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Abstract

We propose a new type of conditional term rewriting systems: lefl-z2$gh\mathrm{f}$ separated condi-
tional term rewriting systems, in which the left-hand side and the right-hand side of a rewrite
rule have separate variables. By developing a concept of weight decreasing joinability we first
present a sufficient condition for the Church-Rosser property of left-right separated conditional
term rewriting systems which may have overlapping rewrite rules. We next apply this result to
show sufficient conditions for the unique normal form property and the Church-Rosser prop-
erty of unconditional term rewriting systems which are non-duplicating, non-left-linear, and
overlapping.

1 Introduction
The original idea of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer (1990), Klop and De Vrijer (1989) for giving a simpler proof of Chew’s
theorem (Chew, 1981; Ogawa, 1992). They developed an interesting method for proving the
unique normal form property for some non-Church-Rosser, non-left-linear term rewriting system
$R$. The method is based on the fact that the unique normal form property of the original non-
left-linear term rewriting system $R$ follows the Church-Rosser property of an associated left-linear
conditional term rewriting system $R^{L}$ which is obtained from $R$ by linearizing a non-left-linear rule,
for example $Dxxarrow x$ , into a left-linear conditional rule $Dxyarrow x\Leftarrow x=y$ . Klop and Bergstra
(1986) proved that non-overlapping left-linear semi-equational conditional term rewriting systems
are Church-Rosser. Hence, combining these two results, Klop and De Vrijer (De Vrijer, 1990; Klop,
1992; Klop and De Vrijer, 1989) showed that the term rewriting system $R$ has the unique normal
form property if $R^{L}$ is non-overlapping. However, as their conditional linearization technique is
based on the Church-Rosser property for the traditional conditional term rewriting system $R^{L}$ ,
its application is restricted in non-overlapping $R^{L}$ (though this limitation may be slightly relaxed
with $R^{L}$ containing only trivial critical pairs).

In this paper, we introduce a new conditional linearization based on a left-right separated
conditional term rewriting system $R_{L}$ . The point of our linearization is that a non-left-linear
rule $Dxxarrow x$ is translated into a left-linear conditional rule $Dxyarrow z\Leftarrow x=z,$ $y=z$ in
which the left-hand side and the right-hand side have separate variables. By considering this new
system $R_{L}$ instead of a traditional conditional system $R^{L}$ we can easily relax the non-overlapping
limitation of conditional systems originated from Klop and Bergstra (1986) if the original system
$R$ is non-duplicating. Here, $R$ is non-duplicating if for any rewrite rule $larrow r$ , no variable has more
occurrences in $r$ than it has in $l$ .

By developing a new concept of weight decreasing joinability we first present a sufficient condi-
tion for the Church-Rosser property of a left-right separated conditional term rewriting system $R_{L}$
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which may have overlapping rewrite rules. We next apply this result to our conditional lineariza-
tion, and show a sufficient condition for the unique normal form property of the original system $R$

which is non-duplicating, non-left-linear, and overlapping.
Moreover, our result can be naturally applied to proving the Church-Rosser property of some

non-duplicating non-left-linear overlapping term rewriting systems such as right-ground systems.
More recently, Oyamaguchi and Ohta (1993) proved that $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{E}-_{\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}}1\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}$ right-ground term
rewriting systems are Church-Rosser by using the joinability of $\mathrm{E}$-graphs, and Oyamaguchi (1992)
extended this result into some overlapping systems. The results by conditional linearization in
this paper strengthen some part of the results by E–graphs in Oyamaguchi and Ohta (1993) and
Oyamaguchi (1992), and vice verse.

In the next section we give a concise explanation of abstract reduction systems. In section
3 we introduce a notion of weight decreasing joinability, which is a main tool used throughout
the paper to prove the Church-Rosser property of conditional term rewriting systems. Section 4
briefly explains the notions and definitions concerning term rewriting systems. In section 5 we
define a notion of left-right separated conditional term rewriting systems and sh $o\mathrm{w}$ a sufficient
condition for the Church-Rosser property of the systems. Section 6 introduces a new conditional
linearization based on left-right separated conditional term rewriting systems. By using the con-
ditional linearization technique we give a sufficient condition for the unique normal form property
of (unconditional) term rewriting systems which are non-duplicating, non-left-linear, and overlap-
ping. In Section 7 we show that the conditional linearization proposed can be used as a useful
method for proving the Church-Rosser property of some class of non-duplicating (unconditional)
term rewriting systems.

2 Reduction Systems
Assuming that the reader is familiar with the basic concepts and notations concerning reduction
systems in Klop (1992), we briefly explain notations and definitions.

A reduction system (or an abstract reduction system) is a structure $A=\langle D, arrow\rangle$ consisting
of some set $D$ and some binary relation $arrow$ on $D$ (i.e., $arrow\subseteq D\cross D$), called a reduction relation.
A reduction (starting with $x_{0}$ ) in $A$ is a finite or infinite sequence $x_{0}arrow x_{1}arrow x_{2}arrow\cdots$. The
identity of elements $x,$ $y$ of $D$ is denoted by $x\equiv y$ . $rightarrow$ is the symmetric closure of $arrow,$

$arrow*$ is
the transitive reflexive closure $\mathrm{o}\mathrm{f}arrow,$

$\mathrm{a}\mathrm{n}\mathrm{d}rightarrow*$ is the equivalence relation generated $\mathrm{b}\mathrm{y}arrow(\mathrm{i}.\mathrm{e}.$, the
transitive reflexive symmetric closure of–). We write $xarrow y$ if $yarrow x$ ; likewise $xarrow y*$ .

If $x\in D$ is minimal with respect to $arrow$ , i.e., $\neg\exists y\in D[xarrow y]$ , then we say that $x$ is a normal
form; let $NF$ be the set of normal forms. If $xarrow y*$ and $y\in NF$ then we say $x$ has a normal form
$y$ and $y$ is a normal form of $x$ .

Definition 1 $A=\langle D, arrow\rangle$ is Churc$h$-Rosser (or confluent) iff
$\forall x,$ $y,$ $z\in D[xarrow*y\wedge Xarrow z*\Rightarrow\exists w\in D,y^{arrow w\wedgearrow}Zw]*t$ .

Deflnition 2 $A=\langle D, arrow\rangle$ has unique normal forms iff
$\forall x,$ $y\in NF[Xrightarrow y*\Rightarrow x\equiv y]$ .

The following fact observed by Klop and De Vrijer (1989) plays an essential role in our lin-
earization too.

Proposition 1 [Klop and De Vrijerl Let $A_{0}=(D,$ $arrow\rangle 0$ and $A_{1}=\langle D, arrow\rangle 1$ be two reduction systems
with the sets of normal forms $NF_{0}$ and $NF_{1}$ respectively. Then $A_{0}$ has unique normal forms if
each of the following conditions holds:

$(\mathrm{i})arrow 1extendsarrow 0$ ,

(ii) $A_{1}$ is Church-RossefJ
(iii) $NF_{1}$ contains $NF_{0}$ .

Proof. Easy. $\square$
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3 Weight Decreasing Joinability

This section introduces the new concept of weight decreasing joinability. In the later sections this
concept is used for analyzing the Church-Rosser property of conditional term rewriting systems
with extra variables occurring in conditional parts of rewrite rules.

Let $N^{+}$ be the set of positive integers. $A=\langle D, arrow\rangle$ is a weighted reduction system $\mathrm{i}\mathrm{f}arrow=$

$\bigcup_{w\in N^{+}}arrow_{w}$, that is, positive integers (weights $w$ ) are assigned to each reduction step to represent
costs.

