
Sequentiality, Second Order Monadic Logic and Tree Automata

Hubert Comon
CNRS and LRI, Bat. 490, Universit\’e de Paris Sud, 91405 ORSAY cedex, France.

E-mail comon@lri.lri.fr

Abstract

Given a term rewriting system R and a normalizable term t , a redex is needed if in
any reduction sequence of t to a normal form, this redex will be contracted. Roughly, R

is sequential if there is an optimal reduction strategy in which only needed redexes are
contracted. More generally, G. Huet and J.-J. L\’evy define in [8] the sequentiality of a
predicate P on partially evaluated terms. We show here that the sequentiality of P is
definable in $\mathrm{S}\mathrm{k}\mathrm{S}$, the second-order monadic logic with k successors, provided P is definable
in $\mathrm{S}\mathrm{k}\mathrm{S}$. We derive several known an new consequences of this remark: 1-strong sequentiality,
as defined in [8], of a left linear (possibly overlapping) rewrite system is decidable, 2-NV-
sequentiality, as defined in [15] is decidable, even in the case of overlapping rewrite systems
3-sequentiality of any linear shallow rewrite system is decidable.

Then we describe a direct construction of a tree automaton recognizing the set of terms
that do have needed redexes, which, again, yields immediate consequences: 1-Strong se-
quentiality of possibly overlapping linear rewrite systems is decidable in EXPTIME, 2-For
strongly sequential rewrite systems, needed redexes can be read directly on the automaton.

1 Introduction

Besides confluence, there are two important issues concerning non-terminating computations in
term rewriting theory. One is to find a normalizing reduction strategy, which has been inves-
tigated in, e.g., [14, 10, 1]. The other is to find an optimal reduction strategy, for which only
needed redexes are contracted. This question was first investigated by Huet and L\’evy in 1978
[8]. They call sequential a rewrite system for which there exists such an optimal strategy. We
focus here on the latter issue.

A typical example is the “parallel or”, whose definition contains the two rules $\mathrm{T}xarrow \mathrm{T}$

and $x\mathrm{T}arrow$ T. Given an expression $e_{1}e_{2}$, which of e_{1} and e_{2} should be evaluated first? If
e_{1} is tried first, its evaluation may be unnecessary because e_{2} evaluates to T , and the whole
expression can be reduced to T. Hence, this strategy is not optimal. Evaluating e_{2} first is not
optimal either: there is no optimal (sequential) reduction strategy for the “parallel or”.

Given a term rewriting system R , can we decide whether R is sequential ? In case it is, is it
possible to compute (and compile) an optimal strategy? These questions have been addressed in
several papers, starting with [8]. Unfortunately, the sequentiality of R is in general undecidable.
In their landmark paper, Huet and L\’evy introduce a sufficient criterion: strong sequentiality,
and show that this property is decidable for orthogonal term rewriting systems, in which left
hand sides do not overlap nor contain repeated occurrences of a same variable. The original
proof is quite intricate. J.-W. Klop and A. Middeldorp [13] give a simpler proof to the price of

数理解析研究所講究録
918巻 1995年 118-138 118

an increased complexity. The case of linear, possibly overlapping rewrite systems was considered
first by Toyama [22] and later shown decidable by Jouannaud and Sadfi [9]. M. Oyamaguchi
defines NV-sequentiality a property intermediate between sequentiality and strong sequentiality,
which is also decidable for orthogonal rewrite systems [15].

In this paper we use another quite simple approach, though less elementary: we show that
the sequentiality of P is definable in $\mathrm{S}\mathrm{k}\mathrm{S}$ (resp. $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$), the second-order monadic logic with
k successors, provided that P is definable in $\mathrm{S}\mathrm{k}\mathrm{S}$ (resp. $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$). It allows to easily derive all
aforementioned decidability results. Relying on automata theory, the decidability of strong se-
quentiality (resp. $\mathrm{N}\mathrm{V}$-sequentiality) of possibly overlapping left linear rewrite systems becomes
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{f}_{0}\mathrm{r}\mathrm{t}\nabla \mathrm{a}\mathrm{r}\mathrm{d}$. This sheds new light on which properties of rewrite systems are indeed neces-
sary in proving (NV-, strong-) sequentiality. Then, it becomes possible to derive new decidability
results, for example $\mathrm{N}\mathrm{V}$ -sequentiality for overlapping left linear rewrite systems or sequentiality
of shallow linear rewrite systems. We may also add a sort discipline to the rewrite systems
without loosing decidability.

This method has however several drawbacks: first, the complexity of $\mathrm{S}\mathrm{k}\mathrm{S}$ is non-ELEMENTARY,
which is far too complex in general for “effective” methods. Second, for non-left linear rewrite
system, the reducibility predicate is not expressible in $\mathrm{S}\mathrm{k}\mathrm{S}$. Hence we cannot derive that strong
sequentiality of R is expressible in $\mathrm{S}\mathrm{k}\mathrm{S}$ in such a case. Last, but not least, even if we know that
the formula expressing the sequentiality of R is valid, how do we effectively find needed redexes
in a term?

In order to answer these questions, we construct directly a tree automaton which accepts all
terms that have a needed redex. By the well-known correspondence between $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$ and finite
tree automata (see e.g. the survey [21]), we know in advance that such an automaton exists.
$\mathrm{H}\overline{\mathrm{e}}\mathrm{r}\mathrm{e}$, we show tha.t it can be constructed in exponential time (for k fixed). This has several con-
sequences. First, deciding strong sequentiality of any left linear rewrite system is in EXPTIME,
since it reduces to an emptiness problem for tree automata, which can be decided in polynomial
time. Then, the automaton which accepts all terms that have a needed redex yields directly the
algorithm for searching needed redexes in a term.

There are still many issues to be investigated with profit in this framework: is strong se-
quentiality decidable for any (possibly non-linear) rewrite systems? Though automata with
constraints $[2, 3]$ cannot be used directly, we might consider some tree automata inspired by
these definitions. What is the exact complexity of all decision questions in this area? NVe have
only shown and EXPTIME inclusion. However there is no evidence that this is the best we can
do. Also, what happens in the case of orthogonal $\mathrm{r}\mathrm{e}\dagger\nabla \mathrm{T}\mathrm{i}\mathrm{t}\mathrm{e}$ systems? The automata should have
a particular form, from which it might be possible to deduce more efficient procedures. Finally,
we do not show how to compile an optimal reduction strategy, avoiding any backtrack in the
input term, as done in [8]. Again, this should be possible from the tree automaton. Finally,
other (sequential) reduction strategies as in [1] should also be investigated within this framework.

The paper is organized as follows: section 2 gives the definitions of an index and sequentiality
and we recall the necessary background on $\mathrm{S}\mathrm{k}\mathrm{S}$ and tree automata. In section 3, we show how
to express the sequentiality of a predicate P in $\mathrm{S}\mathrm{k}\mathrm{S}$ and apply this result to rewrite systems in
section 4. In section 5 we construct directly the automaton accepting all terms that have an
index (using the characterization of [13]) and derive extensions as well as complexity results.
We also explain how an index search can be read on the automaton.

119

2 Basic Definitions

2.1 Terms
T is the set of terms built over a fixed alphabet \mathcal{F} of function symbols. Each $f\in F$ comes with
its arity $a(f))$ a nonnegative integer. Terms may also be viewed as labeled trees, i.e. mappings
from a finite prefix-closed subset of words of positive integers (the positions in the tree) into F ,
in such a way that the successors of a position p are exactly the strings $p\cdot i$ for $1\leq i\leq a(f)$

when p is labeled with f . We will use the notations of [6]: $t|_{p}$ is the subterm at position $p,$ $t[u]_{p}$

is the term obtained by replacing $t|_{p}$ with u . \mathcal{F} is assumed to be finite. 1

\mathcal{T}_{Ω} is the set of terms obtained by augmenting the set F of function symbols with a new
constant Ω (which stands intuitively for “unevaluated terms”). We assume that terms in T_{Ω}

always contain at least one occurrence of Ω . Such a set of terms is classically considered as the
set of terms which are partially evaluated, i.e. terms in T which are “cut” on some branches.

Definition 2.1 Let $t,$ $u\in \mathcal{T}_{\Omega},$ $t\subseteq u$ iff u can be obtained from t by replacing some occurrences
of Ω in t with terms in \mathcal{T}_{Ω} .

$s\subseteq t$ intuitively means that “
t is more evaluated than s ”.

2.2 Sequentiality

Definition 2.2 $(\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x},[8])$ Let P be a predicate on $\mathcal{T}_{\Omega}\cup T.$ Let $t\in \mathcal{T}_{\Omega}$ and $p\in Pos(t)$. p is
an index of P in t iff $t|_{p}=\Omega$ and

$\forall u\in \mathcal{T}_{\Omega}\cup T,$ $(t\subseteq u\wedge P(u)=true)\Rightarrow u|_{p}\neq\Omega$

The set of indexes of a term $t\in \mathcal{T}_{\Omega}$ (which were also called needed redexes in the introduction)
is written Index(t) . Intuitively, p is an index for P in t if, for all successful evaluations of t (the
predicate P becomes true), the term at position p has been evaluated.

Definition 2.3 (sequentiality,[8]) A predicate P on $\mathcal{T}_{\Omega}\cup T$ is sequential if
$\forall t\in \mathcal{T}_{\Omega}\cup T,$ $(\exists u\in \mathcal{T}_{\Omega}\cup T, P(u)=true$ A $t\subseteq u$)

$\Rightarrow(P(t)=true\vee\exists p\in Pos(t),p\in Index(t))$

Intuitively, P is sequential if, for every partially evaluated term t such that P is false and P

becomes true for some further evaluation of t , then there is an index of P in t .

