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Abstract

This paper proves the extension of Kruskal-Friedman theorem, which is an extension of the
ordinary Kruskal’s theorem with gap-condition, on w-trees (Main theorem 1 in section 3). Based
on the theorem, a new termination criteria for cyclic term graph rewriting systems, named simple
gap termination (Main theorem 2 in section 4), is proposed where the naive extension of simple
termination (based on [Lav78]) does not work well.

1 Introduction

- A term graph rewriting system (TGRS) has been commonly used from efficiency reasons in im-
plementations of a term rewriting system (TRS), such as CLEAN. A TGRS can be regarded as
a TRS with addresses - i.e., a variable in a rule of a TRS is regarded as an address in a TGRS.

~ Thus, subterms will be shared in each reduction step of a TGRS, whereas each reduction step of a
TRS simply copies. Theoretical basis for a TGRS has been extensively worked [MSvE94], but the
most works has been devoted to a acyclic TGRS. For a cyclic TGRS which can simulate infinite
reductions on infinite terms, only few works have been started [AK94, JKdV94, Blo95].

This paper investigates a new termination criteria simple gap termination for a cyclic TGRS.
First, we prove the extension of Kruskal-Friedman theorem, which is an extension of the ordinary
Kruskal’s theorem with gap-condition, on w-trees (Main theorem 1 in section 3). The proof consists
of four steps similar to the proof in [Lav78] with an extension inspired by [Sim85b].

Second, based on the theorem, a new termination criteria for cyclic TGRSs - named simple
gap termination (Main theorem 2 in section 4) - is proposed, where the naive extension of simple
termination (based on [Lav78]) does not work well. Unfortunately, a feasible construction of an
ordering for simple gap termination (like recursive path ordering, etc.) is a future issue.

2 Better-Quasi-Order

For infinite objects such as w-trees, Well-Quasi-Order (WQO) does not close under the embedability
construction. Instead, we need an extension of WQO, called Better-Quasi-Order (BQO). Note that
(1) if (@, <) is a well order then (@, <) is a BQO, and if (@, <) is a BQO then (@, <) is a WQO,
and (2) if @ is finite then (@, <) is BQO for any QO <[Lav78].

Definition 2.1 Let w be the least countable ordinal (i.e., set of natural numbers). If s,t C w,
then s < t (s < t) means that s is a (proper) initial segment of #. Define s < to hold if there is an
n>0and g < -+ < i < ws.t. for somem < n, s = {ig, " ,im} and t = {¢3,--,i,}. (Thus, e.g.,

{3} « {5}, {3,5,6} < {5,6,8,9}, {3,5,6} #{5,6}.)

1 Try http://www.cs.kun.nl:80/ clean/
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Definition 2.2  For an infinite set X C w, a barrier B on X is a set of finite sets of X s.t. ¢ ¢ B
and

1. for every infinite set Y C w thereis an s € Bs.t. s < Y.

2. if s,t € Bands#1tthens¢t.

Theorem 2.1 2 If B is a barrier and B = Ui<nB; for some n < w, then some B; contains a
barrier {(on Upep;b).

Definition 2.3 Let < be a transitive binary relation on a set Q. Then,

o If < is reflexive, R is called a quasi-order (QO).
o If < is antisymmetric, R is called a partial order (or, simply order).

o If each pair of different elements in @ is comparable by <, < is said to be total.

A strict part of < is < — > and denoted as <. We also say a strict (quasi) order < if it is a
strict part of a (quasi) order <. When < is a QO, we will sometimes use < (resp. <) instead of <
(resp. <), for clarity.

Definition 2.4 Let < bea QO on Q. If B is a barrier, f : B — Q is good if there are 3,1 € B
s.t. s<tand f(s) < f(t), and f is bad otherwise. f is perfect if for all s,t € B, if s a.¢ then
J(s) £ (). Q is better-quasi-ordered (bqo) if for every barrier B and every f : B — @, f is good.

Remark 2.1  If we restrict the BQO definition s.t. B runs only barriers of singleton sets (ie.,
B ={1,2,---}), then we get the familiar well-quasi-order (WQO) definition.

