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Abstract

We propose a new type of conditional term rewriting systems: left-right separated condi-
tional term rewriting systems, in which the left-hand side and the right-hand side of a rewrite
rule have separate variables. By developing a concept of weight decreasing joinability we first
present a sufficient condition for the Church-Rosser property of left-right separated conditional
term rewriting systems which may have overlapping rewrite rules. We next apply this result to
show sufficient conditions for the unique normal form property and the Church-Rosser prop-
erty of unconditional term rewriting systerns which are non-duplicating, non-left-linear, and
overlapping.

1 Introduction

The original idea- of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer (1990), Klop and De Vrijer (1989) for giving a simpler proof of Chew’s
theorem (Chew, 1981; Ogawa, 1992). They developed an interesting method for proving the
unique normal form property for some non-Church-Rosser, non-left-linear term rewriting system
R. The method is based on the fact that the unique normal form property of the original non-
left-linear term rewriting system R follows the Church-Rosser property of an associated left-linear
conditional term rewriting system R’ which is obtained from R by linearizing a non-left-linear rule,
for example Dzz — z, into a left-linear conditional rule Dzy — z <= 2 = y. Klop and Bergstra
(1986) proved that non-overlapping left-linear semi-equational conditional term rewriting systems
are Church-Rosser. Hence, combining these two results, Klop and De Vrijer (De Vrijer, 1990; Klop,
1992; Klop and De Vrijer, 1989) showed that the term rewriting system R has the unique normal
form property if R” is non-overlapping. However, as their conditional linearization technique is
based on the Church-Rosser property for the traditional conditional term rewriting system RE,
its application is restricted in non-overlapping RL (though this limitation may be slightly relaxed
with R” containing only trivial critical pairs). -

In this paper, we introduce a new conditional linearization based on a left-right separated
conditional term rewriting system Rjy. The point of our linearization is that a non-left-linear
rule Dzz — z is translated into a left-linear conditional rule Dzxy — z & ¢ = 2,y = 2 in
which the left-hand side and the right-hand side have separate variables. By considering this new
system Ry, instead of a traditional conditional system RY we can easily relax the non-overlapping
limitation of conditional systems originated from Klop and Bergstra (1986) if the original system
R is non-duplicating. Here, R is non-duplicating if for any rewrite rule I — r, no variable has more
occurrences in r than it has in L

By developing a new concept of weight decreasing joinability we first present a sufficient condi-
tion for the Church-Rosser property of a left-right separated conditional term rewriting system R,
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which may have overlapping rewrite rules. We next apply this result to our conditional lineariza-
tion, and show a sufficient condition for the unique normal form property of the original system R
which is non-duplicating, non-left-linear, and overlapping.

Moreover, our result can be naturally applied to proving the Church-Rosser property of some
non-duplicating non-left-linear overlapping term rewriting systems such as right-ground systems.
More recently, Oyamaguchi and Ohta (1993) proved that non-E-overlapping right-ground term
rewriting systems are Church-Rosser by using the joinability of E-graphs, and Oyamaguchi (1992)
extended this result into some overlapping systems. The results by conditional linearization in
this paper strengthen some part of the results by E-graphs in Oyamaguchi and Ohta (1993) and
Oyamaguchi (1992), and vice verse.

In the next section we give a concise explanation of abstract reduction systems. In section
3 we introduce a notion of weight decreasing joinability, which is a main tool used throughout
the paper to prove the Church-Rosser property of conditional term rewriting systems. Section 4
briefly explains the notions and definitions concerning term rewriting systems. In section 5 we
define a notion of left-right separated conditional term rewriting systems and show a sufficient
condition for the Church-Rosser property of the systems. Section 6 introduces a new conditional
linearization based on left-right separated conditional term rewriting systems. By using the con-
ditional linearization technique we give a sufficient condition for the unique normal form property
of (unconditional) term rewriting systems which are non-duplicating, non-left-linear, and overlap-
ping. In Section 7 we show that the conditional linearization proposed can be used as a useful
method for proving the Church-Rosser property of some class of non-duplicating (unconditional)
term rewriting systems.