1Note that if one wants to consider terms with possibly infinitely many “variables” ($\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{u}_{\mathrm{y}}$ constants, but
we use the standard terminology), it is always possible to represent the variables $x_{0},$ $x_{1},$ \ldots , $x_{n},$ \ldots using an
additional constant x and an additional unary function symbol s ; they will be respectively represented by
$x,$ $s(x),$ \ldots , $s(s(\ldots(s(x))\ldots)),$ \ldots . In such a case, T is a regular subset of the set of all terms, but this does
not cause any additional problem, as we will see later in the general case of typed terms. The status of variables
in T (or \mathcal{T}_{Ω}) is different from the status of the variables in the rewrite system: the former are actually considered
as constants along the evaluation process, while the latter may be instanciated since several distinct instances of
the rules can be used.

120

2.3 Term Rewriting
\mathcal{X} is an infinite set of constant function symbols called variables and the set of terms build on
$\mathcal{F}\cup \mathcal{X}$ is traditionally written $\mathcal{T}(\mathcal{F}, \mathcal{X})$. For any $s\in \mathcal{T}(\mathcal{F}, \mathcal{X}),$ $\mathrm{V}\mathrm{a}\mathrm{r}(S)$ is the set of variables
occurring in s . Substitutions are mappings from X into $T(\mathcal{F}, \mathcal{X})$, which are extended into

endomorphisms of $\mathcal{T}(F, \mathcal{X})$. We use the postfix notation for substitution applications.
A term rewriting system is a (finite) set of pairs of terms in $\mathcal{T}(\mathcal{F}, \mathcal{X})$, each pair (s, t) is

written $sarrow t$ (we do not require $\mathrm{V}\overline{\mathrm{a}}\mathrm{r}(t)\subseteq \mathrm{V}\overline{\mathrm{a}}\mathrm{r}(s)$). A term t rewrites to s through a rewrite
system R , which is written $tarrow s$ if there is a position p in t , a substitution σ and a rule

R

$larrow r\in R$ such that $t|_{p}=l\sigma$ and $s=t[r\sigma]_{p}$. Rewriting $\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}*$
zero or many single rewriting

steps, i.e. the reflexive transitive closure $\mathrm{o}\mathrm{f}arrow R^{-}$
is written

$arrow R$
.

2.4 Tree Automata

We recall here some basic definitions about tree automata (see e.g. [7]).

Definition 2.4 A finite (bottom-up) tree automaton consists of a ranked alphabet \mathcal{F} , a finite set

of states Q^{-}, a subset Q_{f} offinal states and a set of transition rules of the form $f(q_{1}, \ldots, q_{n})arrow q$

where $f\in F,$ $n=a(f)$ and $q_{1},$ $\ldots,$ $q_{n},$ $q\in Q$ or $qarrow q’$ where $q,$ $q’\in Q$ (the latter transition
rules are called ϵ-transitions). A tree automaton accepts t if t can be rewritten to a final state
using the transition rules (see $e.g$. $f7J$ for more details).

Definition 2.5 The language accepted by a tree automaton A is the set of terms t which are
accepted by A .

A set L of trees is recognizable when there is a tree automaton A such that L is the language

accepted by A .

Definition 2.6 A run of the automaton on a tree t is a mapping ρ from the positions of t into
Q such that $\rho(p)=q,$ $\rho(p\cdot 1)=q_{1},$ $\ldots\rho(p\cdot n)=q_{n}$ and $t(p)=f$ only if there is a transition rule
$f(q_{1}, \ldots, q_{n})arrow q$

’ and a sequence of ϵ-transitions from $q’$ to $q.$ A run ρ is successful if $\rho(\Lambda)$ is
a final state. t is accepted by A iff there is a successful run of A on t .

We will see in what follows several examples of recognizable sets of terms.

2.5 The logic $(\mathrm{W})\mathrm{S}\mathrm{k}\mathrm{s}$

Missing definitions can be found in [21]. Terms of $\mathrm{S}\mathrm{k}\mathrm{S}$ are formed out of individual variables
(x, y, z, \ldots) , the empty string A and right concatenation with 1, . . ., k . Atomic formulas are
equations between terms, inequations $w<w’$ between terms or expressions “$w\in X$ ” where $w\cdot$

.

is a term and X is a (second-order) variable. $\mathrm{F}_{\overline{\mathrm{O}}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{S}$ are built from atomic formulas using
the logical connectives $\wedge,$ $\vee,$ $\Rightarrow,$ $\urcorner,$ \ldots and the quantifiers \exists,\forall of both individual and second-
order variables. Individual variables are interpreted as elements of $\{1, \ldots, k\}^{*}$ and second-order
variables as subsets of $\{1, \ldots, k\}^{*}$. Equality is the string equality and inequality is the strict

prefix ordering. In the weak second-order monadic logic $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$, second-order variables only range
over finite sets. Finite union an finite intersection, as well as inclusion and equality of sets are
definable in $(\mathrm{W})\mathrm{S}\mathrm{k}\mathrm{s}$ in an obvious way. Hence we may use these additional connectives in the

following.
The most remarkable result is the decidability of $\mathrm{S}\mathrm{k}\mathrm{S}$ (a result due to M. 0 . Rabin, see e.g.

$[17, 21]$ for comprehensive surveys). The main idea of the proof is to associate each formula
ϕ whose free variables are $X_{1},$

$\ldots,$
X_{n} with a (Rabin) tree automaton which accepts the set

121

of n-uples of trees (or sets of strings) that satisfy the formula. Then decidability follows from
closure and decidability properties of the corresponding class of tree languages. We only use
here the weak case, in which only finite state tree automata are used. We $\mathrm{w}\mathrm{i}\mathrm{U}$ extensively use
the following without any further mention:

Theorem 2.7 (Thatcher and Wright, 1969) A set of finite trees is definable in $WSkS$ iff it
is recognized by a finite tree automaton.

Formally, this correspondence needs to define a term in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$. We recall below how it can
be done.

3 Relationship between Sequentiality and Recognizability

Let k be the maximal arity of a function symbol in F and n be the cardinal of F . A term t is
represented in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$ using $n+2$ set variables $X,$ X_{Ω} and $X_{f},$ $f\in F$ (which will be written \vec{X}

in the following). X will be the set of positions of t and X_{Ω} and each X_{j} will be the sets of
positions that are labeled with the corresponding function symbol. We express in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$ that
some $n+2$-uple of finite sets of words are indeed encoding a term, which can be achieved using
the formula

Term$(\vec{X})^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}$

$X=x_{\Omega} \cup\bigcup_{i=1}^{n}x_{f}i$

\wedge

$\bigwedge_{i\neq j}(X_{f_{i}}\mathrm{n}X_{f}j=\emptyset\wedge X_{\Omega}\mathrm{n}Xfi=\emptyset)$

\wedge $\forall x\in x,\forall y<x,$ $y\in X$

A $\bigwedge_{f\in F\cup \mathrm{t}\Omega\}}\forall x\in X_{f},\bigwedge_{\iota=1}^{a\mathrm{t}^{f})}x\cdot l\in X\bigwedge_{+l=a(f)1}X\cdot lk\not\in X$

In this setting, it is quite easy to express the sequentiality of P in $(\mathrm{W})\mathrm{S}\mathrm{k}\mathrm{s}$ as shown by the
following lemmas.

Lemma $3.8\subseteq is$ definable in $WSkS$.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

Assume that $t,$ u are represented by $\vec{x}_{\mathrm{a}\mathrm{n}}\mathrm{d}\vec{Y}$ respectively. Then $t\subseteq u$ iff

$X \subseteq Y\wedge\bigwedge_{j\epsilon ff\neq\Omega},X_{f}\subseteq Y_{f}$

\square

Lemma 3.9 Let P be a predicate on $\mathcal{T}_{\Omega}\cup T$ which is definable in $(W)Sks$. Then the set of terms
in \mathcal{T}_{Ω} which have an index $w.r.t$. P is definable in $(W)Sks$.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

Let $\phi(X)$ be the definition of P in $(\mathrm{W})\mathrm{S}\mathrm{k}\mathrm{s}$. Then the set of terms which have an index is defined
by translating definition 2.2:

Index $(\tilde{x})^{\mathrm{d}\mathrm{f}}=\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}(\vec{x})$ A $\exists x\in X$. $x\in X_{\Omega}\wedge\forall\vec{Y}$.
(Term$(\tilde{Y})\wedge\vec{X}\subseteq\vec{Y}\wedge\phi(\vec{Y})$) $\Rightarrow x\in Y_{\Omega}$ \square

122

Theorem 3.10 If P is definable in $(W)Sks$, then the sequentiality of P is decidable.

$\underline{\mathrm{P}_{\Gamma \mathrm{O}\mathrm{O}}\mathrm{f}}$

$\mathrm{U}\overline{\mathrm{s}}\mathrm{i}\mathrm{n}\mathrm{g}$ the previous lemma and assuming that F is defined by $\phi(\vec{X}),$ P is sequential iff the
following formula holds:

$\forall\vec{X},$ ($\mathrm{T}\mathrm{e}\Gamma \mathrm{m}(\vec{X})$ A $\exists\vec{Y},\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}(\vec{\mathrm{Y}})$ A $\phi(\vec{\mathrm{Y}})$ A $\vec{X}\subseteq\vec{Y}$)
$\Rightarrow(\phi(\vec{X})\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(\vec{x}))$

which is a translation of definition 2.3. Then we conclude using Rabin’s theorem $[16, 17]$. \square

4 Application to term rewriting systems

In this section, we show how to apply theorem 3.10 to various sequentiality results for term
rewriting. We assume here the reader familiar with term rewriting (see e.g. [6] for missing
definitions). We will say in particular that a term t is linear if each variable occurs at most once
in t (A term is shallow if it is a variable or if all its variables occur at depth 1. A rewrite system
fT is left linear (resp. linear, resp. shallow) if all its left hand sides are linear (resp. all left and
right hand sides are linear, resp. all left and right hand sides are shallow).

4.1 Strong sequentiality of left linear term rewriting systems

Let $N_{\mathcal{R}}$ be the predicate symbol on $\mathcal{T}_{\Omega}\cup T$ which holds true iff t has a normal form (w.r.t. \mathcal{R})
belonging to T .