Definition 3 A proof of $xrightarrow y*$ is a sequence $P:x_{0}rightarrow_{w_{1}}x_{1}rightarrow_{w_{2}}X_{2}\cdotsrightarrow_{w_{n}}x_{n}(n\geq 0)$ such that
$x\equiv x_{0}$ and $y\equiv x_{n}$ . The weight $w(P)$ of the proof $P$ is $\sum_{\mathrm{i}=1}^{n}w_{i}$ . If $\prime P$ is a $\theta$ step sequence $(i.e.$ ,
$n=0)$, then $w(P)=0$ .

We usually abbreviate a proof $P$ of $xrightarrow y*$ by $\mathcal{P}:xrightarrow y*$ . The form of a proof may be indicated
by writing, for example, $P:xarrow\cdotarrow y**,$ $P’:xarrow\cdotarrow*$ . $arrow y$ , etc. We use the symbols $p,$ $Q,$ $\cdots$ for
proofs.

Definition 4 A weighted reduction system $A\Leftarrow\langle D, arrow\rangle$ is weight decreasing joinable iff for all
$x,$ $y\in D$ and any proof $P:xrightarrow y*$ there exists some proof $P’$ : $xarrow\cdotarrow y**$ such that $w(P)\geq w(\mathcal{P}’)$ .

It is clear that if a weighted reduction system $A$ is weight decreasing joinable then $A$ is Church-
$\mathrm{R}o$sser. We will now show a sufficient condition for the weight decreasing joinability.

Lemma 1 Let $A$ be a weighted reduction system. Then $A$ is weight decreasing joinable if for any
$x,$ $y\in D$ and any proof $P:xarrow\cdotarrow y$ one of the following conditions holds:

(i) there exists a proof $P’$ : $xrightarrow y*$ such that $w(\mathcal{P})>w(P’)$ , or

(ii) there exist proofs $P’$ : $xarrow\cdot-^{\mathrm{s}}y$ and $P”:xrightarrow*$ . $arrow y$ such that $w(P)\geq w(\mathcal{P}’)$ and $w(P)\geq$

$w(P^{;\prime})$ , or

(iii) there exists a proof 7)’ : $xarrow y$ (or $xarrow y$) such that $w(P)\geq w(P’)$ .

$Proof*\cdot$ By induction on the weight $w(Q)$ of a proof $Q:xrightarrow y*$ , we prove that there exists a proof

$Q’:x,arrow\cdotarrow y**$ such that $w(Q)\geq w(Q’)$ . Base step $(w(Q)=0)$ is trivial. Induction step: Let $Q$ :
$xrightarrow xrightarrow y\mathrm{a}\mathrm{n}\mathrm{d}*$ let $S:x’rightarrow y*$ be the subproof of $Q$ . From induction hypothesis, there exists a proof
$S’:x’arrow*.arrow y$ such that $w(S)\geq w(S’)$ . Thus, if $xarrow x’$ then we have $Q’:xarrow x’arrow\cdot-**y$ such
that $w(Q)n\geq w(Q’)$ . Otherwise we have a proof $Q”:xarrow x’arrow\cdotarrow ynn$ such that $w(Q)\geq w(Q’’)$ ,
where $arrow \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}$ a reduction of $n(n\geq 0)$ steps. By induction on $n$ we will prove that $Q’$ exists.

The case $n=0$ is trivial. Let $Q”:xarrow x’arrow z^{n-1*}arrow\cdotarrow y$ and let $P:xarrow x’arrow z$ be the subproof of
$Q”$ . Then $P$ can be replaced with $\mathcal{P}’$ satisfying one of the above conditions (i), (ii), or (iii).

Case (i). $P’$ : $xrightarrow z*$ and $w(P)>w(\mathcal{P}’)$ . Then we have $\hat{Q}:xrightarrow zarrow\cdotarrow y*\underline{n}-1*$ such that $w(Q”)\wedge>$

$w(\hat{Q})$ . Thus, by using induction hypothesis concerning the weight $w(Q)$ , we obtain $Q’$ from $Q$ .

Case (ii). $P’:xarrow z’rightarrow z*$ and $w(P)n-1\geq w(P’)*\cdot$ Then we have $\hat{Q}:xarrow z’rightarrow*zarrow\cdotarrow yn-1*$ such

that $w(Q”)\geq w(\hat{Q})$ . Let $\hat{Q}’:z’rightarrow z-arrow*$ . $arrow y$ be the subproof of $\hat{Q}$ . From induction hypothesis
concerning the $\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}w(Q\wedge)$ there exists a proof $\hat{Q}’’:z’arrow\cdotarrow y**$ such that $w(\hat{Q}’)\geq w(\hat{Q}^{;;})$ . Thus,
by replacing $\hat{Q}’$ of $Q$ with $\hat{Q}’’$ , we have $Q’$ .

Case (iii). $P’:xarrow zn-1*$ and $w(P)\geq w(\mathcal{P}’)$ . (If $P’:xarrow z$ , the claim trivially holds.) Then

we have $\hat{Q}:xarrow zarrow\cdotarrow y$ such that $w(Q”)\geq w(\hat{Q})$ . From induction hypothesis concerning the
number $n$ of reduction steps, we have $Q’$ . $\square$

The following lemma is used to show the Church-Rosser property of non-left-linear systems in
Section 7.

Lemma 2 Let $A_{0}=\langle D, arrow\rangle 0$ and $A_{1}=(D,$ $arrow\rangle 1^{\cdot}$ Let $P_{i}$ : $x_{i}rightarrow y1l(i=1, \cdots , n)$ and let $\rho=$

$\sum_{i=1}^{n}w(\mathrm{p}_{i})$ . Assume that for any a, $b\in D$ and any proof $P:arightarrow b1*$ such that $w(P)\leq\rho$ there

exist proofs $P’:aarrow carrow 11**b$ with $w(\mathcal{P}’)\leq w(P)$ and $aarrow c_{0}^{*}0*arrow b$ for some $c\in D$ . Then, there exist proofs

$P_{i}’$ : $x_{i}arrow z0*(i=1, \cdots n)$ and $Q:y_{1}^{*}rightarrow z$ with $w(Q)\leq\rho$ for some $z$ (Figure 3.1).
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Proof. By induction on $\rho$ . Base step $(\rho=0)$ is trivial. Induction step: From induction
hypothesis, we have proofs $\tilde{\mathcal{P}}_{i}$ : $x_{i}arrow Z’0*(i=1, \cdots n-1)$ and $\tilde{Q}$: $y-_{1}*z’$ for some $z’$ such that
$\sum_{i=1}^{n-}1(wP_{i})\geq w(\tilde{Q})$ . By connecting the proofs $\tilde{Q}$ and $P_{n}$ we have a proof $\hat{P}:z’rightarrow y**11rightarrow x_{n}$. Since
$\sum_{i=1}^{n-}1(wP_{i})\geq w(\tilde{Q})$ and $w(\hat{P})=w(\tilde{Q})+w(P_{n})$ , it follows that $\rho\geq w(\hat{P})$ . By the assumption,
we have proofs $\tilde{P}:z’arrow z_{1}1**arrow X_{n}$ with $\rho\geq w(\hat{P})\geq w(\overline{P})$ and $z’\sim Z^{*}00*arrow x_{n}$ for some $z$ . Thus we obtain

proofs $\mathcal{P}’::x_{i^{arrow}}z0*(i=1, \cdots,n)$ .
By combining subproofs of $\hat{P}:z’rightarrow y11*-^{\mathrm{s}}X_{n}$ and $\tilde{P}:Z’arrow z1*\mathrm{s}arrow X_{n}1$ ’ we can make $Q’:y-_{1}*z^{\prime_{arrow Z}}1*$ and

$Q”:y_{1}^{rightarrow X_{n_{1}}}l*arrow z$ . Note that $\rho+\rho\geq w(\hat{P})+w(\overline{P})=w(Q’)+w(Q’’)$. Thus $\rho\geq w(Q’)$ or $\rho\geq w(Q’’)$ .