2 Reduction Systems

Assuming that the reader is familiar with the basic concepts and notations concerning reduction
systems in Klop (1992), we briefly explain notations and definitions.

A reduction system (or an abstract reduction system) is a structure A = (D, —) consisting
of some set D and some binary relation — on D (i.e., =C D x D), called a reduction relation.
A reduction (starting with zg) in A is a finite or infinite sequence zg — z; — 23 — ---. The
identity of elements 2, y of D is denoted by z = y. < is the symmetric closure of —, > is
the transitive reflexive closure of —, and <> is the equivalence relation generated by — (i.e., the

transitive reflexive symmetric closure of —). We write z « y if y — z; likewise = <~ y.
If z € D is minimal with respect to —, i.e., =3y € D[z — y], then we say that z is a normal

form; let NF be the set of normal forms. If z 5y and y € NF then we say z has a normal form
y and y is a normal form of z.

Definition 1 A = (D, —) is Church-Rosser (or confluent) iff
Vz,y,2 € Dz SyAzSz=Iwe DySwAzSw

Definition 2 A = (D, —) has unique normal forms iff
Vz,y € NFlz Sy =z =y

The following fact observed by Klop and De Vrijer (1989)-pla,ys an essential role in our lin-
earization too.

Proposition 1 [Klop and De Vrijer| Let Ay = (D’?) and A, = {D, T») be two reduction systems

with the sets of normal forms NFy and NF; respectively. Then Ay has unique normal forms if
each of the following conditions holds:

(i) T extends Y
(ii) A, is Church-Rosser,
(iii) NF; contains NFy.

Proof. Basy. O



3 Weight Decreasing Joinability

This section introduces the new concept of weight decreasing joinability. In the later sections this
concept is used for analyzing the Church-Rosser property of conditional term rewriting systems
with extra variables occurring in conditional parts of rewrite rules.

Let N* be the set of positive integers. A = (D, =) is a weighted reduction system if —=
UwenN+ —w, that is, positive integers (welghts w) are a551gned to each reduction step to represent
costs.

Definition 3 A proof of £ <y 15 a sequence P: Ty iy, Ty Oy Lo S, Tn (1> 0) such that
z =1z9 and y = ,. The weight w(P) of the proof P is' Y 1=, w;. If P is a 0 step sequence (i.e.,
n=0), then w(P) =0.

We usually abbreviate a proof P of z &y by P z&y. The form of a proof may be indica.ted
by writing, for example, P: z -y, P't = — S e y, etc. We use the symbols P, Q,--- for
proofs.

Definition 4 A weighted reduction system A = (D, —) is weight decreasing joinable iff for all
z,y € D and any proof P: xSy there exists some proof P': z - &y such that w(P) > w(P').

It is clear that if a weighted reduction system A is weight decreasing joinable then A is Church-
Rosser. We will now show a sufficient condition for the weight decreasing joinability.

Lemma 1 Let A be a weighted reduction system. Then A is weight decreasing joinable if for any
z,y € D and any proof P: z — - — y one of the following conditions holds:

(i) there exists a proof P' : x>y such that w(P) > w(P’), or

(ii) there ezist proofs P': z — -y and P": & — y such that w(P) > w(P’) and w(P) 2
w(P"), or

(iii) there ezists a proof P' : @ — y (or z — y) such that w(P) > w(P’).

Proof. By induction on the weight w(Q) of a proof Q : x5y, we prove that there exists a proof
Q' z-5 . &y such that w(Q) > w(Q'). Base step (w(Q) = 0) is trivial. Induction step: Let Q:
zez <—>y a.nd let S : z'Sy be the subproof of Q. From induction hypothesis, there ex:lsts a proof
S z' 5. &y such that w(S) > w(S’). Thus, if z — 2’ then we have Q": ¢ — 2’ 5. &y such

that w(Q) > w(Q'). Otherwise we have a proof Q": z — z' 5. &y such that w(Q) > w(Q"),
where = denotes a reduction of n (n > 0) steps. By induction on n we will prove that Q' exists.