Definition 4.11 ([8]) A term $rewr\dot{i}ting$ system \mathcal{R} is sequential if the predicate $N_{\mathcal{R}}$ is sequential.

This captures the intuitive notion sketched in introduction: when \mathcal{R} is sequential, then there
is an optimal reduction strategy. Since sequentiality of \mathcal{R} is undecidable in general, a sufficient
condition for sequentiality (called strong sequentiality) has been introduced in [8].

Let $\mathrm{R}\mathrm{e}\mathrm{d}_{\mathcal{R}}$ be the predicate symbol on $\mathcal{T}_{\Omega}\cup T$ which holds true iff t is reducible by \mathcal{R} .

Definition 4.12 ([8]) A term rewriting system \mathcal{R} is strongly sequential if the predicate Red_{7T}

is sequential.

remma 4.13 When \mathcal{R} is left linear, Red_{R} is recognized by a $fi\overline{n}ite$ bottom-up tree automaton.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

F\={o} r each non-variable strict subterm u of a left hand side of a rule, consider a state q_{u} . In addi-
tion, we have a state q_{r} (the final state, or the state in which we know that the term is reducible)
and the state q_{T} which accepts all terms. Then, to each $u=f(u_{1}, \ldots, u_{n})$, we associate the
production rule $f(q_{u_{1}}, \ldots, q_{u_{n}})arrow q_{u}$ where $q_{u_{i}}$ is understood as q_{T} when u_{i} is a variable. To
each left hand side of a rule $l=f(t_{1}, \ldots, t_{n})$, we associate the rule $f(q_{t_{1}}, \ldots, q_{t}n)arrow q_{r}$ and the
states q_{r} are propagated: we have the rules $f(q_{\mathrm{T}}, \ldots, q\mathrm{T}, q_{r}, q\mathrm{T}, \ldots, q_{\mathrm{T}})arrow q_{r}$ for all function
symbols f . Finally, if not already present, we add the rules $f(q_{\mathrm{T}}, \ldots, q_{\mathrm{T}})arrow q_{\mathrm{T}}$. ロ

This yields as an easy consequence the following (known from [9]) decidability result:

123

Corollary 4.14 The strong sequentiality of left linear (possibly overlapping) rewrite systems is
decidable.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

This is a consequence of lemma 4.13 and theorem 3.10 since recognizable sets of terms are de-
finable in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}[20]$. \square

Note that this doesn’t work for non-left linear rewrite systems because then $\mathrm{R}\mathrm{e}\mathrm{d}_{\mathcal{R}}$ is not
definable by a finite bottom-up tree automaton: we need disequality tests. Actually, adding the
corresponding tests to the logic $(\mathrm{W})\mathrm{S}\mathrm{k}\mathrm{s}$ yields an undecidable logic.

Another consequence of lemma 4.13 is the recognizability of the set of irreducible terms in
$T(\mathcal{F})$: this is a consequence of the closure property of recognizable tree languages by complement.
Let us show however an explicit construction of such an automaton, since we will $\mathrm{r}\mathrm{e}$ -use it for
further analysis in the following.

Given two terms $s,$ $t\in T(\mathcal{F}, \mathcal{X})$, we write $s\downarrow t$ for a most general unifier (when it exists) of
s and a renaming $t’$ of t such that $t’$ and s do not share variables. Given a left linear rewrite
system \mathcal{R} , let $S(\mathcal{R})$ be the set of strict subterms of the left hand sides of \mathcal{R} , up to similarity,
which we close $\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\downarrow$. (This may yield an exponential number $\mathrm{o}\mathrm{f}+\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}$ in $S(\mathcal{R}):$: one for
each set of subterms of the lhs of \mathcal{R}). With each term t in $S(\mathcal{R})$, which is not an instance of a
lhs of \mathcal{R} , we associate a state q_{t} . (we write q_{x} the state associated with all variables. We assume
that q_{x} is in the set of states). Let $Q=\{q_{t}|i\in S(\mathcal{R})\}\cup\{q_{r}\}$ and Q_{f} be all states but q_{r} .
Intuitively, all reducible terms will be accepted in q_{r} . The terms accepted in a state q_{i} will be
all instances of t that are not instances of any $q_{t\sigma}$. More precisely, we consider the following set
of production rules:

$f(q_{t_{1}}, \ldots, q_{t}n)$ $arrow$ q_{t}

If $f(t_{1}, \ldots, t_{n})$ is an instance of t

and not an instance of some $t\sigma \mathrm{s}.\mathrm{t}$. $q_{t\sigma}\in Q$

$f(q_{t_{1}}, \ldots, q_{t}n)$ $arrow$ q_{r}

If $f(t_{1}, \ldots, t_{n})$ is an instance
of some lhs of R

$f(q_{1}, \ldots, q_{n})$ $arrow$ q_{r}

If $q_{T}\in\{q_{1}, \ldots, q_{n}\}$

Let us call $A_{NF\mathrm{t}^{\mathcal{R}})}$ the above constructed automaton.

Example 1

$R=\{$

$h(x)$ $arrow$ $g(f(a, a))$
$f(x, a)$ $arrow$ a

$f(g(a), x)$ $arrow$ $f(x, g(a))$

124

The automaton $A_{NF(R)}$ consists of the production rules (assuming for simplicity that there are
no additional function symbols besides $h,$ $f,$ $g,$ a)

a $arrow$ q_{a} $g(q_{a})$ $arrow$
$q_{\mathit{9}(}a)$

$f(q_{a}, q_{a})$ $arrow$ q_{r} $h(q_{a})$ $arrow$ q_{r}

$f(q_{a}, q_{\mathit{9}}(a))$ $arrow$ q_{x} $f(q_{g(a)}, q_{a})$ $arrow$ q_{r}

$f(q_{\mathit{9}}(a), q_{g}(a))$ $arrow$ q_{r} $h(q_{g}(a))$ $arrow$ q_{r}

$g(q_{g(}a))$ $arrow$ q_{x} $f(q_{x}, q_{a})$ $arrow$ q_{r}

$f(q_{x}, q_{g}(\emptyset))$ $arrow$ q_{x} $f(q_{x}, q_{x})$ $arrow$ q_{x}

$f(q_{a}, q_{x})$ $arrow$ q_{x} $f(q_{g(a)}, qx)$ $arrow$ q_{r}

$h(q_{x})$ $arrow$ q_{r} $g(q_{x})$ $arrow$ q_{x}

$f(q_{r},q)g(qr)$ $arrowarrow$
$q_{f}q_{r}$

$f(q,q_{r})h(q_{r})$ $arrowarrow$
$q_{r}q_{r}$

where q stands for any state. Final states will be $q_{a},$ $q_{g(\emptyset}$)’ q_{x} .

Demma 4.15 $A_{N\Gamma(^{\gamma \mathrm{Z}})}$ accepts the set of irreducible terms in $T(\mathcal{F})$. This automaton is deter-
ministic and completely specified.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}}$

The automaton is deterministic since, assuming that $f(t_{1}, \ldots, t_{n})$ is an instance of both t and
$u(t, u\in S(\mathcal{R})$, then it is an instance of $t\downarrow u$, hence the only rule which can be applied to
$f(q_{t_{1}}, \ldots, qt_{n})$ is either $f(q_{t_{1}}, \ldots, q_{t_{n}})arrow q_{r}$ (when $f(t_{1},$

$\ldots,$
$t_{n})$ is an instance of a lhs of \mathcal{R}) or

$f(q_{t_{1}}, \ldots, qt_{n})arrow q_{u_{1}}\iota\ldots\downarrow u_{m}$ if $\{u_{1}, \ldots u_{m}\}$ is the set of terms in $S(\mathcal{R})$ which are not instances of
a lhs of R^{-} and such that $f(t_{1}, \ldots, t_{n})$ is an instance of each $u_{\mathfrak{i}}$ (and not an instance of a $\mathrm{l}\mathrm{h}\mathrm{s}$).

The automaton is $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}$} y specified since every term is (at least) an instance of x . Then
either one of its direct subterms is accepted in state q_{r} , or it is itself accepted in state q_{r} , or ther
is a state q_{t} in which it is accepted.

We show by induction on the size of u that u is accepted in the state q_{t} iff u is not reducible,
it is an instance of t and not an instance of some other $t\sigma\in S(\mathcal{R})$. If u is a constant, then
either $u\in S(\mathcal{R})$ (in which case it is accepted in state q_{r} or q_{a} depending on its reducibility) or
it is accepted in state q_{x} . Now, consider a term $t–f(t_{1}, \ldots, t_{n})$. If some t_{i} is reducible, then
it is accepted in state q_{r} by induction hypothesis and t is accepted in state q_{r} too. Otherwise,
by induction hypothesis, for every $i,$ t_{i} is accepted in state q_{u} . $\mathrm{s}.\mathrm{t}$. $t_{i}=u_{i}\sigma_{i}$ and t_{i} is not an
instance of any other $u_{i}\sigma$. Then either t is reducible, hence an instance of a lhs of a rule, and
it is accepted in state q_{r} , or else, there is a rule $f(q_{u_{1}}, \ldots, q_{u_{n}})arrow q_{u}$ such that t is accepted
in state $q_{u},$ $f(u_{1}, \ldots, u_{n})$ is an instance of u and not an instance of any other $u\sigma$. Then, if
$t–f(v_{1}, . , ., v_{n})\sigma$ for some $\sigma,$ $t_{i}=v_{i}\sigma$ for all i . Hence, for all $i,$ u_{i} is an instance of v_{i} , which
implies that $f(v_{1}, \ldots, v_{n})$ is an instance of u (assuming the disjointness of variables).

It follows that t is reducible iff it is accepted in the state q_{r} , hence it is irreducible iff it is
accepted in another state, thanks to determinism and complete specification. \square

.
These constructions can be simplified for a particular class of rewrite system:

remma 4.16 Assume that for any two strict subterms $s,$ t of some left hand side (S) of R , if
s and t are unifiable, then either s is an instance of t or t is an instance of s . Then Red and
$NF(R)$ are accepted by deterministic bottom-up tree automata with $O(|R|)$ states.