Take $Q’$ as $Q$ if $\rho\geq w(Q’)$ ; otherwise, take $Q”$ as Q. $\square$

4 Term Rewriting Systems
In the following sections, we briefly explain the basic notions and definitions concerning term
rewriting systems (Dershowitz and Jouannaud, 1990; Klop, 1992).

Let $F$ be an enumerable set of function symbols denoted by $f,$ $g,$ $h,$ $\cdots$ , and let $\mathcal{V}$ be an enu-
merable set of variable symbols denoted by $x,$ $y,$ $z,$ $\cdots$ where $F\cap \mathcal{V}=\phi$ . By $T(\mathcal{F}, \mathcal{V})$ , we denote
the set of terms constructed from $F$ and V. $V(t)$ denotes the set of variables occurring in a term $t$ .

A substitution $\theta$ is a mapping from a term set $T(F, \mathcal{V})$ to $T(\mathcal{F}, \mathcal{V})$ such that for a term $t,$ $\theta(t)$

is completely determined by its values on the variable symbols occurring in $t$ . Following common
usage, we write this as $t\theta$ instead of $\theta(t)$ .

Consider an extra constant $\square$ called a hole and the set $T(F\cup\{\square \}, \mathcal{V})$ . Then $C\in T(F\cup\{\square \}, \mathcal{V})$

is called a context on $\mathcal{F}$. We use the notation $C[, \ldots, ]$ for the context containing $n$ holes $(n\geq 0)$ ,
and if $t_{1},$ $\ldots$ , $t_{n}\in T(\mathcal{F}, \mathcal{V})$ , then $C[t_{1}, \ldots , t_{n}]$ denotes the result of placing $t_{1},$

$\ldots$ , $t_{n}$ in the holes

a term $t$ has an occurrence of some (function or variable) symbol $e$ , we write $e\in t$. The variable
occurrences $z_{1},$ $\cdots,$ $z_{n}$ of $C[Z_{1}, \cdots, z_{n}]$ are fresh if $z_{1},$ $\cdots,$ $z_{n}\not\in C[, \cdots, ]$ and $z_{i}\not\equiv z_{j}(i\neq j)$ .

A rewrite rule is a pair $\langle l, r\rangle$ of terms such that $l\not\in \mathcal{V}$ and any variable in $r$ also occurs in $l$ .
We write $larrow r$ for $\langle l,r\rangle$ . A redex is a term $l\theta$ , where $larrow r$ . In this case $r\theta$ is called a contractum
of $l\theta$ . The set of rewrite rules defines a reduction $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}arrow$ on $T$ as follows:

$tarrow s$ iff $t\equiv C[l\theta],$ $s\equiv C[r\theta]$ for some rule $larrow r$ , and some $C[],$ $\theta$ .

When we want to specify the redex occurrence $\Delta\equiv l\theta$ of $t$ in this reduction, we write $t^{\Delta}arrow s$ .

142



Definition 5 A term rewriting system $R$ is a reduction system $R=\langle T(F, \mathcal{V}), arrow\rangle$ such that the
reduction $relationarrow onT(\mathcal{F}, \mathcal{V})$ is defined by a set of rewrite rules. When we want to specify the
term rewfiting system $R$ in the reduction relation–, we $w\mathrm{r}itearrow R^{\cdot}$ If $R$ has $larrow r$ as a rewrite

rule, we write $larrow r\in R$ .

We say that $R$ is left-linear if for any $larrow r\in R,$ $l$ is linear (i.e., every variable in $l$ occurs
only once). If $R$ has a critical pair then we say that $R$ is overlapping: otherwise non-overlapping
(Dershowitz and Jouannaud, 1990; Klop, 1992). A rewrite rule $larrow r$ is duplicating if $r$ contains
more occurrences of some variable than $l$ ; otherwise, $larrow r$ is non-duplicating. We say that $R$ is
non-duplicating if every $larrow r\in R$ is non-duplicating.

5 Left-Right Separated Conditional Systems

In this section we introduce a new conditional term rewriting system $R$ in which $l$ and $r$ of any
rewrite rule $larrow r$ $\Leftarrow x_{1}=y_{1},$ $\cdots$ , $x_{n}=y_{n}$ do $\mathrm{n}o\mathrm{t}$ share the same variable; every variable $y_{i}$ in
$r$ is connected to some variable $x_{i}$ in $l$ through the equational condition $x_{1}=y_{1},$ $\cdots,$ $x_{n}=y_{n}$ . A
decidable sufficient condition for the Church-Rosser property of $R$ is presented.

Definition 6 A left-right separated conditional term rewriting system is a conditional term rewrit-
ing system with extra variables in which every conditional rewrite rule has the form:

$larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{n}=y_{n}$

with $l,r\in T(F, \mathcal{V}),$ $V(l)=\{x_{1}, \cdots , x_{n}\}$ and $V(r)\subseteq\{y_{1}, \cdots , y_{n}\}(n\geq 0)$ such that:

(i) $l\not\in V$ is linear,

(ii) $\{X_{1}, \cdots, X_{n}\}\mathrm{n}\{y_{1}, \cdots,y_{n}\}=\phi$ ,

(iii) $x_{i}\not\equiv x_{j}$ if $i\neq j$ ,

(iv) no variable has more occurrences in $r$ than it has in the conditional part “
$x_{1}=y_{1},$ $\cdots,$ $x_{n}=$

$y_{n}"$ .

Note. In the above conditional rewrite rule, the left-hand side $l$ and the right-hand side $r$ have
separate variables, i.e., V $(l)\cap V(r)=\phi$, because of (ii). Since every variable $y_{i}$ in $r$ is connected
to some variable $x_{\dot{f}}$ in $l$ through the equational condition, it holds that $V(r\theta)\subseteq V(l\theta)$ for the
substitution $\theta=[x_{1}:=y_{1}, \cdots , x_{m}:=y_{m}]$ . Thus, $l\thetaarrow r\theta$ is an unconditional rewrite rule, and it
is non-duplicating due to (iv).

Example 1 The following $R$ is a left-right separated conditional term rewriting system:

$R$ $\{$

$f(_{X,X’})arrow g(y,y)\Leftarrow x=y,$ $X’=y$

$h(x, x’, x’)’arrow c\Leftarrow x=y,x’=y,$ $x”=y$

The following $R’$ is however not a left-right separated conditional term rewriting system since the
condition (iv) does not hold:

$R’$ $\{f(x, x’)arrow h(y, y, y)\Leftarrow x=y,x’=y$

Definition 7 Let $R$ be a left-right separated conditional term rewriting system. We inductively

define reduction $re\iota_{a}tions\overline{R_{*}.}$ for $i\geq 0$ as follows:

(i) $arrow=\phi R_{\mathrm{O}}$ ’

$\langle$

$\mathrm{i}\mathrm{i})R_{*+1}arrow.=$ { $\langle C[l\theta],$ $c[r\theta]\rangle|larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{n}=y_{n}\in R$ and $x_{j} \theta\frac{*}{R}\dot{.}y_{j}\theta(j=1,$
$\cdots$ , $n)$ }.