A (possibly infinite) tree is a set of T on which a strict partial order <7 is defined s.t. for every
teT,{s €T |s<ypt}is well ordered under <7. Thus T = U,T, where a runs on ordinals and
T, the a-th level of T', is the set of all ¢ € T s.t. {s | s <7 ¢} has type @. The height of T is the
least o with T, = ¢. A pathin T is a linearly ordered downward closed subset of 7. If z € T (resp.
a path P in T'), let S(z) (resp. S(P)) be the set of immediate successors of = (resp. P). A path is
mazimal in T if S(P) = ¢. Let brp(x) (or simply br(z) if unambiguous) be {y € T | = <t y}, the
- branch above z. An w-tree is a (possibly infinitely branching) tree of the height at most w.

Definition 2.5 Let 7 be a set of trees which satisfies
1. Foreach T € 7, T has a root (minimum element),

2. Yoreach T € 7, if P is a path in T with no largest element then Card(S(P)) < 1. A Q-tree
Tg is a pair (T,]) where T€ T and ! : T — Q.

T eT,s,t €T, there is a greatest lower bound of s and ¢ in T, denoted by s A t.

Definition 2.6  Let @ be a QO set and (T1,4),(Ty, k) € Tg. (T1,h) is embeddable to (Ty,15)
(and denoted (Ty,l) < (17,13), or simply Ty < T) if there exists ¢ : Ty — T s.t.

1. For s,t € Th, (s At) = (s} A (1),
2. Fort € Ty, ll(t) < lg(’(b(i))

%Corollary 1.5 in [Lav78]. The proof is due to Galvin-Prikry. See Theorem 9.9 in [Sim85a).




101

Theorem 2.2 [Lav78, NW65] If Q is BQO, Mg is BQO wrt the embedability <.

Remark 2.2 WQO is not enough for Kruskal-type theorem for infinite objects. For instance,
consider @ = {(4,) | i < j < w} ordered by (3,5) < (k,!) if and only if either i = k wedge j < k
or j < k. Then Q is WQO, but a set @“ of infinite sequence on @ is not WQO, namely,

h = ({0, 1),(1,2),(1,3),(1,4), o),
J2 i (_(03 1),(1, 2)7 (27 3)7 (214)$ “h
f:i ; ((07 1)7)(1‘?7‘+1)7(1‘?2+2)7("’31’+3)))’

The main techniques to prove Kruskal-type theorems are (1) Ramsey-like theorem and (2) the
existence of the minimal bad sequence (MBS). For (1), theorem 2.1 works. For (2), we first prepare
some definitions (See [Lav78]).

Definition 2.7 Suppose Q is quasi-ordered by <. A partial ranking on Q is a well-founded
(irreflexive) partial order <’ on @ s.t. ¢ <’ r implies ¢ < r. Let B,C be barriers. Then B E C if

1. UC CUB, and
2. for each ¢ € C thereis a b e B with b < c.

BrCCifBC C and thereareb€ B,ce Cwithb<ec. For f: B—Q,9g: C - Qanda
partial ranking <’ on @, fC g (fCg)wrt < BC C (BC C) and

1. g(a) = f(a)fora € BN C,
2. g(e) <’ f(b)yforbe B,ce Cst. b<c.

Definition 2.8  Suppose <’ is a partial ranking on . For a barrier C, g : C — Q is minimal
bad if g is bad and there is no bad h with g C A.

Theorem 2.3 3 Let Q be quasi-ordered by <, <’ a partial ranking on Q. Then for any bad f
on ) there is minimal bad ¢g s.t. fC g.

Thus, the proof of Kruskal-type theorem on infinite objects is reduced to find some appropriate
partial ranking <’.

3 Kruskal-type theorems with gap-condition on infinite trees

Kruskal’s theorem with gap-condition for finite trees have been proposed for finite ordinals[Sim85b]*.
The aim of this section is to prove main theorem 1, which extends Kruskal’s theorem with gap-
condition to w-trees. Main theorem 1 is obtained as a corollary to the the stronger statement
theorem 3.2). The scenario of its proof is similar to those that in [Lav78] and its extension is
inspired by [Sim85b].