This is a direct consequence of the construction of $A_{NF(R)}$: the set of states is $0(|R|)$ in this
case.

125

4.2 Sequentiality of shallow linear $\mathrm{r}\mathrm{e}\mathrm{W}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ systems

Lemma 4.17 If \mathcal{R} is a shallow linear rewrite system, then $N_{\mathcal{R}}$ is recognized by a finite tree
automaton.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}}$

We start with the automaton $A_{NF1^{\mathcal{R}})}$ which accepts the set of irreducible terms in $T(\mathcal{F})$ (thanks
to lemma 4.15). Then we complete it in such a way that for every ground term t occurring in
a right side of \mathcal{R} there is a state q_{t} which accepts t (and only this term), and a state q_{T} which
accepts all terms in $\mathcal{T}_{\Omega}\cup T$. (This differs from q_{x} in which all terms of T are accepted). Let A

be the resulting automaton.
Then, we build an automaton A_{1} which accepts all terms in $T\cup \mathcal{T}_{\Omega}$ that have a normal form

in T . For, we use the same set of states as A (and the same set of final states). We start with
the set P of production rules of A and saturate P using the following set of inference rules:

$\frac{f(t_{1},\ldots,t_{n})arrow g(u1\cdots,.u_{m})\in Rg(q1\cdots,qm)arrow q\in P}{f(q_{1}’’q_{n})arrow q\in P’},,$

$..$,

If . when u_{i} is a ground term, then u_{i} is accepted in state q_{i} (by the current automaton). $q_{i}’=q_{j}$ whenever $t_{i}=u_{j}$. $q_{i}’=q_{t_{i}}$ when $t_{i}\in T$. $q_{i}’=q_{\mathrm{T}}$ when t_{i} is a variable not occurring in the right side of the rule

and
$\frac{f(t_{1},\ldots,t_{n})arrow x\in Rq\in Q}{f(q_{1},\ldots,qn)arrow q\in P}$

If . x is a variable. $q_{i}=q$ whenever $t_{i}=x$. $q_{i}=q_{t_{1}}$. whenever t_{i} is a ground term.. $q_{i}=q_{\mathrm{T}}$ when t_{i} is a variable distinct from x .

This terminates since the set of states being fixed, the number of possible inferred production
rules is bounded. It yields a finite bottom-up tree automaton accepting all terms in $T\cup \mathcal{T}_{\Omega}$ that
have a normal form in T . There are two inclusions to prove:

All terms accepted by A_{1} do have a normal form in T

This is proved by induction on the number of times the above inference rules have been
applied. If they cannot be applied, then the inclusion follows from lemma 4.13. Otherwise,
consider the automaton A_{N}^{*} computed after N inference steps and assume that A_{N}^{*} only
accepts terms that have a normal form. Let A_{N+1}^{*} be the automaton obtained by aug-
menting the set of production rules of A_{N}^{*} with the rule $r^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}f(q1’, \ldots, q’n)arrow q$ following
the conditions of one of the inference rules. Assume

$tarrow A_{\dot{N}+1}q_{f}$
with $q_{f}\in Q_{f}$. We prove

126

by induction on the number of times r is applied in this reduction that t has a normal form.
If r is not applied at all, then

$tarrow A_{\dot{N}}q_{j}$
and, by hypothesis, t has a normal form. Now, if

$tarrow A_{\dot{N}}t_{1}arrow \mathrm{r}t_{2}rightarrow A_{\dot{N}+1}^{*}q_{f}$, then there is a position p of t_{1} such that $t_{1}|_{p}=f(q_{1}’’, \ldots, q_{n})$

and $t_{2}|_{p}=q$.
$\mathrm{W}\overline{\mathrm{e}}^{-}\mathrm{i}\mathrm{n}\mathrm{V}\mathrm{e}\mathrm{S}\mathrm{t}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{w}^{- \mathrm{t}}-\mathrm{h}\mathrm{e}$ possible constructions of r :

First inference rule We build a term u as follows: $u–t[g(u1, \ldots, u)m]_{p}$ where $u_{j}=t|_{p\cdot i}$

whenever $q_{i}’=q_{j}$ and $u_{j}=*v$ whenever $q_{j}=q_{v}$ (for v a ground term). Then $tarrow Ru$.
On the other hand,

$uarrow A_{N}^{\cdot}t_{2}$
, by construction of r and since for every $i=1,$ $\ldots,$

n ,

$t|_{\rho\cdot i}arrow q_{i}’$. Hence, by induction hypothesis, u has a normal form in T . Now, since
$A_{\dot{N}}$

$tarrow_{R}u,$ t has also a normal form in T .
Second inference rule $\mathrm{W}\overline{\mathrm{e}}^{-}$ proceed in a similar way: we let $u=t[t|_{p\cdot i}]_{p}tarrow Ru$.

$*$

$t|_{\rho}.|$. $arrow q_{i}$ and $q_{i}=q$. Hence $uarrow t_{2}$ by construction. Now, using the in-
$\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}A_{N}\mathrm{n}\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{S}\mathrm{i}\mathrm{S}$

on $u,$ u has a
$\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}A1\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}}N$

in T , and t has a normal form in T too
since $tarrow Ru$.

All terms that do have a normal form in $\tau_{\mathrm{a}\mathrm{r}\mathrm{e}}^{-}$ accepted by A_{1} . This is proved by in-
duction on length of the reduction of t to one of its normal forms in T . If t is in normal

$N+1$

form, then, by definition of $A_{1},$ t is accepted. If $trightarrow Rt’$ and $t’\in NF$, then let
N

$tarrow Rt1arrow t’$. Let $t|_{\rho}=f(l_{1,)}\ldots l_{n})\sigma$ and $t_{1}=t[g(r_{1}, \ldots, r_{m})\sigma]_{\mathrm{p}}$ for some rewrite rule
R

$f(l_{1}, \ldots, l_{n})arrow g(r_{1}, \ldots, r_{m})\in R$ (the case where r is a variable is similar). By induction
hypothesis, t_{1} is accepted by A_{1} . Let us $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\dot{\mathrm{e}}\mathrm{r}$ a successful run of the automaton on t_{1} :

$*$

$t_{1}arrow A_{1}t_{1}[g(q_{1}, \ldots, q_{m})]_{p}\overline{\mathit{9}(q_{1},\ldots,q_{m})arrow q}t_{1}[q]_{p}arrow A_{1}q_{f}$

and $q_{f}\in Q_{j}^{-}$. By construction of A_{1} , there is a production rule $r^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}f(q_{1},., q_{n})’..’arrow q$ in
P such that r_{i} is accepted in state q_{i} when r_{i} is a ground term, $q_{i}’=q_{j}$ whenever $t_{i}=u_{j}$,
$q_{i}’=q_{l}$: when l_{i} is ground and $q_{i}’=q_{\mathrm{T}}$ when l_{i} is a variable which does not occur in
$g(r_{1}, \ldots, r_{m})$. Then there is a reduction of each $t|_{p\cdot i}$ to $q_{i}’$:

$*$. if l_{i} is a variable which does not occur in r , then $l_{i}\sigmaarrow A_{1}q_{\mathrm{T}}$
by definition of q_{T}

\bullet if $l_{t}\in T$, then $l_{i}arrow A_{1}q_{l_{i}}$
by definition of $q\iota$.. if l_{i} is a variable and $l_{i}=r_{j}$ for some j , then $l_{i}\sigma=r_{j}\sigma$ and hence $l_{i}\sigmaarrow A_{1}q_{j}=q_{i}’$

Now, there is a reduction of $t|_{p}$ to $f(q_{1}’, \ldots, q_{n}’)_{)}$ yielding the desired $tarrow A_{1}t_{1}[q]_{p}$.

Finally, we intersect A_{1} with \mathcal{T}_{Ω} (which is obviously recognizable). \square

Let us show an example of the automaton accepting all terms that can be reduced to a
normal form.

127

Example 2 VVe use the example 1. In what follows, for sake of simplicity, we will not consider
the rules which involve a state q_{r} (they do not play any role).

We add first the rules:

$f(q_{a}, q\mathrm{Q})$ $arrow$
$q_{f(a,a})$ $g(q_{f(}a,a))$ $arrow$

$q_{\mathit{9}}(f(a,a))$
a $arrow$

q_{T}

$g(q_{\mathrm{T}})\Omega$
$arrowarrow$

$q_{\mathrm{T}}q_{\mathrm{T}}$

$h(q_{\mathrm{T}})$ $arrow$
q_{T}

$f(q\mathrm{T}, q_{\mathrm{T}})$ $arrow$
q_{T}

Now, we start the saturation process, yielding to the new rules (in order of computation,
and excluding the rules yielding q_{T} which are irrelevant):

$h(q_{\mathrm{T}})$ $arrow$ $q_{g(f(a))}a$, $f(q_{\mathrm{T}}, q_{a})$ $arrow$ q_{a} $f(q_{g(a})’ q_{x})$ $arrow$ q_{x}

$f(q_{\mathit{9}}(a), q_{a})$ $arrow$ q_{x}
$h(q_{\mathrm{T}})$ $arrow$

$q_{g(a)}$

This last rule is obtained after noticing that $f(a, a)arrow q_{a}$, hence from $h(x)arrow g(f(a, a))\in R$

and $g(q_{a})arrow q_{\mathit{9}(}a)$, we can deduce $h(q_{\mathrm{T}})arrow q_{g(a)}$.
Let us consider two examples of computations using the resulting automaton:

$h(\Omega)arrow h(q_{\mathrm{T}})arrow q_{g(a)}$

hence $h(\Omega)$ is accepted by the automaton.

$f(.g(a), \Omega)arrow f(g(q_{a}), \Omega)arrow f(g(q_{a}), q\mathrm{T})arrow f(q_{g(\mathfrak{a})}, q\mathrm{T})$

the reduction cannot be continued any longer (except by going to q_{T}). Moreover, there is no
other computation sequence: $f(g(a), \Omega)$ is not accepted.