In the reduction $t\equiv C[l\theta]arrow_{S}R.\cdot+1\equiv C[r\theta]$ , the redex occurrence $\Delta\equiv l\theta$ is specifed by writing

$t$ A $s$ , if necessary.

Note $thatarrow R.\cdot\subseteq R_{*+1}-.arrow$ for all $i\geq 0$ . $sarrow t$ iff $sarrow tR$. for some $i$ .
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The weight $w(P)$ of a proof $\mathcal{P}$ of a left-right separated conditional term rewriting system $R$ is
defined as the total redctuton steps appearing in the recursive structure of $P$ .

Definition 8 A proof $P$ and its weight $w(P)$ are inductively defined as follows:

(i) The empty sequence $\lambda$ is a ($\theta$ step) proof of $t \frac{*}{R_{n}}t(n\geq 0)$ and $w(\lambda)=0$ .

(ii) An expression $\mathcal{P}$ :
$sarrow,\cdots,t[\mathrm{r},c1\mathrm{J},\theta,p_{1}\mathcal{P}_{m}]$

(resp.
$ts[\mathrm{r},c[],\overline{\theta,\mathrm{p}1},\cdots,pm]$

) is a proof of $s-arrow tR_{n}$ (resp.

$ts)\overline{R_{n}}$ $(n\geq 1)$ , where $\mathrm{r}$ is a rewrite rule $larrow r$ $\Leftarrow$ $x_{1}=y_{1},$ $\cdots,$ $x_{m}=y_{m}\in R,$ $C[]$

is a context, and $\theta$ is a substitution such that $t\equiv C[l\theta],$ $s\equiv C[r\theta]j$ and $\mathcal{P}_{i}$ is a proof of
$x_{i} \theta\frac{*}{R_{n-1}}y_{t}\theta$ $(i=1, \cdots, m)$ . $w(P)=1+ \sum_{i=1}^{m}w(P_{i})$ . $\mathcal{P}_{1},$ $\cdots,P_{m}$ are subproofs associated

with the proof $P$ .

(iii) $A$ finite sequence $P:P_{1}\cdots P_{m}$ $(m\geq 1)$ of proofs is a proof of $t_{0} \frac{*}{R_{n}}t_{m}$ $(n\geq 1)$ , where

$P_{i}(i=1, \cdots, m)$ is a proof of $t_{i-1}\mathrm{f}_{i}\overline{R_{n}}$
or

$t_{i-1}t_{i}\overline{R_{n}}$
. $w(P)= \sum_{i=1}^{m}w(_{\backslash }\mathcal{P}i)$ .

$P$ is a proof of $s-^{t}t$ if it is a proof of $s \frac{*}{R_{n}}t$ for some $n$ . For convenience, we often use the

abbreviations introduced in Section 3; i.e., we abbreviate a proof $\prime P$ of $srightarrow t*$ by $P:srightarrow t*$ , and the

form of a proof is indicated by writing, for example, $P:sarrow\cdotarrow t,$$P’:*\mathrm{s}sarrow\cdotarrow*$ . $arrow t,$
$\mathcal{P}’’:sarrow\cdotarrow t\Delta\Delta’$ ,

etc.
Let $larrow r\Leftarrow$ $x_{1}=y_{1},$ $\cdots$ , $x_{m}=y_{m}$ and $l’arrow r’\Leftarrow$ $x_{1}’=y_{1}’,$ $\cdots$ , $x_{n}’=y_{n}’$ be two rules in

a left-right separated conditional term rewriting system $R$ . Assume that we have renamed the
variables appropriately, so that two rules share no variables. Assume that $s\not\in V$ is a subterm
occurrence in $l$ , i.e., $l\equiv C[s]$ , such that $s$ and $l’$ are unifiable, i.e., $s\theta\equiv l’\theta$ , with the most general
unifier $\theta$ . Note that $r\theta\equiv r,$ $r’\theta\equiv r’,$ $y_{i}\theta\equiv y_{i}(i=1, \cdots,m)$ and $y_{j}’\theta\equiv y_{j}’(j=1, \cdots , n)$ as
$\{x_{1}, \cdots , x_{m}\}\cap\{y_{1}, \cdots,y_{m}\}=\phi$ and $\{x_{1}’, \cdots , x_{n}’\}\cap\{y_{1}’, \cdots,y_{n}\};=\phi$ . Since $l\equiv C[s]$ is linear and
the domain of $\theta$ is contained in $V(s),$ $c1^{s}]\theta\equiv C[s\theta]$ . Thus, from $l\theta\equiv C[s]\theta\equiv C[l’\theta]$ , two reductions
starting with $l\theta$ , i.e., $l\thetaarrow C[r’]$ and $l\thetaarrow r$ , can be obtained by using $larrow r\Leftarrow x_{1}=y_{1},$ $\cdots$ , $x_{m}=$

$y_{m}$ and $l’arrow r’\Leftarrow x_{1}’=y_{1}’’,$$\cdots,$ $x_{n}=y_{n}’$ if we assume the equations $x_{1}\theta=y_{1},$ $\cdots,$ $x_{m}\theta=y_{m}$ and
$x_{1}’\theta=y_{1}’’,$$\cdots,$

$x_{n}\theta=y_{n}’$ . Then we say that $larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{m}=y_{m}$ and $l’arrow r’\Leftarrow x_{1}’=$

$y_{1}’,$
$\cdots,$ $x_{n}’=y_{n}’$ are overlapping, and $E\vdash\langle C[r]’, r\rangle$ is a conditional critical pair associated with

the multiset of equations $E=[x_{1}\theta=y_{1}, \cdots, x_{m}\theta=y_{m}, x_{1}’\theta=y_{1}’, \cdots, x_{n}’\theta=y_{n}’]$ in $R$. We may
choose $larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{m}=y_{m}$ and $l’arrow r’\Leftarrow x_{1}’=y_{1}’,$ $\cdots,$ $x_{n}’=y_{n}’$ to be the same rule,
but in this case we shall not consider the case $s\equiv l$ . If $R$ has no critical pair, then we say that $R$

is non-overlapping.

Example 2 Let $R$ be the lefl-right separated conditional term rewriting system with the following
rewrite rules:

$R$ $\{$

$f(x’, X”)arrow g(x)\Leftarrow x’=x,$ $x”=x$
$f(y’, h(y”))arrow g(y)\Leftarrow y’=y,y=y\prime\prime$

Let $\theta=[x’:=y’, x’’:=h(y’’)]$ be the most general unifier of $f(X’, X)\prime\prime$ and $f(y’, h(y)\prime\prime)$ . By
applying the substitution $\theta$ to the conditional parts “$x’=x,$ $x”=x^{J}$’ and “$y’=y,$ $y”=y$ ” we have
the multiset of equations $E=[y’=x, h(y^{;})’=x,y’=y, y’’=y]$ . $Then_{l}$ assuming the equations
in $E,$ $g(x)arrow g(x)\thetaarrow f(X’, x’’)\theta\equiv f(y’, h(y’’))arrow g(y)$. Thus, we have a condtional critecal pair
$E\vdash\langle g(X),g(y)\rangle$ .

Note that in a left-right separated conditional term rewriting system the application of the
same rule at the same position does not imply the same result as the variables occurring in the
left-hand side of a rule do not cover that in the right-hand side: See the following example.