Definition 3.1  For n < w, let M,, be a set of w-trees with labels in n (= {0,1,---,n—1}), and
(T1,h),(T2,12) € My. (Th,h) <g (T2, o) if there exists ¢ : T3 — T3 s.t.

*Theorem 1.9 in [Lav78], or equivalently theorem 9.17 in [Sim85a}.
4There are two variants of its extensions for infinite ordinals[K89, Gor90].
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1. Th £ Ty,

2. For each t € T, Li(t) = L(9(1)),

3. Fort € Ty, if thereis #' € Ty s.t. t € S(t') then ly(s) > [1(t) for each ss.t. ¥(t') <7, s <7, ¥(2),
| 4. For the root t of Ty, l3(s) > li(¢) for each s s.t. s <7, ¥(¥).

Theorem 3.1 [Sim85b] For n < w, let T(n) be the set of all finite trees with labels less-than-
equal n. Then <¢g is a WQO on the set T(n).

The next theorem is the extension of Kruskal-Friedman theorem to w trees.

Main theorem 1 For n < w, let M,, be a set of w-trees with labels in n(= {0,1,---,n — 1}).
Then M,, is BQO wrt <g.

To show the theorem, we will prove the slightly stronger statement.
Definition 3.2 Forn<w,let Q@ bea QO and q: @ — n(= {0,1,---,n — 1}). M,(Q) is a set

of w-trees satisfying: for (T,1) € M,(Q), I(t) € nif t € T is not maximal wrt <7 and I(f) e nUQ
if t € T is maximal wrt <.

For (T1,4), (T2, l2) € M,(Q), (T1,11) <g (T2,12) if there exists ¢ : Ty — T3 s.t.
1. Tl S T21
2. For each interior vertex t € T1, (%) is an interior vertex of Tz and l1(¢) = l(9(1)),

3. For each end vertex t € Ty, ¥(t) is an end vertex of T, and either [1(t) = (¥(t)) € n or
h(t) < L(¥(1)) € Q.

4. For each interior vertex t € Th,t' € S(t) and s € Ty with ¢(t) <1, s <7, ¥(t'), l2(s) > l1i(¢(t'))
when [1(¢(#")) € n and I3(s) > ¢q(l1(9(2")) when L{¢(t") € Q.

5. For the root ¢ of T} and s € T, with s <7, ¥(t), I(s) > L1(¥(t)) when [1{¢(t)) € n and
la(s) 2 q(h(¥(1))) when Li(4(t)) € Q.

We will denote (Th,h) = (T, ) if (Th, ) <g (T, lz) and (Th, 1) 24 (T2, 1)

Theorem 3.2 Letn<w,QbeaBQOandg: Q@ —»n(={0,1,---,n—1}). Let M,(Q) be the
set of all w-trees with labels in » for non-maximal vertices and with labels in n U @ for maximal
vertices. Then M, (Q) is BQO wrt <g.

Definition 3.3 Letn <w. Let @ bea QO and ¢ : Q — n. W,(Q),5.(Q), Fr(Q)C M,(Q))
are defined to be:

1. Wr(Q) is a set of w-words in M,(Q).

2. 8,(Q) is a set of scattered w-trees in M,(Q). (i.e., for each (5,l) € $,(Q), n £ S where 7 is
a complete binary w-tree (2)*.)

3. Fn(Q) is a set of descensionally finite trees. (i.e., For (T,l) € Fr(Q), there is no infinite
sequence zg <t z1 <7 - -+ with (br(ze),l) >5 (br(z1),1) >5---.)
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The scenario of the proof of theorem 3.2 consists of four steps: First, W,(Q), which is a set of
w-words, is shown to be a BQO wrt <g (theorem 3.3). Second, 8,(Q), which is a set of scaitered
w-trees, is shown to be a BQO wrt <5 (theorem 3.4). During this step, the principle tool is a
recursive definition of S,(Q) which (a) starts with one-point or empty trees and (b) constructs the
next stage using an element in W,(Q) as a spine.

(T,1) € M,(Q) is a countable union of scattered w-trees, i.e., T = U;5; with (8:,0) € 8.(Q).
Using this decomposition, thirdly F»(Q), which is a set of descensionally finite w-trees, is shown
to be a BQO wrt <g (theorem 3.5). Again using this decomposition, lastly M,(Q) = Fr(Q) is
shown (theorem 3.6).