The case n = 0 is trivial. Let Q": z — z' — z2=3-& y and let P: z — &’ — z be the subproof of
Q". Then P can be replaced with P’ satisfying one of the above conditions (i), (ii), or (iii).

Case (i) P :z &z and w(P) > w(P’). Then we have Q:zSz Lt & y such that w(Q':) >
w(Q). Thus, by using induction hypothesis concerning the weight w(Q), we obtain Q' from Q.

Case (ii). P': ¢ — 2' Sz and w(P) > w(P'). Then we have Oz — 2’5223 Ey such
that w(Q") > w(Q). Let Q' 2 1A 2235 &y be the subproof of Q. From induction hypothesis
concerning the weight w(Q) there exists a proof g": 2’ 5. &y such that w(Q’) > w(g"). Thus,
by replacing Q' of Q with 0", we have Q'.

Case (iii). P': z « z and w(P) > w(P’). (If ’P’ :z — z, the claim trivially holds.) Then

we have Q: z «— 2275 & y such that w(Q" )2 w(Q) From induction hypothesm concermng the
number n of reduction steps, we have Q'. O

The following lemma is used to"show the Church-Rosser property of non-left-linear systems in
Section 7. '

Lemma 2 Let Ay = (D, —-») and A, = (D, -—») Let P;: z,«-—»y (i = -,n) and let p =
Son, w(P;). Assume that for any a,b € D and any proof P: aHb such that w(P) < p there
exist proofs P': a.—1+c<1—b with w(P') < w(P) and a?c?b for some c € D. Then, there ezist proofs
P :z:,-—;w (i=1,---n) and Q: y«-;:»z with w(Q) < p for some z (Figure 3.1).
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Proof. By induction on p. Base step (p = 0) is trivial. Induction step: From induction
hypothesis, we have proofs P;: zi%z' (¢=1,--n—1) and 0 y«%z’ for some 2’ such that

Srtw(P) > w(Q). By connecting the proofs Q and P, we have a proof P: z'%y«-;-»zn. Since

Y w(Ps) > w(Q) and w(P) = w(Q) + w(P,), it follows that p > w(P). By the assumption,
we have proofs P: z'—:-)zq—m,, with p > w(P) > w(P) and z'—;*zi—:vn for some 2. Thus we obtain

proofs P’';: zi%z (t=1,---,n).

By combining subproofs of P: z'«%y%xn and P: z’—:>z«:—zn, we can make Q': y%z’-:—w and
Q" y«%mn—:»z. Note that p+p > w(P) +w(P) = w(Q') + w(Q"). Thus p > w(Q’) or p > w(Q").
Take Q' as Q if p > w(Q'); otherwise, take Q" as Q. O ‘

4 Term Rewriting Systems

In the following sections, we briefly explain the basic notions and definitions concerning term
rewriting systems (Dershowitz and Jouannaud, 1990; Klop, 1992).

Let F be an enumerable set of function symbols denoted by f,g,h,---, and let V be an enu-
merable set of variable symbols denoted by z,y, z,--- where F NV = ¢. By T(F, V), we denote
the set of terms constructed from F and V. V(t) denotes the set of variables occurring in a term ¢.

A substitution 8 is a mapping from a term set T'(F,V) to T(F, V) such that for a term ¢, 6(¢)
is completely determined by its values on the variable symbols occurring in ¢. Following common
usage, we write this as tf instead of 6(t).

Consider an extra constant O called a hole and the set T(FU{O}, V). Then C € T(FU{O},V)
is called a context on F. We use the notation C[,..., ] for the context containing n holes (n > 0),
and if ty,...,t, € T(F,V), then Clt1,...,t,] denotes the result of placing ¢,,...,¢, in the holes
of C[,..., ] from left to right. In particular, C[ ] denotes a context containing precisely one hole.
s is called a subterm of ¢t if ¢t = C[s]. If s is a subterm occurrence of ¢, then we write s C t. If
a term t has an occurrence of some (function or variable) symbol e, we write e € t. The variable
occurrences 2j,---, 2z, of Clzy,- -+, z,] are fresh if 2,,--+,2, € C[ ,---, | and z; £ z; (¢ # j).