As a consequence of theorem 3.10 and lemma 4.17 we have the new decidability result:

Corollary 4.18 The sequentiality of shallow linear rewrite systems is decidable.

4.3 $\mathrm{N}\mathrm{V}$-sequentiality of linear rewrite systems

Oyamaguchi has shown in [15] that sequentiality is decidabley for linear rewrite systems such
that the left and right hand sides do not share variables. A linear rewrite system R is then called
NV-sequential if, when renaming the variables of the right hand sides in such a way that they do
not share any more variables with the left hand sides, then we get a sequential rewrite system
R_{V} . It turns out that $\mathrm{N}\mathrm{V}$-sequentiality is again definable in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$ (without the orthogonality
assumption of [15] $)$.

Lemma 4.19 For any linear rewrite system $R,$ $N_{R_{V}}$ is definable in $?VSkS$.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

We only have to prove that $N_{R_{V}}$ is recognized by a finite tree automaton. We start with
the automaton of lemma 4.15 and add a state q_{t} for each subterm t of a right hand side of R_{V} ,
up to literal similarity. (If this state is not already present). We also add production rules in
such a way that the set of terms accepted in such a state q_{t} is the set of instances (in T) of t . In
addition, we consider states $q_{t}’$, for each strict subterm t of a left hand side of R_{V} , up to litteral
similarity. We add the production rules in such a way that the terms accepted in state $q_{t}’$ are
the instances in $\mathcal{T}_{\Omega}\cup T$ of t . Let us call again A the resulting automaton; its final states are the
final states of $A_{NF\langle R_{V})}$. Of course A is now non-deterministic.

128

We saturate A with the following inference rules:

$\frac{g(l_{1},\ldots,l_{\mathrm{n}})arrow f(r1\cdots,r_{m})\in R_{V}\cdot f(q_{1}\mathrm{x}*q_{m})arrow q\in P}{g(q_{l_{1}}^{\prime\ldots J}q_{\iota}n)arrow q^{*}\in P},,,’\ldots,\cdot$

If, for every i there is an instance of r_{i} which is accepted in state q_{i}^{*} and q_{i}^{*} is either q_{i} or $q_{i}’$

(Note that this condition is decidable as the set of instances of r_{i} is accepted by a finite tree
automaton and by decision properties for tree automata).

$,$.$. \frac{g(l_{1},\ldots,l_{n}).arrow x\in RVq^{*}\in Q}{g(q_{l_{1n}}’’q_{l})arrow q^{\mathrm{x}}\in P}$

,

If x is a $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}^{1}\wedge \mathrm{e}$ and q^{*} is either q or $q’$.
The saturation process does terminate since no new state is added.
We claim that the resulting automaton accepts the terms of $T\cup \mathcal{T}_{\Omega}$ that have a normal form

in T . For, we have two inclusions to prove.

Any term accepted by A can be reduced to a normal form in T Let A_{N} be the automa-
ton obtained after applying N inference steps. We prove, by induction on N that A_{N} only
accepts terms in $\mathcal{T}_{\Omega}\cup T$ that have a normal form in T.If $N=0$, then by lemma 4.15, the
automaton accepts the terms that are in normal form in T . Now, assume we obtain A_{N+1}

by adding a new rule r (using, say, the first inference rule). Let t be a term accepted by
A_{N+1} : $tarrow A_{N+1}q_{f}\in Q_{f}$. We prove, by induction on the number of times r is used in

this reduction, that t has a normal form in T . If r is not used at all, $tarrow A_{N}q_{f}$
and, by
$*$

hypothesis on $A_{N},$ t has a normal form in T . Now, assume that $tarrow A_{N}t_{1}arrow rt_{2}arrow A_{N+1}q_{f}$
.

Let r be $g(q_{\iota_{1}}’, \ldots, q’\iota n)arrow q^{*},$ $t_{1}|_{p}=g(q_{l_{1}}^{J;}, \ldots, q_{l_{n}})$ and $t_{2}=t_{1}[q^{*}]_{p}$. By construction, there
is a rule $g(l_{1}, \ldots, l_{n})arrow f(r_{1}, \ldots, r_{m})$ in R_{V} , a production rule $f(q_{1}, , .., q_{n})arrow q_{1}\mathrm{n}arrow A_{N}$

and, for each i , a term u_{i} which is an instance of r_{i} accepted in state q_{i}^{*} . Now, let u be
$t[f(u_{1}, \ldots, u_{m})]_{\mathrm{P}}$. $uarrow t_{2}$ and hence u has a normal form in T by induction hypothesis.

A_{N}

Moreover,$t-u$ since the variables of the right and left hand sides are
$g(l_{1},\ldots,l_{n})arrow!(\Gamma_{1},\ldots,\mathrm{r}_{m})$

disjoint. Hence t has a normal form in T .

Any term that can be reduced to a normal form in $T^{-}\mathrm{i}\mathrm{s}$ accepted by A We prove this
result by induction on the length of the reduction sequence from t to one of its normal form
in T . If this length is 0 , then t is accepted by the automaton $A_{NF}(R_{V})$ and hence by A . Now
assume that $t-u:t|_{p}=g(l_{1}\sigma, \ldots, l\sigma n)$ and $u=t[f(r_{1}\theta, \ldots, r_{m}\theta)]_{p}$.

$g(l_{1},\ldots,ln)arrow f(r1,\ldots,r_{m})$

By induction hypothesis, u is accepted by A :
$*$

$u-Au[f(q_{1}^{*}, \ldots, q^{*}m)]_{p}\overline{f(q_{1_{1}}\ldots,qm)arrow q}u[q^{*}]_{p}arrow Aq_{f}$

By definition, for each i , there is an instance of $r_{i}(r_{i}\theta)$ which is accepted in state q_{i}^{*} .
Hence, using the first inference rule, there is production rule $g(q_{l_{1}}^{JJ}, \ldots, q_{l_{n}})arrow q^{*}\in P$.

r

Now, for each $i,$
$l_{i}\sigmaarrow Aq_{l_{1}}’.$, hence $t|_{p}arrow Aq^{*}$ and t is accepted by the automaton.

\square

129

Example 3 Let us consider the very simple example:

$R=\{$

$h(h(X))$ $arrow$ $f(g(x))$
$g(x)$ $arrow$ $h(a)$

$f(a)$ $arrow$ $f(a)$

In the system R_{V} , the variable on the right side of the first rule is replaced with another variable
y .

The automaton $A_{NF(R)}$ contains, besides the rules yielding q_{r} , the following productions:

a $arrow$ q_{a} $h(q_{a})$ $arrow$
$q_{h(x)}$ $f(q_{h(x)})$ $arrow$ q_{x}

$h(q_{x})$ $arrow$ q_{x} $f(q_{x})$ $arrow$ q_{x}

Final states will be $q_{a},$ $q_{h(a)}$ and q_{x} .
We add the following production rules:

$h(q_{a})$ $arrow$
$q_{h(a)}$ $f(q_{a})$ $arrow$

$q_{f(a)}$ a $arrow$
q_{T}

$h(q_{\mathrm{T}})$ $arrow$
q_{T} $f(q_{\mathrm{T}})$ $arrow$

q_{T}
$g(q_{\mathrm{T}})$ $arrow$

q_{T}

$g(q_{\mathrm{T}})$ $arrow$
$q_{g(x)}$

Ω
$arrow$ $q_{x}’$ a $arrow$ $q_{x}’$

$h(q_{x}’)$ $arrow$ $q_{x}’$ $g(q_{x}’)$ $arrow$ $q_{x}’$ $f(q_{x})$’
$arrow$ $q_{x}’$

$h(q_{x}’)$ $arrow$ $q_{h(x)}’$ a $arrow$ $q_{a}’$

We arrive at the saturation process which produces the following rules (we exclude the rules
yielding q_{T}):

$h(q_{h(x)}’)$ $arrow$ $q_{x}’$ $g(q_{x}’)$ $arrow$
$q_{h(x)}$

$g(q_{x}’)$ $arrow$
$q_{h(a)}$

$g(q_{x}’)$ $arrow$ $q_{h()}’\mathcal{I}$ $h(q_{h}’(x))$ $arrow$ q_{x}

The last rule is obtained as follows: there is an instance of $g(y)$ which is accepted in state $q_{h(x)}$

(thanks to the rule $g(q_{x}’)arrow q_{h(x)}$). Hence, from the rules $h(h(x))arrow f(g(y))$ and $f(q_{h()}\mathcal{I})arrow q_{x}$,
we deduce $h(q_{h(x)}’)arrow q_{x}$.

Corollary 4.20 NV-sequentiality is decidable for left linear (possibly overlapping) rewrite sy_{S-}

tems.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

This is a consequence of theorem 3.10 and lemma 4.19. \square

Note that this gives a much simpler proof than in [15], and in a more general case. We could
also prove this result using ideas similar to [5].

4.4 Sorted systems

All above results can be extended to order-sorted rewrite systems. In such systems, variables are
restricted to range over some regular sets of trees2. In particular, we find again some decidability
results of [12] as well as their extension to arbitrary left-linear rewrite systems.

2Order-sorted signatures, which include subsort declarations altd overloading are exactly tree automata, as
noticed e.g. in [4]

130

5 Direct construction of the automaton

F\={o} r reasons which have already been explained, we construct here directly the automaton ac-
cepting all terms that have an index $\mathrm{W}^{\sim}.\mathrm{T}.\mathrm{t}\mathrm{R}\mathrm{e}\mathrm{d}_{\mathcal{R}}$. We only consider left linear rewrite systems.

For the direct construction of automata, it is more convenient to use the formalism of [13].
Of course, we could construct an automaton using the correspondence between automata and
logic, but this construction would be too complex.