Example 3 Let $R$ be the left-right separated conditional term rewriting system with the following
rewrite rules:

$R$ $\{$

$f(x)arrow g(y)\Leftarrow x=y$

$aarrow c$

$barrow c$
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It is obvious that $R$ is non-overlapping. We have however two reductions $f(c)arrow g(a)$ and $f(c)arrow$

$g(b)$ , as $crightarrow a*$ and $crightarrow b*$ . Thus the $a$.pplication of the first rule at the root $position..of.f(c)$ does not
guarantee a unique result.

We next discuss how to compare the weights of abstract proofs including the assumed equations
of E. $E\mathrm{u}E’$ denotes the union of multisets $E$ and $E’$ . We write $E\subseteq E’$ if no elements in $E$ occur
more than $E’$ . ..

Definition 9 Let $E$ be a muitiset of equations $t’=s’$ and a fresh constant $\cdot$ . Then relations $t\sim sE$

and $t\sim_{E}\triangleright s$ on terms is inductively defined as follows:

(i) $t\sim[t=s]s$
.

(ii) If $t\sim sE$ then $s\sim tE^{\cdot}$

(iii) If $t\sim rE$ and $r\sim,$$sE$ then $t\sim,$$sE\mathrm{u}E^{\cdot}$

(iv) If $t\sim Es$ then $C[t]\sim C[s]E^{\cdot}$

(v) If $larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{n}=y_{n}\in R$ and $x_{i}\theta\sim.y_{i}\theta E.(i=1, \cdots,n)$ then $C[l\theta]\sim_{E}\triangleright C[r\theta]$ where
$E=E_{1}\mathrm{u}\cdots \mathrm{u}E_{n}$ .

(vi) If $t\sim_{E}\triangleright s$ then
$t\sim E\mathrm{U}[\cdot 1^{S}$

.

In the above definition the fresh constant. keeps in $E$ the number of concrete rewriting steps
appearing in an abstract proof. We write $i\propto sE$ if $s\sim_{E}\triangleright t$.

Lemma 3 Let $E=[p_{1}=q_{1}, \cdots,p_{m}=q_{m}, ., \cdots, .]$ be a multiset in which . occurs $k$ times $(k\geq 0)$,
and let $P_{i}$ : $p_{t}\theta^{*}rightarrow q_{i}\theta(i=1, \cdots,m)$ .

(1) If $t\sim Es$ then there exists a proof $Q:t\theta^{*}rightarrow s\theta$ with $w(Q) \leq\sum_{i=1}^{m}w(P_{i})+k$ .

(2) If $t\sim_{E}\triangleright s$ then there exists a proof $Q’$ : $t\thetaarrow s\theta$ with $w(Q’) \leq\sum_{i=1}^{m}w(P_{i})+k+1$ .

Proof. By induction on the construction of $t\sim s$ and $t\sim\triangleright s$ in Definition 9, we prove (1)
$E$ $E$

and (2) simultaneously. Base Step: Trivial as (i) $t\sim s$ of Definition 9. Induction Step: If we
$[t=S1$

have $t\sim sE$ by (ii) (iii) (iv) and $t\sim_{E}\triangleright s$ by (vi) of Definition 9, then from the induction hypothesis

(1) and (2) clearly follow. Assume that $t\sim_{E}\triangleright s$ by (v) of Definition 9. Then we have a rule

$larrow r\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{n}=y_{n}$ such that $t\equiv C[l\theta’],$ $s\equiv C[r\theta’],$ $x_{i}\theta’\sim y_{i}\theta’(i=1, \cdots, n)$ for some
$E_{*}$

$\theta’$ and $E=E_{1}\mathrm{u}\cdots \mathrm{u}E_{n}$ . From the induction hypothesis and $E=E_{1}\mathrm{u}\cdots \mathrm{u}E_{n}$ , it can be easily
shown that there exist proofs $Q_{i}:x_{ii}\theta’\theta^{*}rightarrow x\theta’\theta(i=1, \cdots, n)$ and $\sum_{i=1}^{n}w(Q_{i})\leq\sum_{i=1}^{m}w(P_{i})+k$.
Therefore we have a proof $Q’:t\thetaarrow s\theta$ with $w(Q’) \leq\sum_{i=1}^{m}w(P_{i})+k+1$ . $\square$

Theorem 1 Let $R$ be a left-right separated conditional term rewriting system. Then $R$ is weight
decreasing joinable if for any conditional criti $\mathrm{c}al$ pair $E\vdash\langle q, q’\rangle$ one of the following conditions
holds:

(i)
$q_{E}^{\sim},$

$q’$ for some $E’$ such that $E’\subseteq E\mathrm{U}[0]$ , or

(ii) $q\sim\triangleright\cdot\sim q’E_{1}E_{2}$ and $q\sim,$
$\cdot\propto_{2},$$q’E_{1}E$ for some $E_{1},$ $E_{2},$ $E_{1}’$ , and $E_{2}’$ such that $E_{1}\mathrm{U}E_{2}\subseteq E\mathrm{U}[\cdot]$ and

$E_{1}’’\mathrm{u}E_{2}\subseteq E\mathrm{u}[\cdot]$ , or

(iii) $q\sim\triangleright,$$q’E$ (or $qrightarrow,$
$q’$)

$E$
for some $E’$ such that $E’\subseteq E\mathrm{U}[\cdot]$ .
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Note. If $R$ has finitely many rewrite rules then $R$ has finitely many conditional critical pairs.
For each $E\vdash$ $\langle$$q,q’)$ , it is decidable whether one of the above conditions (i), (ii), or (iii) holds
since each relation between $q$ and $q’$ is restricted by an upper bound $E\mathrm{u}[\cdot]$ . Thus, the theorem
presents a decidable sufficient condition for guaranteeing the Church-Rosser property of $R$ having
finte rewrite rules.

Proof. The theorem follows from Lemma 1 if for any $P:tarrow parrow s(t\not\equiv s)$ one of the following
conditions holds: (i) there exists a proof $Q:trightarrow s*w(P)>w(Q)$ , or (ii) there exist proofs $Q_{1}$ :
$tarrow\cdotrightarrow s*$ and $Q_{2}$ : $trightarrow\wedge$ . $arrow s$ such that $w(P)\geq w(Q_{1})$ and $w(P)\geq w(Q_{2})$ , or (iii) there exists a
proof $Q:tarrow s$ (or $tarrow s$) such that $w(P)\geq w(Q)$ . Hence we will show that one of (i), (ii), or
(iii) holds for a given proof $P:tarrow parrow s$ .

Let $P:tarrow parrow\Delta\Delta’S$ where two redexes $\Delta\equiv l\theta$ and $\Delta’\equiv l’\theta’$ are associated with two rules $\mathrm{r}_{1}$ :
$larrow r\Leftarrow x_{1}=y_{1},$ $\cdots$ , $x_{m}=y_{m}$ and $\mathrm{r}_{2}:l’arrow r’\Leftarrow x_{1}’=y_{1}’,$

$\cdots,$ $x_{m}’,$ $=y_{m}’$ , respectively.
Case 1. $\Delta$ and $\Delta’$ are disjoint. Then $p\equiv C[\Delta, \Delta’]$ for some context $C[ , ]$ and $P:t\equiv$

$C[t’, \Delta’]arrow\Delta C[\Delta,$ $\Delta’1arrow\Delta’C[\Delta, s’]\equiv s$ for some $t’$ and $s’$ . Since we can take $Q_{1}=Q_{2}$ : $t\equiv C[t’, \Delta’]$