A rewrite rule is a pair ([, 7) of terms such that ! ¢ V and any variable in r also occurs in I.
We write | — r for (I,7). A redex is a term 16, where { — r. In this case 7@ is called a contractum
of 10. The set of rewrite rules defines a reduction relation — on T as follows:

t — s iff t = C[16], s = C[rf] for some rule Il — r, and some C[ ], 6. -

When we want to specify the redex occurrence A =16 of t in this reduction, we write ¢ L.



Definition 5 A term rewriting system R is a reduction system R = (T(F,V),—) such that the
reduction relation — on T(F,V) is defined by a set of rewrite rules. When we want to specify the
term rewriting system R in the reduction relation —, we write re If R hasl — r as a rewrite

rule, we writel — r € R.

We say that R is left-linear if for any { — r € R, [ is linear (i.e., every variable in I occurs
only once). If R has a critical pair then we say that R is overlapping: otherwise non-overlapping
(Dershowitz and Jouannaud, 1990; Klop, 1992). A rewrite rule I — r is duplicating if r contains
more occurrences of some variable than [; otherwise, I — r is non-duplicating. We say that R is
non-duplicating if every ! — r € R is non-duplicating.

5 Left-Right Separated Conditional Systems

In this section we introduce a new conditional term rewriting system R in which [ and r of any
rewrite rule [ — * < 2, = y1, -+, %, = ¥, do not share the same variable; every variable y; in
r is connected to some variable z; in [ through the equational condition z; = ¥1,--*,%n = Yn. A
decidable sufficient condition for the Church-Rosser property of R is presented.

Definition 6 A left-right separated conditional term rewriting system is a conditional term rewrit-
ing system with eztra variables in which every conditional rewrite rule has the form:

l—=r & z1=9%,",Tn="Yn
with L,y € T(F,V), V(1) = {21, -, 22} and V(r) C {y1,"*-,¥n} (n > 0) such that:

(i) 1 ¢ V is linear,
(ii) {mh'"’mn}n{yla"'ayn} =¢,
(i) 2; #z; if 1 # J,

(iv) no variable has more occurrences in v than it has in the conditional part “zy =y, -+, 2n =
” .

Yn"

Note. In the above conditional rewrite rule, the left-hand side [ and the right-hand side r have
separate variables, i.e., V(I) N V(r) = ¢, because of (ii). Since every variable y; in r is connected
to some variable z; in { through the equational condition, it holds that V(r8) C V(i) for the

substitution 6 = [2; 1= y1," "+, Tm := Ym). Thus, [§ — rf is an unconditional rewrite rule, and it.

is non-duplicating due to (iv).

Example 1 The following R is a left-right separated conditional term rewriting system:

R flz,z") = g(y,y) €z =y,2" =y
h(m7z'am") —CEZ =y7m, =y,.’l)" =Y

The following R' is however not a left-right separated conditional term rewriting system since the
condition (iv) does not hold:

R { f(z,2') = h(y,p,9) €z =y,2' =y

Definition 7 Let R be a left-right separated conditional term rewriting system. We inductively
define reduction relations o for i > 0 as follows:

(l) _R:) = ¢, ‘
(ii) = {{(clie),Clrd]) | Ll =r < 2y =91, ", Zn=Yn ER andm,-ﬂ%yjﬂ G=1---,n)}
In the reduction t = C|[l6) S 8S C[r6], the redex occurrence A = 16 is specifed by writing
i+ 1
t4 s, if necessary.

Note that 2 C —— forallt20. s>t z'jfs-?t for some .
i i+1 i
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The weight w(P) of a proof P of a left-right separated conditional term rewriting system R is
defined as the total redctuton steps appearing in the recursive structure of P.