Theorem 3.3 Let n < w. For a barrier D, g : D — W,(Q) is bad wrt <g, then there is a
barrier £ and g C js.t. j: E — Q is bad.

Proof Assume g is minimal bad wrt a partial ranking <’ on Wy(Q) where J <’ K if and only
if J <¢ K and dom(J) < dom(K). From theorem 2.1, we can assume Yd € D s.t. either (1)
dom(g(d)) = 1, (2) dom(g(d)) < w, or (3) dom(g(d)) = w.

For (1), there exists a barrier E(C D) s.t. g(e) € Q for e € E. By taking j = g|g, theorem is
proved. '

For (2), we will prove by induction on n. Again by theorem 2.1, we can assume Vd € D s.t.
either (2-a) g(d) does not contain 0, (2-b) the first element of g(d) is 0, or (2-c) g(d) contains 0
and the first element of g(d) is not 0. For (2-a), by subtracting 1 from each label of g(d), it is
reduced to the induction hypothesis. For (2-b), let ¢'(d) be obtained from g(d) by taking the first
element. Then, ¢'(d) is bad and this contradicts to the minimal bad assumption of g. For (2-¢), let
g(d) = (91(d), g2(d)). Since g1(d) and go(d) are good from the minimal bad assumption of g, there
is a barrier E s.t. g1(d) and g2(d) are perfect. This implies that g(d) is good.

For (3), if g(di) £ g(d2) with dy < dy, there exists an initial segment J s.t. J £g g(d2).
Let h : D(2) — (n)<* by h(d; Udy) = J. Then g C h and this contradicts to the minimal bad
assumption on g. 1

Definition 3.4 Let7 € 7, PapathinT, z € P. Then let P(z) = {br(y) | y € 5(z) and y & P}.

Lemma 3.1 (lemma 2.1 in [Lav78]) Let n < w and @ be a QO. Let @ be an ordinal and A be a
limit ordinal. Let

SY%Q) = {the empty tree} Unu @ :
s Q) = {T there is a maximal path P € Wn(Q)in T
@ =17 P(z)C8*Q)forall ze P '

S/\(Q) = Ua<,\S°‘.

by regarding n, Q as one point trees. Then 5,(Q) = UaS*(Q). We say rank(T) for T € 5,(Q) be
the least a s.t. T € 8%(Q).

Theorem 3.4 Let n < w. For a barrier C, g : C — 8,(Q) is bad wrt <4, then there is a
barrier £ and ¢ € js.t. j: E — @ is bad. ‘
Proof Let a partial ranking <’ on S,(Q) be (T1,h) <’ (Ta,l2) if (Th,hh) <g (T2,l2) and
rank(T;) < rank(Ty). Assume g is minimal bad wrt a partial ranking <’ on 8,(Q). From theorem
2.1, we can assume Vd € C s.t. either (1) card(g(d)) = 1 or (2) card(g(d)) > 1. For (1), there
exists a barrier E(C C) s.t. g(e) € Q for e € E. By taking j = g|g, theorem is proved.

For (2),let c€ C. Let P: be a maximal path in T, where g(c) = (T¢, ;) € Sa(Q) s.t. for each
z € P, and each T € Po(x) rank(T") < rank(T.). Let Jo: P — Wyp1(Q) X P(S:(Q)) be defined
by

J. = (Ic(m)apc(m))
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where I.(z) is the sequence which is obtained by adding n + 1 as the maximal element (wrt <r,)
to the path from the root of T, to z.. By regarding J; as a sequence, J, < J; (embedability
without gap-condition) implies (T¢,l;) < (Ty4,l4) for ¢,d € C. From theorem 1.10 in [Lav78], if
g is bad, there is a barrier D and §: D — W,41(Q) X P(S5,(Q)) s.t. g C g and g is bad (by
identifying an element as a sequence of the length 1). From theorem 3.3 and theorem 1.11 in [Lav78]
(with <; on P(5,(Q)), which is an one-to-one embedability on sets), there exists a barrier £ and
Ji E — Wnp(Q) X Sx(Q) s.t. D C E and j is bad. For j(e) = (I.(z),T’) where z € P. C T,
and each T/ € P,(z) for ¢ C e, let j(e) be a tree obtained by replacing the last element of I.(x)
(whose label is n + 1) with 7. ¢ C j' and rank(j'(e)) < rank(T.) (since rank(T’) < rank(T;) and
adding a sequence to the root of 7’ does not change its rank). This contradicts to the minimal bad
assumption of g. ' 1