5.1 Another characterization of indexes

Let $t\in \mathcal{T}(F\cup\{\Omega\}, \mathcal{X})$ and $u\in T(\mathcal{F}, X)$. $\mathrm{W}\overline{\mathrm{e}}^{-}\mathrm{S}\mathrm{a}\mathrm{y}$ that t is compatible with u if there is some
instance v of u such that $t\subseteq v$. Let R be a rewrite system. Then

$arrow R_{\Omega}$
is the relation on \mathcal{T}_{Ω}

defined by $tarrow u$ iff there is a $p\in Pos(t)$ such that $t|_{p}\neq\Omega$ and $t|_{p}$ is compatible with some
R_{Ω}

left hand side of a rule and $u=t[\Omega]_{p}$.
$arrow R_{\Omega}$

is a convergent reduction relation. The normal

form of a term $t\mathrm{w}^{--}.\mathrm{r}.\mathrm{t}$ to
$arrow R_{\Omega}$

is written $t\downarrow R_{\Omega}$.

Theorem 5.21 ([13]) Let $x\in \mathcal{X}$. The position p such that $t|_{p}=\Omega$ is an index of $t(w.r.t$.
$Red_{\mathcal{R}})$ iff $(t[x]_{\mathrm{P}}\downarrow_{R_{\Omega}})|_{p}=x$.

5.2 Construction of the automaton A_{noind}

We construct first an automaton accepting the set of terms which that can be reduced to Ω by
R_{Ω}^{-} .

Demma 5.22 For every linear rewrite system, there is an automaton $A_{R_{\Omega}}$ with $O(|R|)$ states
which recognizes the set of terms $t\in \mathcal{T}_{\Omega}$ that can be reduced to Ω using R_{Ω} .

Actually this lemma can be seen as a particular case of lemma 4.19. Let us however show a
slightly different construction in detail since we will need additional properties.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

With each strict subterm t of a left hand side of a rule (up to literal similarity), we associate a
state q_{t} . In addition, we have the final state q_{Ω} and, if necessary, the state q_{x} (x is a variable).
$r\mathrm{R}\mathrm{e}\mathrm{n}$, for each $f\in \mathcal{F}$ and each $q_{t_{1}},$ $\ldots,$ $q_{t}n$ ’ we add the production rules

Sl: $f(q_{t_{1}}, \ldots, qt_{n})arrow q_{u}$ if $f\neq\Omega_{l}.f(t_{1}, \ldots, t_{n})$ is compatible with u and q_{u} is in the set of states.

S2: $f(q_{t_{1}}, \ldots, q_{t}n)arrow q_{\Omega}$ if, $f(t_{1}, \ldots, i_{n})$ is compatible with a left hand side of a rule

S3: $\Omegaarrow q_{\Omega}$

The number of states in $A_{R_{\Omega}}$ is $O(|R|)$ and the number of rules is $O(|R|^{k}+1)$ where k is the
maximal arity of a function symbol.

We have now to show two inclusions.

$\mathrm{E}\overline{\mathrm{v}}\mathrm{e}\mathrm{r}\mathrm{y}$ term accepted by $A_{R_{\Omega}}$ can be reduced to Ω by R_{Ω} We prove, by induction on the
$*$

length of the reduction (i.e. the size of t) that, if
$tarrow A_{R_{\Omega}}q_{u}$

then $tarrow R_{\Omega}u$
. When the

length is 1, t is a constant and $t=u$.

131

Assume now that
$f(t_{1}, \ldots, t_{n})rightarrow A_{R_{\Omega}}f(q_{u_{1}}, \ldots, q_{u_{n}})rightarrow A_{R_{\mathrm{Q}}}q_{u}$

. By induction hypothesis,
.

for every $i,$
$t_{i}arrow R_{\Omega}u_{i}$

. Moreover, $f(u_{1}, \ldots, u_{\mathrm{n}})arrow R_{\Omega}u$, by definition of R_{Ω} and properties

of the rules.

Every term in \mathcal{T}_{Ω} that can be reduced to Ω by R_{Ω} is accepted by $A_{R_{\Omega}}$. We prove this
part by induction on the length of the reduction to Ω . If the term t is Ω itself, then

$*$

there is nothing to prove. If $tarrow R_{\Omega}uarrow R_{\Omega}\Omega$
, by induction hypothesis

$urightarrow A_{R_{\Omega}}q_{\Omega}$

. Let

$u=t[\Omega]_{p}$ and $i|_{p}arrow\Omega$. By definition of R_{Ω} , this means that replacing $\Omega’ \mathrm{s}$ with terms
R_{Ω}

in $t|_{\rho}$ we get an instance $l\sigma$ of a left hand side of a rule 1. $\mathit{1}\sigma$ itself is accepted in state q_{Ω}

by construction. Let ρ_{1} be a successful run of the automaton on $\mathit{1}\sigma$. Now, we construct a
run on $t|_{\rho}$ as follows: if $p’$ is a position of both $\mathit{1}\sigma$ and $t|_{\rho}$ and $t(p\cdot p’)=l\sigma(p’)$, then we
let $\rho(p’)=\rho_{1}(p’)$. Otherwise, by hypothesis, we have $t(p\cdot p’)=\Omega$, in which case, we let
$\rho(p’)=q_{\Omega}$. ρ is a run indeed.

\square

Note that $A_{R_{\Omega}}$ is in general non-deterministic and that determinizing it may require ex-
ponentially many states. For example, if $g(f(x, a))$ and $h(f(x, b))$ are two left members of R ,
from $f(q_{x}, q_{\Omega})$ we can reach the two states $q_{f(x,a)}$ and $q_{j(x,b)}$ and we cannot commit to any of
them before knowing what is the symbol above. One way to prevent this situation is to add,
for every subterm of a left hand side of a rule a state for each term obtained by replacing some
subterms of t with Ω . But this step is exponential. It is not, in principle, better than deter-
minizing $A_{R_{\Omega}}$. Following this, it is possible to compute an automaton A_{ind} which accepts all
terms that have an index. The automaton would be non-deterministic and contain exponetially
many states. We will show its construction later on. However, for the decision problem, we need
to decide wether all irreducible terms in \mathcal{T}_{Ω} are accepted by A_{ind} . This question can only be
decided in expo.nential time w.r.t. the number of states of the automaton (automata inclusion
is EXPTIME-complete when the right member of the inclusion can be non-deterministic [18] $)$.
This would yield a doubly exponential test. It is however possible to reduce the complexity to a
single exponential, computing directly an automaton for the complement of A_{ind} and deciding
its inclusion in the set of reducible terms. That is what we are doing now.

Lemma 5.23 For every left linear rewrite system R , it is possible to compute in $O(2^{|R}|)$ time
an automaton A_{noind} which accepts the terms $t\in \mathcal{T}_{\Omega}$ that do not have an index.

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\circ \mathrm{f}}$

Let $Q_{R_{\Omega}}$ be the set of states of $A_{R_{\Omega}}$. The states Q of our automaton will consist of pairs of
subsets of $Q_{R_{\Omega}}$. The first components of such pairs will be written as disjunctions of states
$q_{1}\ldots\vee q_{n}$, whereas the second components will be written as conjunction of states q_{1} A. . . A q_{n} .
The final states will be pairs $[S\cdot\emptyset|]$. Intuitively, the second component in the pair correspond to
terms that have to be “eliminated” by R_{Ω} .

The production rules are defined as follows: first the rule for Ω is

Ω
$arrow$ $[\{q_{\Omega}\}, \{qx\}]$

On the first component, we will find the behaviour of the automaton as in $A_{R_{\Omega}}$. The second
component correspond to index guess: if Ω has been replaced with x , we enter the state q_{x} .

132

The progression rules are defined as follows:

$f([S_{1;}s_{1}^{;}], \ldots, [s_{n};S’]n)arrow[S;s8$

if . $S=\{q|\forall i=1\ldots n, \exists t_{i}\in^{s}i, f(qt1’\ldots, q_{t_{n}})arrow A_{R_{\Omega}}q\}$

. $S’=\{\phi(t’, i)|(t’, i)\in E\}$ where ϕ is a mapping from E to states such that

$f(q_{t_{1}}, \ldots qt.\cdot-1’ qt’, qt|.+1’\ldots, q_{t_{n}})arrow A_{R_{\Omega}}\phi(t’, i)$

for some $q_{t_{1}},$ $\ldots,$ $q_{t}n$ belonging respectively to $S_{1},$
$\ldots,$

S_{n} .. E is the set of pairs $(t’, i),$ $i=1\ldots n,$ $t’\in S_{1}’$. such that there is no states $q_{t_{1}},$ $\ldots,$ $q_{t}n$

belonging to $S_{1},$
$\ldots,$

S_{n} respectively such that $f(q_{1_{1}}, \ldots, qt_{1}.-1’ qt’, q_{\mathrm{t}.,\ldots q_{t_{n}}}.+1)arrow A_{R_{\Omega}}q_{\Omega}$
.

Intuitively, in the first component we record all possible behaviours of $A_{R_{\Omega}}$, whereas in the
second component, we superpose all behaviours corresponding to all index guesses.

We claim that a term $t\in \mathcal{T}_{\Omega}$ is accepted by this automaton iff it has no index, i.e. iff for all
positions p of Ω in $t,$ $p\not\in Pos((t[X]_{p})\downarrow_{R}\Omega)$.

We have to prove two inclusions.

If $t\in \mathcal{T}_{\Omega}$ is accepted by A , then t has no index
First note that, by construction, $tarrow A*[S;^{s\prime}]$ for some $S’$ iff $tarrow A_{R_{\Omega}}^{*}q_{u}$ for all $q_{u}\in S$.