Definition 8 A proof P and its weight w(P) are inductively defined as follows:
(i) The empty sequence X is a (0 step) proof oft<—R*—>t (n>0) and w(A) = 0.

(ii) An ezpression P : s t (resp. t s ) is a proof of s—}-z—>t (resp.

— —

[I',C[ ],O,Pl,n-,'}’m] [rvc[ ],0,1’1,-",7’,,,]

t<R—s) (n > 1), wherer is a rewrite rule | - 1 < ) = Y1, ,Tm = Ym € R, C[ ]

is (;contezt, and 0 is a substitution such that t = C[16}, s = C[r8], and P; is a proof of

mﬁ;—i—»y,’o G=1,-,m). w(P)=1+3 7, w(Pi). Pr,--,Pm are subproofs associated
n—1

with the proof P.

(iii) A finite sequence P : P1---Pm ( m > 1) of proofs is a proof of to <R;>tm (n > 1), where
P; (i=1,---,m) is a proof of t;_; ot or tiy — t;. w(P) =Y, w(P;).

. * ap e . * .
P is a proof of s =t if it is a proof of s Tt for some n. For convenience, we often use the

abbreviations introduced in Section 3; i.e., we abbreviate a proof P of s <>t by P: sést, and the
form of a proof is indicated by writing, for example, P: s 5 - &~t, P': s - 5. — t, P": s&. gt,
etc.

Let l 57 < 21 =vy1, " ,&Zm =ymand ' = v &< z{ =y],---,2, = y, be two rules in
a left-right separated conditional term rewriting system R. Assume that we have renamed the
variables appropriately, so that two rules share no variables. Assume that s ¢ V is a subterm
occurrence in [, i.e., [ = C[s], such that s and !’ are unifiable, i.e., s6 = '8, with the most general
unifier . Note that r6 = r, P8 =1, yf = y; (i = 1,---,m)and y;0 = y; (j = 1,---,n) as
{z1, - zm} N {y1, -, ym} = ¢ and {a, -,z } N{yl, -, yn} = ¢. Since | = C|[s] is linear and
the domain of 8 is contained in V(s), C[s]6 = C[s6]. Thus, from 1§ = C[s]é = C[I'6], two reductions
starting with 16, i.e., 1§ — C[r'] and 1§ — r, can be obtained by usingl = r < 2, =y1, -+, Zm =
ymand ! = 1’ &« zf =y, -z}, =y}, if we assume the equations 2,6 =y, -, 2,0 = ¥y, and
210 =y, ---,z.0 = y,. Then wesay that l = r < 2 =91, ", Zm = ymand I’ = ' < 2| =
yi,---, @, =y, are overlapping, and E + (C[r],7) is a conditional critical pair associated with
the multiset of equations £ = [216 = y1,- -+, Zmb = Ym, 10 = 1, -+, .0 = y,] in R. We may
choose l = r < 23 =41, ", &m = Yym and I' - v/ & 2z} =y1,---,z), =y, to be the same rule,
but in this case we shall not consider the case s =[. If R has no critical pair, then we say that R
is non-overlapping.

Example 2 Let R be the left-right separated conditional term rewriting system with the following
rewrite rules:

R { fla', 2"y > g(z) <2’ =z,2" =2
f ") - 9ly) €y =v,9" =y
Let 0 = [z’ := y',2" := h(y")] be the most general unifier of f(z',2") and f(y',h(y")). By
applying the substitution 0 to the conditional parts “z’' = z,2" = 2” and Yy’ = y,y" = y” we have
the multiset of equations E = [y’ = z,h(y") = 2,y' = v,y = y]. Then, assuming the equations
in E, g(z) «— g(z)0 — f(«',2")0 = f(v',h(y")) — g(y). Thus, we have a condtional critecal pair
E + {g(z),9(y))-

Note that in a left-right separated conditional term rewriting system the application of the
same rule at the same position does not imply the same result as the variables occurring in the
left-hand side of a rule do not cover that in the right-hand side: See the following example.