Adding (possibly infinite numbers of) finite trees to (5,1) € S,(Q) does not exceed the class of
S.(Q). Thus without loss of generality, for each (T,1) € M, (Q) we can assume the decomposition
T = U;T; with (T;,1) € §.(Q) satisfies that if « is maximal wrt <7, then either br(z) does not
contain 0 or I(z) = 0.

Definition 3.5 Let (T,]) € Fn(Q)(C M,(Q)) and T = U;T; with (T;,1) € $.(Q) s.t. if z € T}
is maximal wrt <7, then either br(z) does not contain 0 or I(z) = 0. If T does not contain a vertex
labeled 0, subt(T,!) € Fr—1(Q) is (T,1') where lI'(z) = l{(z) — 1 for each z € T. With a fresh symbol
Q, let @ = Q U {Q} with ¢(Q) = 0 °. We denote F(Q)<T) = {(U,m) € Fn(Q) | (U,m) <5
(1,0}

Define A¢z(3) = (Ti,]) € Sp1(@F U Fra(Q) U Fo(Q)<(TH) where

1. If z € T; is not maximal wit <7;, then {(z) = {(x).

2. If z € T; is maximal wrt <7, and (br(z),!) does not contain 0, then add a new vertex z*
below z and set [(z) = n + 1, [(zF) = subt(br(z),]).

3. ¥ z € T; is maximal wrt <7;, {(z) = 0 and (br(z),]) <z (T,!), then I(z) = (br(z),]).

4. If z € T; is maximal wrt <7, l(z) = 0 and (br(z),!) = (T, 1), then I(z) = Q.

Define A((T, 1)) = {Az,(2) | i < w} € P(Sn41(QTUF1(Q)UFR(Q)<TN)). For (T,1),(U,m) €
Fu(@Q), define A((T,1)) < A((U,m)) if for each A p(i) € A((T,l)) there exists Awm)(j) €
A((U, m)) s.t. A(T,l)("’) SG A(U,m)(j)'

Lemma 3.2 For (T,1),(U,m) € F.(Q), A(T,1)) < A((U,m)) implies (T,1) <g (U, m).

Proof We will construct an embedding H : (T,!) — (U, m) (with gap-condition) in w steps.
The induction hypothesis is:

If z € T; is maximal wrt <7, there is a 1-1 function J; s.t.
1. if (br(y),!) does not contain 0 then (br(y),!) <& (br(Ji(y)), m),
2. ifl(y) = O and (br(y), ) <g (T, 1) then m(Ji(y)) = 0 and (br(y),]) <& (br(Ji(y)), m),

3. if l{y) = 0 and (br(y),!) = (T,!) then m(J;(y)) = 0 and (br(Ji(y)), m) = (U, m).

Since A((T,1)) < A((U,m)), there exists Awm)(j) € A((U,m)) st. Azy(0) = (To,) <g
Aw,m)(5) = (U, ). Then set Hy by the embedding Ty — U;.

Suppose that H; has been defined, y € T; is maximal. If either (1) (br(y),!) does not contain 0
or (2) l(y) = 0 and (br(y),!) <g (T,1) then (br(y),l) <& (br(Ji(y)),m). Thus extend H; with an
embedding of br(y) into br(Ji(y)).

