac{2}{7} \approx 0.2857 < 0.29$, then the function

(2.2)
$$f(z) = \frac{z}{1-z} = \sum_{n=1}^{\infty} z^n$$

is in UCV.

proof. A simple computation shows that for this function

(2.3)
$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} - \left|\frac{zf''(z)}{f'(z)}\right| = \Re\left\{1 + \frac{2z}{1-z}\right\} - \left|\frac{2z}{1-z}\right|.$$

We set $z = re^{i\theta}$. For $0 < r \le \frac{2}{7} \approx 0.2857 < 0.29$, we have

$$\frac{1 - r^2 - 2r\sqrt{2 - 2r\cos\theta}}{1 + r^2 - 2r\cos\theta} > 0$$

or

$$(2.4) 1 - r^2 - 2r\sqrt{2 - 2r\cos\theta} > 0.$$

It is possible that in this example $\frac{2}{7}$ can be replaced by the larger constant.

Example 3. The function (2.2) is in UCV iff $0 < r \le 1 - 2\rho$, $0 < \rho \le \frac{1}{2}$.

proof. A simple computation shows that for this function

(2.5)
$$Q(z,\zeta) = 1 + \frac{(z-\zeta)f''(z)}{f'(z)} = \frac{1+z-2\zeta}{1-z}.$$

We set $z = re^{i\theta}$ and $\zeta = \rho e^{i\phi}$. Then $\Re Q(z,\zeta) \ge 0$ iff

$$\Re(1 + re^{i\theta} - 2\rho e^{i\phi})(1 - re^{-i\theta}) \ge 0$$

01

(2.6)
$$1 - 2\rho \cos \phi - r^2 + 2r\rho \cos(\phi - \theta) \ge 0.$$

It is clear that the minimum of the expression on the left side of (2.6) occurs when $\phi=0$, $\theta=\pi$. (Thus, $\zeta=\rho,z=-r$.) These values yield $1-2r\rho-2\rho-r^2\geq 0$, and this is true for $0< r\leq 1-2\rho, 0< \rho\leq \frac{1}{2}$. Thus, the condition is sufficient for (2.2) to be in UCV. By a limit argument, the condition is also necessary.

3 Conjecture

Let A_p denote the class of functions of the form

(3.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \qquad (p \in N = 1, 2, 3, \cdots)$$

which are analytic in $U = \{z : |z| < 1\}$.

A function $f(z) \in A_p$ is said to be p-valently convex iff

(3.2)
$$1 + \Re \frac{zf''(z)}{f'(z)} > 0 \qquad (z \in U).$$

We denote by K_p the subclass of A_p consisting of all p- valently convex functions in U.

Using the idea contained in Theorem A, we pose the following conjecture.

Conjecture. A function $f(z) \in A_p$ is said to be p-valent uniformly convex iff

$$(3.3) \Re\left\{\frac{zf''(z)}{f'(z)} - (p-2)\right\} - \left|\frac{zf''(z)}{f'(z)} - (p-1)\right| > 0. \qquad (z \in U).$$

Also we denote by UCV_p the subclass of A_p consisting of all p-valent uniformly convex functions in U.

References

- [1] A.W.Goodman. On uniformly convex functions. Ann. Polon. Math. **56**(1991), 87-92.
- [2] W.Ma and D.Minda Uniformly convex functions. Ann. Polon. Math. 57(1992). 165-175.
- [3] F.Ronning. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118(1993), 189-196.