$arrow\Delta’C[t’, S’]^{\Delta}arrow C[\Delta, s’]\equiv s$ with $w(Q_{1})=w(Q_{2})=w(P),$ $(\mathrm{i}\mathrm{i})$ holds.
Case 2. $\Delta’$ occurs in $\theta$ of $\Delta\equiv l\theta$ (i.e., $\Delta’$ occurs below the pattern $l$ ). Without loss of

generality we may assume that $\mathrm{r}_{1}$ : $C_{L}[x_{1,m}\ldots, x]arrow C_{R}[y_{1,\cdots,y_{n}}]\Leftarrow x_{1}=y_{1},$
$\cdots,$ $x_{m}=y_{m}$ $($

$\mathrm{a}\mathrm{J}1$ the variable occurrences are displayed), $P’:p\equiv C[c_{L}\mathrm{I}p_{1p}, \cdots,m]]arrow\Delta t\equiv C[C_{R}1t_{1},\cdots,t_{n}]]$ with
subproofs $P_{i}$ : $p_{i}rightarrow t_{i}*(i=1, \cdots, m)$ , and $P”:p\equiv C1^{c_{\iota}}\mathrm{r}P1,p_{2},\cdots,$ $pm$ ]] $arrow S\Delta’\equiv C[C_{\iota}\mathrm{I}p_{1}’,p_{2}, \cdots,pm]]$

by $p_{1}arrow p_{1}\Delta’’$ . Thus $w(P)=w(P’)+w(P”)$ and $w(P’)=1+ \sum_{\mathrm{i}=1}^{m}w(P_{i})$ . Since we have a proof
$Q’:p_{1^{arrow}}^{\prime^{\Delta’*}}p1rightarrow t_{1}$ with $w(Q’)=w(p^{\prime;})+w(P_{1})$ , we can apply $\mathrm{r}_{1}$ to

$s\equiv C[c_{L}[p1p_{2,\cdots,p_{m} ,Q}]’,]t_{n}]]\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}w()=$

too. Then, we have a proof $Q:s\equiv C[C_{L}[p’1’\cdots,p_{m}11arrow t\equiv C1^{c_{R}}[t_{1},$ $\cdots$ ,
$1+w(Q’)+ \sum_{\mathrm{z}=2}^{m}w(p_{i})=w(P)$ . Thus, (iii) follows.

Case 3. $\Delta$ and $\Delta’$ coincide by the application of the same rule, i.e., $\mathrm{r}=\mathrm{r}_{1}=\mathrm{r}_{2}$ . (We mentioned
in Example 3 that in a left-right separated conditional term rewriting system the application of
the same rule at the same position does not imply the same result as the variables occurring in
the left-hand side of a rule do not cover that in the right-hand side. Thus this case is necessary
even if the system is non-overlapping.) Let the ruie applied to $\Delta$ and $\Delta’$ be $\mathrm{r}:C_{L}[x_{1,m}\ldots, x]arrow$

$C_{R}[y_{1}, \cdots,y_{n}]\Leftarrow x_{1}=y_{1},$ $\cdots,$ $x_{m}=y_{m}$ (all the variable occurrences are displayed, and $m\geq n$ by
the condition (iv) of Definition 6), and let $P’:p\equiv C[C_{L}1p1, \cdots,p_{m}1]arrow t\Delta\equiv C[C_{R}[t_{1}, \cdots, tn]1$ with
subproofs $P_{t}’:p_{i}rightarrow t_{i}*(i=1, \cdots, m)$ and $\mathcal{P}’’:p\equiv C[C_{L}\mathrm{r}p_{1}, \cdots ,p_{m}]]arrow S\Delta’\equiv C[c_{R[s}1, \cdots, Sn]]$ with
subproofs $\mathcal{P}’’i:p_{i}rightarrow s_{i}*(i=1, \cdots,m)$ . Here $w(P)=w(P’)+w(p”)=2+ \sum_{i=1}^{m}w(P_{i}’)+\sum_{i=1}^{m}$

$w(\mathrm{p}’’i)$ . Then, we have a $\mathrm{p}\mathrm{r}o$ of $Q:t\equiv C[C_{R[]][}t1, \cdots, tnrightarrow*cc_{R}\mathrm{r}p_{1,\cdots,p]]}nrightarrow*C1^{c_{R}}[s_{1}, \cdots, s_{n}]]$

$\equiv s$ with $w(Q)= \sum_{t=1}^{n}w(P_{i}’\mathrm{I}+\sum_{i=1}^{n}w(p’’i)<2+\sum_{i=1}^{m}w(\mathcal{P}_{i}’)+\sum_{i=1}^{m}w(p\prime\prime)i=w(P)$. (Note
that $m\geq n$ is necessary to guarantee $w(Q)<w(\mathcal{P}).)$ Hence (i) holds.

Case 4. $\Delta’$ occurs in $\Delta$ but neither Case 2 nor Case 3 (i.e., $\Delta’$ overlaps with the pattern $l$ of
$\Delta\equiv l\theta)$ . Then, there exists a conditional critical pair $[p_{1}=q_{1}, \cdots,p_{m}=q_{m}]\vdash\langle q, q’\rangle$ between

$\mathrm{r}_{1}$ and $\mathrm{r}_{2}$ , and we can write $P:t\equiv C[q\theta]^{\Delta}arrow p\equiv C[\Delta]\sim s\Delta’\equiv C[q’\theta]$ with subproofs $P_{i}:p_{i}\thetarightarrow q_{i}\theta\wedge$

$(i=1, \cdots, m)$ . Thus $w(P)= \sum_{i=1}^{m}w(P_{i})+2$ . From the assumption about critical pairs the
possible relations between $q$ and $q’$ are give in the following subcases.

Subcase 4.1. $q_{B}^{\sim},$

$q’$ for some $E’$ such that $E’\subseteq E\mathrm{u}[\cdot]$ . By Lemma 3 and $E’\subseteq E\mathrm{u}[\cdot]$ , we

have a proof $Q’:q\thetarightarrow q’\theta*$ with $w(Q’ \dot{\mathrm{I}}\leq\sum_{i=1}^{m}w(p_{t}\mathrm{I}+1<w(\mathcal{P})$ . Hence it is obtained that $Q$ :
$t\equiv C[q\theta]rightarrow_{S}*\equiv C[q’\theta]$ with $w(Q)<w(P)$ . Thus, (i) holds.

Subcase 4.2. $q\sim\triangleright\cdot\sim q’E_{1}E_{2}$ and
$q\sim E_{1}’.\triangleleft\sim,$$q’E_{2}$ for some $E_{1},$ $E_{2},$ $E_{1}’$ , and $E_{2}’$ such that $E_{1}\mathrm{U}E_{2}\subseteq E\mathrm{u}[\cdot]$

and $E_{1}’\mathrm{u}E_{2}’\subseteq E\mathrm{u}[\cdot]$. By Lemma 3 and $E_{1}\mathrm{u}E_{2}\subseteq E\mathrm{u}[\cdot]$ , we have a proof $Q’:q\thetaarrow\cdotrightarrow q’\theta*$

with $w(Q’) \leq\sum_{i=1}^{m}w(\mathcal{P}i)+2=w(P)$ . Hence we can take $Q_{1}$ : $t\equiv C[q\theta]arrow\cdotrightarrow s*\equiv C[q’\theta 1$ with
$w(Q_{1})\leq w(P)$ . Similarly we have $Q_{2}$ : $t\equiv C[q\theta]rightarrow*$ . $arrow s\equiv C[q^{;}\theta]$ with $w(Q_{2})\leq w(\mathcal{P})$ . Thus, (ii)
follows.