5 Q is a BQO, Q7 is also a BQO.
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Suppose that (3) {(y) = 0 and (br(y),!) = G(T,1) then there exists an embedding L : (U,m) —
(br(Ji(y)), m). Since A((T,1)) < A((U,m)), there exists Ay,m)(J) € A((U,m)) s.t. Agp(i+1)=
(Ti1,1) <5 Awm)(d) = (U;,m). Let K : (Tiy1,l) = (Uj,m) C (U, m) be an induced embedding.
Thus extend H; on br(y)NT;4; with LK. Since L isomorphically embeds (U, m) into (br(J;(y)), m),
the induction hypothesis is satisfied to the next stage. 1

Theorem 3.5 Let n < w. For a barrier B, f: B — F,(Q) is bad wrt <, then there is a
barrier £ and fC js.t. j: E — @ is bad. Thus if @ is a BQO then F,(Q) is a BQO (wrt <z).
Proof We will prove by induction on n. For n = 0, <5 and < (without gap-condition) are
equivalent (see lemma 2 in theorem 2.4 of [Lav78]). Assume the theorem has been proved until
n—1.

Define a partial ranking <’ by: (U,m) <’ (T,!) if and only if for some z € T (U,;m) =
(br(z),l) <5 (T,1). By theorem 2.3, we can assume f : B — F,(Q) is minimal bad. Let
f(b) = (Ts, 1) for b € B and let f(b) = A((T5,%)). From lemma 3.2, f is bad. From lemma 1.3
in [Lav78], there is a barrier C' C B(2) and an g defined on C s.t. for ¢ € C (¢ = b; U by where
by by and by, by € B) g(c) € §(b) and g is bad. Since g(c) € Sp41(QT U Frm1(Q) U Frn(Q)<(To-le))
and g is bad, from theorem 3.4 there is a barrier D with C C D and h defined on D s.t. h(d) €
Qt U Fr1(Q) U Fn(Q)<Toke) for (b <)d € D and h is bad. Since Q““ and F,—1(Q) are BQO, from
theorem 2.1 there is a barrier £ C D and j defined on E s.t. j(e) <’ (Ty,5) for (b<)e € E and j
is bad. Thus g  j and this is contradiction. ; 1

Theorem 3.6 M,(Q)= fn,(Q).

We will prove theorem 3.6 by induction on n. For n =0, < and <5 are equivalent and this is
shown by lemma 4 in theorem 2.4 in [Lav78]. Note that if (7,]) € M,(Q) does not contain 0, by
induction hypothesis subt(T,]) € M,-1(Q) = Frn=1(Q), and (T,1) € F.(Q).

Definition 3.6  Let (7,1) € M,(Q) and T = U;T; with (T},1) € S.(Q) s.t. if z € T; is maximal
wrt <7, then either br(x) does not contain 0 or I(z) = 0. Let Q7 = Q U {Q} with ¢(2) = 0.
Define By (i) = (Ti,1) € Sa12(@* U Fa(Q)) where

1. If ¢ € T; is not maximal wrt <7, then l(z) = l(z).

2. lf z € T; is maximal wrt <7, and (br(z),!) does not contain 0, then add a new vertex z*
below z and set I(z) = n+ 1, I[(z%) = (br(z),]).

3. Ifz € T; is maximal wrt <7, {(z) = 0 and br(z) € Fu(Q), then l{z) = (br(z),).
4. If z € T; is maximal wrt <7, I{z) = 0 and (br(z),1) € M(Q) — Fn(Q), then [(z) = Q.

Define B((T,0)) = {B(T;)(i) |1 < w} € P(Sn1(QF U Fn(Q))) For (T,1),(U,m) € Mn(Q) —
Fu(Q), define B((T,1)) < B((U,m)) if for each B(Tl)(z) € B((T,1)) there exists Bym)(j) €

B((U,m)) s.t. Brry)(3) <a Bwm)(J)-

Lemma 3.3 Let (7,0),(U,m) € Mn(Q) — Fn(Q) s.t. [l root(T)) = m(root(U)) = 0. If
B((T,l)) < B((br(u),m)) for each v € U s.t. m(u) = 0 and (br(u,m)) € Fr(Q), then (T,l) <&
(U, m).

Proof We will construct an embedding I : (7,1) — (U, m) (keeping gap-condition) in w steps.
The induction hypothesis is: .
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If z € T; is maximal wrt <7, there is a 1-1 function J; s.t.
1. if (br(y),!) does not contain 0 then (br(Ji(y)), m) does not contain 0.
2. if [(y) = 0 and (br(y),!) € Fn(Q) then m(J;(y)) = 0 and (br(Ji(y)),m) € Fn(Q),

3. if y) = 0 and (br(y),!) ¢ Fa(Q) then m(Ji(y)) = 0 and (br(Ji(y)),m) & Fn(Q).