Assume $tarrow A*[S;\emptyset]$. Let p be a position of Ω in t . We will show that there is prefix $p’$ of

p such that $t[x]_{p}|p’arrow*\Omega$. More precisely, let $T_{\Omega,x}$ be the set of terms in $T(F\cup\{\Omega, x\})$

R_{Ω}

that contain at most one occurrence of x and T_{x} be the subset of T_{x} of terms that do not
contain any Ω . If ρ is a run of A on $t\in T_{\Omega,x}$, we show that

$\rho(\Lambda)=[S;S’]$ implies that, if there is a $t’\in T_{x}^{-}$ such that $t[x]_{p}1_{R_{\Omega}}$ is incompatible

with all u such that $q_{u}\in S’$, then $t[x]_{p}arrow R_{\Omega}v$ where $v\in \mathcal{T}_{\Omega}$.

As a particular case, when $S’=\emptyset$, we will have the desired result.
$\mathrm{W}\overline{\mathrm{e}}^{-}\mathrm{S}\mathrm{h}\mathrm{o}\mathrm{w}^{-}$-the property by induction on the size of t . If $t=\Omega$, then $tarrow A[\{q_{\Omega}\};\{q_{x}\}]$ and

$t[x]_{\Lambda}\iota_{R_{\Omega}}=x$ is compatible with x and $q_{x}\in S’$.

Assume $tarrow*f([s_{1;}s\mathrm{i}1, \ldots, [S_{n};s_{n}J])arrow[S;s]$. Assume moreover that $t[x]_{p}\downarrow R_{\Omega}$ is
$\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{w}A\mathrm{i}\mathrm{t}\mathrm{h}$ any u such that $q_{u}\in s^{A}’$. Finally, assume $\mathrm{w}.1$.o.g that for all indices $i\neq 1$,
$t[x]_{p}|_{i}\in \mathcal{T}_{\Omega}$ (in other words, the first symbol of p is assumed to be 1). If $t[x]_{p}|_{1}\iota_{R_{\Omega}}\in \mathcal{T}_{\Omega}$

or if it is incompatible with any u_{1} such that $q_{u_{1}}\in S\text{\’{i}},$ then by induction hypothesis,
$t[x]_{p}|_{1}arrow*v_{1}\in \mathcal{T}_{\Omega}$, hence $t[x]_{\mathrm{p}}arrow*v\in \mathcal{T}_{\Omega}$. Otherwrise, there is a term $t_{1}’\in T_{x}\mathrm{s}.\mathrm{t}$.
$t[x]_{\rho}|_{1}\iota_{R_{\Omega}}^{R_{\Omega}}\subseteq t_{1}’$ and $t_{1}’$ is an instance

$\mathrm{o}\mathrm{f}q_{u_{1}}R_{\Omega}\in s\mathrm{i}$. By contradiction, suppose $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}*(u_{1},1)\in E$

and let $q_{v}=\phi(u_{1},1)$. Then $f(q_{u_{1}}, qt_{2}, \ldots, q_{t}n)arrow q_{v}$ for some $t_{i^{\mathrm{S}}}.\mathrm{t}$. $t|_{i}arrow q_{t}.\cdot$. Now,

we have, for every $i\geq 2,$ $t|.\cdot\iota_{R_{\Omega}}\subseteq t|_{1}.$, if
$t.\cdot\neq A_{R_{\Omega}}\Omega \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}t|i$

is compatible
$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}A_{R}\Omega ti$

and t . is

133

compatible with $v|_{i}$ (actually t_{i} is either Ω or an instance of $v|i$). Hence, for every $i\geq 2$,
$t|i\downarrow R_{\Omega}$ is compatible with $v|_{i}$. On the other hand, $t[x]_{\rho}|_{1}\downarrow R_{\Omega}$ is compatible with u_{1} , hence
with $v|_{1}$ (u_{1} is an instance of $v|_{1}$). It follows that $t[x]_{\rho}1_{R_{\Omega}}$ is either Ω or

$f(t[x]_{p}|1\downarrow_{R_{\Omega}}, t|_{2}\iota_{R_{\Omega},\ldots,1}tnR_{\Omega})$

and is both cases it is compatible with v . Hence a contradiction.

If $t\in \mathcal{T}_{\Omega}$ has no index, then it is accepted by A . We prove, by induction on the size of t

$*$

that there is a pair $[S;s’]$ such that $tarrow A[S;S]$ and $q\in S$ iff
$tarrow A_{R_{\Omega}}q$

and $q_{u}\in S’$ iff

u is a maximal term (w.r.t. \subseteq) $\mathrm{s}.\mathrm{t}$. there is a position p of Ω in $t\mathrm{s}.\mathrm{t}$. $t[x]_{\mathrm{p}}\iota_{R_{\Omega}}\not\in \mathcal{T}_{\Omega}$ and
$t[x]_{p}1_{R_{\Omega}}$ is compatible with u . This will of course imply the desired property.

If $t=\Omega$, then $tarrow A[\{q_{\Omega}\}|\{q_{x}\}]$ and $t[x]_{\Lambda}\iota_{R_{\Omega}}\not\in \mathcal{T}_{\Omega}$ and $t[x]_{\Lambda}1_{R_{\Omega}}=x$ is compatible with
x .
Now let $t=f(t_{1}, \ldots, t_{n})$ and $t_{i}arrow[S_{i},$ $S_{1]}’$. following the induction hypothesis. Let $S’$ be

A

the set of q_{u} s.t u is a maximal term (w.r.t. \subseteq) $\mathrm{s}.\mathrm{t}$. there is a position p of Ω in $t\mathrm{s}.\mathrm{t}$.
$t[x]_{p}\iota_{R_{\Omega}}\not\in \mathcal{T}_{\Omega}$ and $t[x]_{\rho}\downarrow R_{\Omega}$ is compatible with u . Similarly, let S be as in the induction
conclusion. We only have to show that $f([s_{1} ; s_{1}’], \ldots, [S_{n};s_{n}’])arrow[S;S’]$. Let p be a

A

position of Ω in t such that $t[x]_{\mathrm{P}}\iota_{R_{\Omega}}\not\in \mathcal{T}_{\Omega}$. (If there is no such position, then $S’=\emptyset$

and the property holds true). Assume $\mathrm{w}.1$.o.g that $p=1\cdot p’$. Then $t[x]_{p}|_{1}\iota_{R_{\Omega}}\not\in \mathcal{T}_{\Omega}$ and
$t[x]_{p}\iota_{R_{\Omega}}=f(t[x]_{p}|_{1}\downarrow_{R_{\Omega}}, t|_{2}\downarrow_{R_{\Omega}}, \ldots t|_{n}\iota_{R_{\Omega}})$ is compatible with u . By maximality of u_{1} ,
it must be an instance of $u|_{1}$. For $i\geq 2$, let $t|_{i}\downarrow R_{\Omega}$ be accepted in state $q_{t}.\cdot$. .Then letting
$\phi(u_{1},1)$ be q_{u} , we have indeed

$f(q_{u_{1}}, qt_{2}, \ldots, qt_{\mathfrak{n}})arrow A_{R_{\Omega}}q_{u}$

\square

Example 4 Assume that the left hand sides of R are $\{f(x,g(a)), f(a, a), h(a, X), h(f(b, y), a)\}$

and let us show a run of the automaton A_{noind} on $h(f(\Omega, g(\Omega)),$ $\Omega)$:

$g([q_{\Omega};qx])\Omega$ $arrow\neg$ $[q_{\mathit{9}(a}’.);[q\Omega qx]q_{x}1$

$f([q\Omega;qx|, [q_{g(}a);qx|)$ $arrow$ $[q\Omega;qf(b,y)]$

$h([q\Omega;qj(b,y)], [q\Omega, q_{x}])$ $arrow$ $[q_{\Omega};\emptyset]$

Example 5 If the set of left hand sides of R is $\{h(f(x, a), a), h(f(a, x), a)\}$, a run of $A_{\gamma \mathrm{t}}oind$ on
$h(f(\Omega, \Omega),$ $\Omega)$ will be given by:

Ω
$arrow$ $[q_{\Omega} ; q_{x}]$

$f([q\Omega;qx], [q\Omega;q_{x}])$ $arrow$ [$qf(a,x)\vee q_{j}(x,a)|.q_{f}(a,x)$ A $q_{f\langle x,a)}$]
$h([q_{f()}a,x\mathrm{v}q_{f(x},a);qf(a,x)\wedge qf\mathrm{t}x,a)],$ $[q\Omega;q_{x}])$ $arrow$ $[q_{\Omega} ; \emptyset]$

5.3 Complexity issues

As a consequence of lemma 5.23, we get a complexity result:

Theorem 5.24 Strong sequentiality is in EXPTIME when R is left linear (possibly overlap-
ping).

134

$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}}$.
ι

$\mathit{1}\Gamma$ is strongly sequential iff the set of terms that do not have an index is contained in the set
of reducible terms. Or, equivalently, R is strongly sequential if there is no term in \mathcal{T}_{Ω} which
is accepted by both A_{noind} and $A_{NF(R)}$. Both automata can be computed in exponential time
thanks to lemmas 5.23 and 4.15. Intersection can be done in quadratic time and the emptiness
decision is again polynomial. \square

The complex construction of lemma 5.23 can only be avoided when any two strict subterm
of left hand sides are comparable w.r.t. \subseteq whenever they are headed with the same function
symbol. In such a situation, $A_{R_{\Omega}}$ can be made deterministic without adding any state (this is
quite straightforward) and A_{noind} can be computed in polynomial time. We have also seen that,
in such a case, the automaton $A_{NF(R)}$ can be computed in polynomial time, hence:

Corollary 5.25 For rewrite systems K such that any two strict subterms of a left hand side of
a rule which have the same top symbol are comparable $w.\Gamma.t$. \subseteq , strong sequentiality is decidable
in polynomial time.

Note that R can be overlapping here.
$\mathrm{E}\overline{\mathrm{x}}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}6$

. $R=$

’

$f(f(x, y),$ $z)$ $arrow$ $f(X, f(y, Z))$
$f(0, x)$ $arrow$ 0

$f(s(X), y)$ $arrow$ $s(f(x, y))$

. $f(x, y)$ $arrow$ $f(y, x)$

K satisfies the condition of corollary 5.25: any two strict subterms of the left hand sides which
are headed with f (actually there is only one such term here) are comparable w.r.t. \subseteq .