Subcase 4.3. $q\sim_{B},\triangleright q’$ (or $qrightarrow,$
$q’$ )

$E$

and $E’\subseteq E\mathrm{U}[\cdot]$ . By Lemma 3 and $E’\subseteq E\mathrm{U}[\cdot]$ , we have a proof
$Q’:q\thetaarrow q’\theta$ with $w(Q’) \leq\sum_{i=1}^{m}w(\mathcal{P}i)+2=w(P)$ . Hence we obtain $Q:t\equiv C[q\theta]arrow s\equiv C[q’\theta]$

with $w(Q)\leq w(P)$ . For the case of $q\infty,$$q’E$ we can obtain $Q:sarrow t$ with $w(Q)\leq w(P)$ similarly.
Thus, (iii) holds. $\square$
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Corollary 1 Let $R$ be a left-right separated conditional term rewriting system. Then $R$ is weight
decreasing joinable if $R$ is non-overlapping.

Example 4 Let $R$ be the left-right separated conditional term rewriting system with the following
rewrite rules:

$R$ $\{$

$f(x’,x”)arrow h(x, f(X, b))\Leftarrow x’=x,$ $x”=x$
$f(g(y)’,y”)arrow h(y, f(g(y), a))\Leftarrow y’=y,$ $y”=y$
$aarrow b$

Here, $R$ has the conditional critical pair
$[g(y’)=x, y”=x, y’=y,y”=y]\vdash\langle h(x, f(X,b)),$ $h(y, f(g(y),a)))$ .

Since $h(x, f(X, b))$ $\sim$ $h(y”, f(x, b))$ $\sim$ $h(y”, f(g(y’), b))$ $\sim$

$[y”=x]$ $[g(y’)=x]$ $[y”=y,y’=y]$

$h(y, f(g(y), b))\sim h(y, f(g(y),a))\mathrm{z}$ we have $h(x, f(X, b))E\sim,$ $h(y, f(g(y), a))$ where $E’=[g(y’)=$
$[\cdot]$

$x,$ $y”=x,$ $y”=y,$ $y’=y,$ $0]$ . Thus, from Theorem 1 it follows that $R$ is weight decreasing joinable.

We say that $E=[p_{1}=q_{1}, \cdots,p_{m}=q_{m}]$ is satisfiable (in $R$) if there exist proofs $P_{i}:p_{i}\thetarightarrow q_{i}\theta*$

$(i=1, \cdots , m)$ for some $\theta$ ; otherewise $E$ is unsatisfiable. Note that the satisfiability of $E$ is generally
undecidable. Theorem 1 requests that every conditional critical pair $E\vdash\langle q, q’\rangle$ satisfies (i), (ii)
or (i\"u). However, it is clear that we can ignore conditional critical pairs having unsatisfiable $E$ .
Thus, we can strengthen Theorem 1 as follows.

Corollary 2 Let $R$ be a left-right separated conditional term rewriting system. Then $R$ is weight
decreasing joinable if any conditional critical pair $E$ $\vdash$ $\langle q, q’\rangle$ such that $E$ is satisfiable in $R$

satisfies (i), (ii) or (iii) in Theorem 1.

6 Conditional Linearization
The original idea of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer (1990), Klop and De Vrijer (1989) for giving a simpler proof of Chew’s
theorem (Chew, 1981; Ogawa, 1992). In this section, we introduce a new conditional linearization
based on left-right separated conditional term rewriting systems. The point of our linearization is
that by replacing traditional conditional systems with left-right separated conditional systems we
can easily relax the non-overlapping limitation.

Now we explain a new linearization of non-left-linear rules. For instance, let consider a non-
duplicating non-left-linear rule $f(x, X, X, y, y, z)arrow g(x, X, x, Z)$ . Then, by replacing all the variable
occurrences $x,$ $x,$ $x,y,y,$ $z$ from left to right in the left handside with distinct fresh variable occur-
rences $X’,$ $X^{\prime;},$ $X^{J}\prime\prime,;,\prime yyz’’$, respectively and connecting every fresh variable to corresponding original
one with equation, we can make a left-right separated conditional rule $f(x’, x”, x”’,y’, y”, z’)arrow$
$g(x, X, x, Z)\Leftarrow x’=x,$ $x”=x,$ $x”’=x,$ $y’=y,$ $y’=y,$ $z’=z$ . More formally we have the following
definition, the framework of which originates essentially from De Vrijer (1990), Klop and De Vrijer
(1989).

Definition 10 (i) If $\mathrm{r}$ is a non-duplicating rewrite rule $larrow r$ and $l\equiv C[y_{1}, \cdots, y_{m}]$ (all the
variable occurences of $l$ are displayed), then the (left-right separated) conditional linearization
of $\mathrm{r}$ is a left-right separated conditional rewrite rule $\mathrm{r}_{L}$ : $l’arrow r$ $\Leftarrow$ $x_{1}=y_{1},$ $\cdots,$ $x_{m}=y_{m}$

where $l’\equiv C[x_{1}, \cdots , x_{m}]$ and $x_{1},$ $\cdots,$ $x_{m}$ are distinct fresh variables. Note that $l’\theta\equiv l$ for the
substitution $\theta=[x_{1}:=y_{1}, \cdots , x_{m}:=y_{m}]$ .

(ii) If $R$ is a non-duplicating term rewriting $sy_{Ste}m_{J}$ then $R_{L}$ , the conditional linearization of $R$ ,
is defined as the set of the rewrite rules $\{\mathrm{r}_{L}|\mathrm{r}\in R\}$ .

Note. The non-duplicating limitation of $R$ in the above definition is necessary to guarantee that
$R_{L}$ is a left-right separated conditional term rewriting system. Otherwise $R_{L}$ does not satisfy the
condition (iv) of Definition 6 in general.

147



The above conditional linearization is different from the original one by Klop and De Vrijer
(1989) and De Vrijer (1990) in which the left-linear version of a rewrite rule $\mathrm{r}$ is a traditional
conditional rewrite rule without extra variables in the right handside and the conditional part.
Hence, in the case $\mathrm{r}$ is already left-linear, Klop and De Vrijer (1989) and De Vrijer (1990) can take

$\mathrm{r}$ itself as its conditional linearization. On the other hand, in our definition we cannot take $\mathrm{r}$ itself
as its conditional linearization since $\mathrm{r}$ is not a left-right separated rewrite rule.

Theorem 2 If a conditional linearization $R_{L}$ of a non-duplicating term rewriting system $R$ is
Church-Rosser, then $R$ has unique normal forms.

Proof. By Propsiton 1, similar to Klop and De Vrijer (1989). $\square$

Example 5 Let $R$ be the non-duplicating term rewriting system with the following rewrite rules:

$R$ $\{$

$f(x, x)arrow h(x, f(X, b))$
$f(g(y),y)arrow h(y, f(g(y), a))$
$aarrow b$

Note that $R$ is non-lefl-linear and non-terminating. Then we have the following $R_{L}$ as the lin-
earization of $R$ :

$R_{L}$ $\{$

$f(x”’, X)arrow h(x, f(X, b))\Leftarrow x’=x,$ $x”=x$
$f(g(y’),y)\prime\primearrow h(y, f(\mathit{9}(y),a))\Leftarrow y’=y,y’’=y$

$aarrow b$

In Example 4 the Church-Rosser property of $R_{L}$ has already been shown. $Thus_{l}$ from Theorem 2
it follows that $R$ has unique normal forms.

7 Church-Rosser Property of Non-Duplicating Systems
In the previous section we have shown a general method based on the conditional linearization
technique to prove the unique normal form property of non-left-linear overlapping non-duplicating
term rewriting systems. In this section we show that the same conditional linearization technique
can be used as a general method for proving the Church-Rosser property of some class of non-
duplicating term rewriting systems.