Since B((T,1)) < B((U,m)), there exists By m)(j) € B((U,m)) s.t. B(z;(0) = (To,f) <a
Bwm(j) = (U;, ™). Then set Iy by the embedding Ty — U;.

Suppose that I; has been defined, y € T; is maximal. If elther (1) br(y) does not contain 0 or (2)
I(y) = 0 and (br(y),!) € Fn(Q) then (br(y),!) <& (br(Ji(y)),!). Thus extend I; with an embedding
of br(y) into br(Ji(y)).

Suppose that (3) {(y) = 0 and (br(y),!) & Fn(Q), then from induction hypothesis m(J;(y)) =0
and (br(Ji(y)),m) € Fr(Q). Thus from the assumption, B((T,1)) < B((br(Ji(y)),m)) and there
exists j s.t. Birp(i+ 1) <& B@r(4i(y))m)(J) via an embedding K. Then I; can be extended on
br(y) N Ti41 with K, and the induction hypothesis is preserved. i

Proof of induction step for theorem 3.6 Let (T,l) € M, (Q)-Fr(Q)and S={z €T |l(z) =
0 and (br(z),l) € Mp(Q) — Fn(Q)}. For each s,t € S s.t. s <7, B((br(s) 1) > B((br(t),1)) by
an identity embedding.

If (br(z),!) does not contain 0 then (br(z),l) € Fr(Q). Thus S (wrt <r) is an infinite tree of
the height w.

Since B((T,1)) € P(Sn4+1(QFTUFn(Q))), {B((U,m)) | (U,m) € Mn(Q)—Fn(Q)}is a BQO, thus
well-founded. Then there exists s € S s.t. for each t € S with s <7 ¢ B((br(s),1)) ¥ B((br(t),1))
(thus B((br(s),1)) = B((br(t),1))). From lemma 3.3, (br(s),l) <z (br(t),{). But since (br(s),l) €
M, (Q) — Fn(Q), from definition there must be an infinite sequence s = sp <7 $1 <7 - 8.5
(br(si),1) > (br(siy1,!) for each i. This is contradiction. ]

Remark 3.1  The natural conjecture would be the extension of Kruskal-Friedman theorem for
arbitrary large infinite trees. However, this has a counter example. Suppose wg (= w) be the least
countable ordinal, w; be the least ordinal with cardinality 2“0, etc. Then, an infinite sequence -
ag,a1,ay, - where a; = 0% - 1 is bad wrt <g. The extension of Kruskal-Friedman theorem for
countable trees remains open.

4 Simple gap termination for term graph rewriting systems
Definition 4.1 [JKdV94] A term graph s is a finite directed graph satisfying:

1. s has one root.

2. each non-terminal vertex of s has a label of a function symbol which has a fixed arity.

3. each terminal vertex of s has a label of either a constant symbol (i.e., function symbol with
arity 0) or a variable symbol.

An w-term obtained by unfolding s is denoted unravel(s).
A term graph rewrite rule r is a graph with two (not necessary distinct) roots, called the left
and right roots, satisfying

1. each terminal vertex with a label of variable is accessible from the left root.

2. the subgraphs consisting of those vertices accessible from the left and the right roots, which
are denoted as left(r) and right(r), are term graphs.
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3. left(r) is a finite tree.

A reder g of a term graph rewrite rule is a graph homomorphism from left(r). A term graph
rewriting system (TGRS, for short) R is a finite set of term graph rewrite rules.

Roughly speaking, reduction relation — is defined similar to those which of a term rewriting
system, except that a TGRS regards a variable as an address.® We say an acyclic TGRS for a
TGRS on acyclic term graphs, and a cyclic TGRS for a TGRS on possibly cyclic term graphs.