On the other hand, there are orthogonal rewrite systems that do not satisfy the conditions
of corollary 5.25.
EXample 7

$R=\{$
$g(f(a, X))$ $arrow$ $g(a)$

$h(f(x, a))$ $arrow$ $h(a)$

R^{-} is $\mathrm{n}\mathrm{o}\mathrm{n}\prime \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}$ and linear. However, the two strict subterms of left hand sides: $f(a, x)$

and $f(x, a)$ are not comparable w.r.t. \subseteq .

In the case of non-left linear rewrite systems, the construction does not work, even if we use
automata with constraints $[2, 3]$ instead of bottom-up tree automata. For example, consider the
rewrite system $\backslash \dot{\mathrm{n}}\mathrm{t}\mathrm{h}$ only one rule whose left side is $f(x, x)$. Then

$f(f(g^{kk}(f(a, a)),$$b),$ $f(g(b), b))arrow R_{\Omega}f(f(g^{k}(\Omega), b),$ $f(gk(b), b))arrow R_{\Omega}\Omega$

H\={o}wever, the replacement for Ω in $f(g^{k}(\Omega), b)$ is known only when we reach the root of the term,
i.e. arbitrary “far” from the first reduction. It is not possible to keep such an information in
the finite memory of an automaton with constraints.

135

5.4 Construction of A_{ind}

Now, instead of constructing A_{noind} , let us construct directly $A_{\ln d}$. This will show how to find
indexes in a term. First, we assume a new constant. in the alphabet. Then, we start from
a deterministic (completely specified) version of $A_{R_{\Omega}}$ and complete it as follows. Each state q

of $A_{R_{\Omega}}$ is duplicated: we add the state q which will intuitively mean that we found an index
below. Then we add the following rules:. $\Omegaarrow q$: (this is a guess of an index position; we will express that it has to be applied once

in each successful run). For each rule $f(q_{1}, \ldots q_{i}, \ldots, qn)arrow q$ with $q\neq q_{\Omega}$, we add the rules $f(q1, \ldots, q_{i}, \ldots, q_{n})arrow$

q
.

Final states are those which are marked with $\mathrm{a}\cdot$.

Example 8 Consider a rewrite system whose left hand sides are $f(a, X),$ $f(f(x, y),$ $a)$ (with 3
function symbols, $f,$ $a,$

b).
The states of A_{ind} are $\{q_{a}, q_{f(y)}\mathcal{I},’ q\Omega, q., q\dot{f}(x,y)’ q:\}$ (states q_{a} and q_{b} have been removed since

they are useless). The rules are:

Ω $arrow$ q: $f(q., q.)$ $arrow$ $q_{J(x,y)}$ $f(q_{1}, q:)$ $arrow$ $qj_{(x,y})$

Ω
$arrow$ q_{Ω} $f(qf(x,y),$ $q_{f}(x,y))$ $arrow$ $q_{!(x,y)}$ $f(q_{f(y)}.x,’ q1)$ $arrow$ $q_{!(x,y}.)$

a $arrow$ q_{a} $f(q., q_{f(x},y))$ $arrow$ $q_{!(x,y)}$ $f(q_{1}, q_{f(}.x,y))$ $arrow$
$q_{f(x,y)}$
.

b $arrow$ q. $f(q., q_{a})$ $arrow$
$q_{f(x,y)}$ $f(q:, q_{2})$ $arrow$ $qj_{(x,y})$

$f(q_{f(x,y)}, qa)$ $arrow$ q_{Ω} $f(q., q_{\Omega})$ $arrow$ $q_{f(x,y)}$ $f(q_{a}, q_{3})$ $arrow$ q_{Ω}

$f(q_{j(x,y}.)’ q_{a})$ $arrow$ q_{Ω} $f(q_{f(x,y})’ q.)$ $arrow$ $q_{f(x,y)}$
$f(q_{\Omega}, q_{3})$ $arrow$ q_{Ω}

where q_{1} is any state in $\{q., q_{f()}x,y\},$ q_{2} is any state in $\{q., q_{f(x},y)’ q_{a}, q_{\Omega}\}$ and q_{3} is any state in
$\{q_{a}, q_{\Omega}, q., qf(x,y), q:, qf(x,y)\}$. The final states are q: and $q_{f(x,y)}$.

For example, $f(\Omega, \Omega)$ is accepted since $f(q:, q_{\Omega})arrow q_{f(x,y)}$. But $f(f(\Omega, \Omega),$ $\Omega)$ is not accepted.
Moreover, this term being irreducible, the system is not strongly sequential.

Lemma 5.26 The automaton A_{ind} accepts all terms in \mathcal{T}_{Ω} that have an index.

Now, if we come back to the problem of finding an index in a term, we can use A_{ind} : all
successful runs on t contain a .-marked path from the root to an index. Consider for example the
term $f(f(\Omega, \Omega),$ $f(\Omega, \Omega))$, the only successful run is $q_{j(x,y)}(q_{f(x,y})(q:, q_{\Omega}),$ $q_{j}(x,y)(q\Omega, q_{\Omega}))$, which
shows the path 11, which is the only index.

There is still some work to do w.r.t. reduction strategies. Indeed, so far, we have to apply the
automaton on the whole term after each reduction step. Huet and L\’evy, on the other hand, give
a deterministic algorithm which never visits twice a node in the input term. To do something
similar, we would have first to consider our automaton top-down (instead of bottom-up as we
did through all the paper). Such an automaton is in general non-deterministic (and cannot be
determinized). In order to avoid backtracking on the input term we would have to keep a stack
of choice points and derive simultaneously the possible runs on the branch which is explored.
This requires some $\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\dot{\mathrm{o}}$nal implementation machinery, which is out of the scope of this paper.

136

6 Further applications

We believe that the tree automata approach can be used successfully to other works on reduction
strategies. For example the strong root stability of [11] is also expressible in $\mathrm{W}\mathrm{S}\mathrm{k}\mathrm{S}$ for left linear
rewrite systems. The use of automata should also be investigated in parallel reduction strategies,
such as in [19]: a run of the automaton not only gives an index position, but all index positions.

References

[1] S. Antoy and A. Middeldorp. A sequential reduction strategy. In Proc. Algebraic and Logic
Programming, volume 850 of LNCS, pages 168-185. Springer-Verlag, 1994.

[2] B. Bogaert and S. Tison. Equality and disequality constraints on brother terms in tree
automata. In A. Finkel, editor, Froc. 9th Symp. on Theoretical Aspects of Computer Science,
Paris, 1992. Springer-Verlag.

[3] A.-C. Caron, J.-L. Coquid\’e, and M. Dauchet. Encompassment properties and automata
with constraints. In C^{-}. $\mathrm{K}_{1}’\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{e}\mathrm{r}$, editor, Proc. 5th. Int. Conf. on Rewriting Techniques
and Applications, Lecture Notes in Computer Science, vol. 690, Montreal, Canada, 1993.
Springer-Verlag.

[4] H. Comon and C. Delor. Equational formulae with membership constraints. Information
and Computation, $112(2):167^{-216}$, Aug. 1994.

$,[5]$ M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th
IEEE Symp. Logic in Computer Science, Philadelphia, 1990.

[6] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B , pages 243-309. North-Holland, 1990.

[7] M. Ge’cseg and M. Steinby. Tree Automata. Akademia Kiad\’o, Budapest, 1984.

[8] G. Huet and J.-J. L\’evy. Computations in orthogonal rewriting systems II. In J.-L. Lassez
and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan $R\overline{o}binSon$, pages
415-443. MIT Press, 1991. This paper was written in 1979.

[9] J.-F Jouannaud and W. Sadfi. Strong sequentiality of left-linear overlapping rewrite sys-
tems. In Workshop on Conditional Term Rewriting systems, Jerusalem, July 1994.

[10] J. Kennaway. Sequential evaluation strategies for parallel-or and related reduction systems.
Annals of Pure and Applied Logic, 43:31-56, 1989.

[11] R. Kennaway. A conflict between $\mathrm{c}\mathrm{a}\mathrm{U}$-by-need computation and parallelism. In N. Der-
showitz, editor, Workshop on Conditional Term Rewriting Systems, Jerusalem, 1994.

[12] D. Kesner. La d\’efinition de fonctions par cas \‘al’aide de motifs dans des langages applicatifs.
Th\‘ese de Doctorat, Universit\’e de Paris-Sud, France, D\’ecembre 1993.

[13] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting systems. Joumal
of Symbolic Computation, 12:161-195, 1991.

[14] M. J. O’Donnell. Computing in systems described by equations. In Lecture Notes in
Computer Science, volume 58. Springer, Berlin, West Germany, 1977.

137

[15] M. Oyamaguchi. $\mathrm{N}\mathrm{V}$-sequentiality: a decidable condition for $\mathrm{c}\mathrm{a}\mathrm{U}$-by-need computations in
term rewriting systems. SIAM J. Comput., $22(1):114^{-135}$, 1993.

[16] M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.
Amer. Math. Soc., 141:1-35, 1969.

[17] M. Rabin. Decidable theories. In J. Barwise, editor, Handbook of Mathematical Logic, pages
595-629. North-Holland, 1977.

[18] H. Seidl. Deciding equivalence of finite tree automata. Siam Journal of Computing,
$19(3):424-437$, 1990.

[19] R. Sekar and I. Ramakrishnan. Programming in equational logic : beyond strong sequen-
tiality. In Proc. 5th IEEE Symp. Logic in Computer Science, Philadelphia, 1990.

[20] J. Thatcher and J. Wright. Generalized finite automata with an application to a decision
problem of second-order logic. Math. Systems Theory, 2:57-82, 1968.

[21] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 134-191. Elsevier, 1990.

[22] Y. Toyama. Strong sequentiality of left linear overlapping term rewriting systems. In Proc.
7th IEEE Symp. on Logic in Computer Science, Santa Cruz, $\mathrm{C}\mathrm{A}$, 1992.

138