Theorem 3 Let $R$ be a term rewriting system in which every rewrite rule $larrow r$ is right-linear
($i.e.,$ $r$ is linear) and no non-linear variables in $l$ occur in $r$ . If the conditional linearization $R_{L}$ of
$R$ is weight decreasing joinable then $R$ is Church-Rosser.

Proof. Let $R$ and $R_{L}$ have reduction relations $arrow \mathrm{a}\mathrm{n}\mathrm{d}arrow L$ respectively. $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}arrow L$ extends $arrow$

and $R_{L}$ is weight decreasing joinable, the theorem clearly holds if we show the claim: for any $t,$ $s$

and $P:t-*SL$ there exist proofs $Q:tarrow rarrow sLL5*$ with $w(P)\geq w(Q)$ and $tarrow rarrow s**$ for some term $r$ .
We will prove this claim by induction on $w(\mathcal{P})$ . Base Step $(w(P)=0)$ is trivial. Induction Step:
Let $w(P)=\rho>0$ . Form the weight decreasing joinability of $R_{L}$ , we have a proof $P’:tarrow\cdotarrow SLL*\mathrm{s}$

with $\rho\geq w(P’)$ . Let $\mathcal{P}’$ have the form $tarrow\hat{s}arrow LL*.*arrow S\iota$ . Without loss of generality we may assume
that $C_{L}[X1, \cdots, xym’ 1, \cdots, yn’\cdots, z_{1,11}\ldots, Zv, \cdots,w]p’arrow C_{R}[v, \cdots,w]\Leftarrow x_{1}=x,$ $\cdots,$ $x_{m}=x$ ,
$y_{1}=y,$ $\cdots,y_{n}=y,$ $\cdots,$ $z_{1}=z,$ $\cdots,$ $z_{p}=z,v_{1}=v,$ $\cdots,$ $w_{1}=w$ (all the variable occurrences
are displayed) is a linearization of a right-linear rewrite rule $C_{L}[x,$ $\cdots$ , $x,y,$ $\cdots,$ $y,$ $\cdots$ , $z,$ $\cdots$ , $z$ ,
$v,$ $\cdots,w]arrow C_{R}[v, \cdots, w]$ and $t\equiv C[C_{L}1t^{x}1’\ldots, t_{m}^{x}, t_{1}^{y}, \cdots , t_{n}^{y}, \cdots, t_{1}^{z}, \cdots , t_{p}^{z}, t_{1}^{v}, \cdots, t_{1}^{w}]]arrow\hat{s}\iota\equiv$

$c1^{C_{R}}[t^{v}, \cdots, t^{w}]]$ with subproofs $P_{t}^{l}:t_{iL}^{x_{rightarrow}}t^{x}\mathrm{s}(i=1, \cdots, m),$ $\mathcal{P}_{j}^{y}:t_{j}^{y}rightarrow t^{y}L*(j=1, \cdots , n),$ $\cdots,$
$\mathcal{P}_{k}^{z}$ :

$t_{k^{-^{\mathrm{s}}}L}^{z}t^{z}(k=1, \cdots,p)$ for some $t^{x},$ $t^{y},$
$\cdots,$

$t^{z}$ , and $\mathcal{P}^{v}$ : $t_{1}^{v}-^{\mathrm{s}}t^{v}L’\ldots,$ $P^{w}:t_{1}^{w}rightarrow t^{w}\iota*$ . Then, we can

take $t\equiv C[C_{L}1tx.., t_{m}1’.x, t_{1}^{y}, \cdots, t_{n}^{y}, \cdots, t_{1}^{z}, \cdots, t_{p}^{z}, t_{1}^{v}, \cdots , t_{1}^{w}]]arrow_{S’}L\equiv C[C_{R}[t_{1}v, \cdots , t_{1}^{w}]]rightarrow L*\hat{s}\equiv$

$C[C_{R[}tv, \cdots, t^{w}]]^{*}arrow\cdotarrow sLL*$ with the weight $w(P’)$ . Let $\prime P’’:t\equiv C[CL[t_{1}^{x},$
$\cdots,$

$t^{x}t^{y}m’ 1$ , $\cdots,$
$t_{n}^{y},$ $\cdots$ , $t_{1}^{z}$ ,
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$\ldots,$ $t_{p}^{z},$ $t_{1}^{v},$ $\cdots,$ $t_{1}^{w}]]arrow Ls’\equiv C[C_{R}[t_{1’ 1}v\ldots, t^{w}]]$ . Then, from Lemma 2 and the induction hypothesis

we have proofs $t_{i}^{\mathrm{z}}arrow t_{x}*\sim$ $(i=1, \cdots , m),$ $t_{j^{arrow t}}^{y*}\sim y(j=1, \cdots, n),$ $\cdots,$ $t_{k}^{z}arrow t^{\sim}*z(k=1, \cdots,p)$ . Hence we can

take the reduction $t\equiv C1^{c_{L}}[t_{1}^{x}, \cdots, t_{m}^{x},t_{1}^{y}, \cdots,t_{n’ 1}y\ldots, t^{z}, \cdots, t_{p’ 1}^{z}t_{1}^{v}, \cdots,t^{w}\wedge*]]^{\wedge}arrow c[CL[t_{x}^{\sim},$ $\cdots,$ $t_{x},$$t_{y}\sim\sim$ ,

$\ldots,$
$t_{y}^{\sim},$

$\cdots,$
$t_{z}^{\sim},$

$\cdots,$
$t_{z’ 1}\vee tv,$

$\cdots,$
$t_{1}^{w}]]arrow s’\equiv c[cR[t_{1}v\ldots, t_{1}^{w}]]$ . Let $\hat{P}:s’rightarrow sarrow\cdotarrow LL\mathrm{s}*Ls$. From $\rho>w(\hat{P})$

and induction hypothesis, we have $\hat{Q}:s’arrow rarrow_{S}\iota**\iota$ with $w(\hat{\mathcal{P}})\geq w(\hat{Q})$ and $s’arrow rarrow \mathrm{s}*s$ for some $r$ . Thus,

the theorem follows. $\square$

Corollary 3 Let $R$ be a term rewriting system in which every rewrite rule $larrow r$ is right-linear and
no non-linear variables in $l$ occur in $r$ . If the conditional linearization $R_{L}$ of $R$ is non-overlapping
then $R$ is Church-Rosser.

The following corollary was originally proven by Oyamaguchi and Ohta (1993).

Corollary 4 $fOyamaguchi\mathit{1}$ Let $R$ be a right-ground term rewriting system having a non-overlapping
conditional linearization $R_{L}$ . Then $R$ is Church-Rosser.

Example 6 Let $R$ be the term $r\mathrm{e}$ writing system with the following rewrite rules:

$R$ $\{$

$f(x,x,y)arrow h(y,c)$
$g(x)arrow f(x, c,g(_{C}))$

$carrow h(c, c)$

Note that $R$ is non-lefl-linear and non-terminating. Then we have the following $R_{L}$ as the lin-
earization of $R$ :

$R_{L}$ $\{$

$f(x’, x^{\prime;\prime},y)arrow h(y, c)\Leftarrow x’=X,$ $X’=x,y’=y$’

$g(X’)arrow f(x, c,g(c))\Leftarrow x’=x$

$carrow h(c, c)$

From Corollary 1, $R_{L}$ is Church-Rosser. Thus, from Corollary 3 it follows that $R$ is Church-Rosser.
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