A tewrite system — is lerminating if there is no infinite sequence s.t. s; — s3 — ---. Since a
redex of a term graph rewrite rule r is defined as a graph homomorphism of le ft(r), a reduction in-
cludes an unfolding mechanism. This mimics the termination of a cyclic TGRS. For instance, a term
graph rewrite rule r = (LeftRoot : a{ RightRoot)) corresponding to e{z) — z is nonterminating
for z = a¥ (i.e., precisely a cyclic term graph z : a(x)). Actually, :

Definition 4.2 Let —g be a reduction system on possibly cyclic term graphs defined by a TGRS
R. A reduction system — ,,rqpeir) ON w-terms is defined to be unravel(s) —ynravei(r) unravel(t)
iff s —pt.

From the definition of the redex of — g, the next lemma holds. This implies the termination of
—+p is equivalent to the termination of —,,40e1(R)-

Lemma 4.1 A term graph s is a normal form wrt — g iff an w-term unravel(s) is a normal form

wrt ﬁunravel(R) .

Simple termination [Der82] is the frequently used criteria for a term rewriting system. How-
" ever, the naive extension of simple termination based on Kruskal-type theorem on infinite trees
[NW65, Lav78] does not work well for a cyclic TGRS. Let R = {a{a(b(z))) — a(b(z))}. Then

R is terminating. R rewrites a term graph y : a(a(b(y))) to y : a(b(y)), but both unravel(y :

a(a(b(y))) > unravel(y : a(b(y))) and unravel(y : a{a(b(y))) < unravel(y : a(bla(b(y))))) =
unravel(y : (a(b(y)))), because only fairness of occurrences of a,b on each path relates to <.

Our termination criteria, named simple gap termination, excludes unravel(y : a(a(b(y))) <
unravel(y : a(b(a(b(y))))) as unravel(y : a(a(b(y))) £c unravel(y : a(b(y))) with the gap condition
for a > b. ‘

Main theorem 2 Let R = {l — r} be a TGRS. Assume that a set of function symbols is totally
ordered. If there is a QO < on w terms s.1.

1. For term graphs s,t, unravel(s) > unravel(t) implies Clunravel(s)] > Clunravel(t)] for
each context C[ .

2. Clunravel(s)] > unravel(s) where each function symbol f on a path from the root of C[O] to
O satisfies f > root(s).

3. For each ground term graphs s,t, s l—)‘> t (i.e., reduction at the root by the rule Ir — r) implies
—7

unravel(s) > unravel(t).
4. > is infinitely transitive (i.e., if ag < a1 < --- < a4, then ag < ay,).
Then R is terminating.

Proof From (1),(2),(4), <2<¢ on w terms. Suppose there exists an infinite reduction sequence
81 — 83 — ---. Without loss of generality, we can assume that each s; is a ground term graph. Thus

8For precise definition, please refer [JKdV94].
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from (1),(3), unravel(s,) > unravel(sy) > - --. However, from main theorem 1, there exists 1, j s.t.
i < j and unravel(s;) <g unravel(s;). Thus unravel(s;) < unravel(s;). This is contradiction. g

Example 4.1 Let R = {a(a(b(x))) — a(b(z))}. Then Ris terminating, suchas y : a(a(b(y))) —r
y : a(b(y)) satisfying y : a(a(b(y))) >¢ y : a(b(y)) with a > b.

Example 4.2 Let R = {a(b(a(b(x)))) — a(b(b(z)))}. Then R is terminating as a cyclic TGRS.
(Furthermore R is simply terminating as an acyclic TGRS or TRS.) But, simple gap termination
cannot show its termination. For instance, y : a(b(y)) —r y : a(b(b(y))) satisfies y : a(b(y)) <g ¥ :
a(b(b(y))) with either @ > bor a < b. (y:a(b(y)) >¢ y : a(b(b(y))) is satisfied only with @ > b.)

Example 4.3 Let R = {a(b(a(b(x)))) — a(a(b(z)))}. Then there is an instance y : a(b(y)) —r
y : a{a(b(y))) satisfies y : a(b(y)) <¢ y : a{a{b(y))) with either @ > bor a < b. Thus the termination
of R cannot be shown by simple gap termination. Actually, R is not terminating such as

a(b(y : a(b(y)))) —r aa(b(y : a(b(y))))) —r a(ala(b(y : a(K(y)))))) —r -~
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