Example 3 Let R be the left-right separated conditional term rewriting system with the following
rewrite rules:
fe)—-9(y) 2=y
R a—c
b—c
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It is obvious that R is non-overlapping. We have however two reductions f(c) — g(a) and f(c) —
g(b), as cSa and cb. Thus the applzcatzon of the first rule at the root position of f(c) does not
guarantee a umque result.

We next discuss how to compare the weights of abstract proofs including the assumed equations
of E. EUE' denotes the union of multisets E and E'. We write E C E’ if no elements in £ occur
more than E’.

Definition 9 Let E be a multiset of equations t' = s’ and a fresh constant o. Then relations t«;s

and tr\éb s on terms is inductively defined as follows:
1) t ~ s.

@t~

i) If t~ ~t.

() If EsthensEt

(iii) Ift;r and r~s then t S

(iv) Ift;s then C[t]fEC[s]. | | |

W) Ifilor € 2=y, ", Zn=yn € R and xiegyiﬂ (¢=1,---,n) then C[l6)] }DC[TG] where
E=E U---UE,. '

(vi) Iftr;)bs then tE~ s.

U[e]

In the above definition the fresh constant @ keeps in E the number of concrete rewriting steps
appearing in an abstract proof. We write tqév sif s ~> t.

Lemma 3 Let E =[p1 = q1," " ,Pm = qm, ®, - -, 8] be a multiset in which & occurs k times (k > 0),
and let P;: pi0<—‘->q,~0 (t=1,---,m).

(1) Ift~ s then there ezists a proof Q: 0«58 with w(Q) < 3.1, w(P;) + k.
(2) Ift~l>s then there ezists a proof Q': t9—s8 with w(Q’) <Y w(P)+k+1.

Proof. By induction on the construction of t;;s and tf;)bs in Definition 9, we prove (1)

and (2) simultaneously. Base Step: Trivial as (i) t[~]s of Definition 9. Induction Step: If we
t=s

have tv}; s by (ii) (iii) (iv) and t'}'gp s by (vi) of Definition 9, then from the induction hypothesis
(1) and (2) clearly follow. Assume that t«bbs by (v) of Definition 9. Then we have a rule
l—7r & zy =14, ,%, = Y, such that t = C[1¢'], s = C[r¢'], mia’Ein' (t=1,---,n) for some
¢ and E = E, U---U E,. From the induction hypothesis and E = F, U-.-U E,, it can be easily

shown that there exist proofs Q;: z;6'052;0'0 (i = 1,---,n) and Y oo, w(Q;) < Yoim, w(P;) + k.
Therefore we have a proof Q': t6 — s8 with w(Q') < Y-, w(P;)+k+1. O

Theorem 1 Let R be a left-right separated conditional term rewriting system. Then R is weight
decreasing joinable if for any conditional critical pair E + {g,q') one of the following conditions
holds:

(i) ¢ Er;q’ for some E’ such that E' C E U o], or
(ii) gyp q' and 9~ -%vq' for some Ey, E,, E, and E), such that E; U E;, C E U [e] and
1 2 1 2

EiUE,C EUle, or

(iii) ¢5> q" (or q%xlaq') for some E' such that E' C E U [e].
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Note. If R has finitely many rewrite rules then R has finitely many conditional critical pairs.
For each E F (g,¢'), it is decidable whether one of the above conditions (i), (ii), or (iii) holds
since each relation between ¢ and ¢’ is restricted by an upper bound E U [¢]. Thus, the theorem
presents a decidable sufficient condition for guaranteeing the Church-Rosser property of R having
finte rewrite rules.

Proof. The theorem follows from Lemma 1 if for any P: t—p—s (t # s) one of the following
conditions holds: (i) there exists a proof Q: t&s w(P) > w(Q), or (ii) there exist proofs Q:
t = -Ssand Qp t<- — s such that w(P) > w(Q1) and w(P) > w(Q2), or (iii) there exists a
proof @ : t — s (or t « s) such that w(P) > w(Q). Hence we will show that one of (i), (ii), or
(iii) holds for a given proof P: t—p—ss.

Let P: te-pé-:s where two redexes A = [# and A’ = I'¢?’ are associated with two rules r;:
lor< =y, Zm=Ymandry: ' - 7' & 2| =y], -+, 2, =y}, respectively.

Case 1. A and A’ are disjoint. Then p = C[A, A’] for some context C[ , | and P: t =
Cclt, A’]«A—C[A,A’] EN C[A,s') = s for some ¢’ and s'. Since we can take Q; = Q,: t = C[t/,A']
% ct,s1EC(A, o] = s with w(Q;) = w(Qz) = w(P), (ii) holds.

Case 2. A’ occurs in 6 of A = 16 (i.e., A’ occurs below the pattern [). Without loss of
generality we may assume that ry: Cplzq,---, 2] = Crlyr, %0 € 1 = 91, ,Tm = Ym (
all the variable occurrences are displayed), P': p = C[CL[py, -, Pm]|]> t=C[Crl[t1, - ,tn]] with
subproofs P;: p; & t; (" =1,---,m), and P": p= C[CL[phPZf “y Pmll S = C[CL[pivp% =, Pl
by plﬁbp'l. Thus w(P) = w(P’') + w(P”) and w(P’') = 1+ Y-, w(P;). Since we have a proof
Q" p'ch—pl Sty with w(Q') = w(P") + w(Py), we can apply ry to s = C[CL[p},p2, -~ -, Pm)]
too. Then, we have a proof Q: s = C[Cy[p}, --,pm]] = t = C[Cg[t, ---, t,]] with w(Q) =
14+ w(Q') + Y=, w(P;) = w(P). Thus, (iii) follows.

Case 3. A and A’ coincide by the application of the same rule, i.e.,r =r; =r;. (We mentioned
in Example 3 that in a left-right separated conditional term rewriting system the application of
the same rule at the same position does not imply the same result as the variables occurring in
the left-hand side of a rule do not cover that in the right-hand side. Thus this case is necessary
even if the system is non-overlapping.) Let the rule applied to A and A’ be r: Cr[z1,---,Zm] —
Crly1,--*,¥n] < %1 =1, -, Zm = ym ( all the variable occurrences are displayed, and m > n by
the condition (iv) of Definition 6), and let P': p = C’[C’L[pl,---,pm]]-ﬁt = C[Cglty,- - -, tn]] with
subproofs P';: p; & ¢t; (i = 1,--+-,m) and P": p = C[Cy[py,- - ,pm]]ﬁis = C[CRgls1, ", sz]] with -
subproofs P";: p; & s; (i = 1,---,m). Here w(P) = w(P') + w(P") =2+ L7, w(P’) + Sy
w(P";). Then, we have a proof Q: t = C[Cglt1, - -, tn]] & C[Cr[p1,-- - ,pn]] & C[Crls1,- -, 5n]]
= 5 with w(Q) = T1, w(P',) + Ty w(P") < 24 3o, w(Ps) + Ty w(P:) = w(P). (Note
that m > n is necessary to guarantee w(Q) < w(P).) Hence (i) holds.

Case 4. A’ occurs in A but neither Case 2 nor Case 3 (i.e., A’ overlaps with the pattern [ of
A = 16). Then, there exists a conditional critical pair [py = g1, -+, Pm = gm] + (g,¢') between
r; and r3, and we can write P: t = C[q0]£—p = C[A]e-:s = C|[q'6] with subproofs P;: p;f < q;0
(¢ =1,---,m). Thus w(P) = }-, w(P;) + 2. From the assumption about critical pairs the
possible relations between ¢q and ¢’ are give in the following subcases.

Subcase 4.1. q;}a’q’ for some E' such that E' C E Li[e]. By Lemma 3 and E' C E U [e], we

have a proof Q': g6 & ¢'0 with w(Q') < 7 w(P;) + 1 < w(P). Hence it is obtained that Q:
t = Clgb] < s = C[q'6] with w(Q) < w(P). Thus, (i) holds.
Subcase {.2. q gglloy ¢’ and ¢ ~ -QEyq’ for some E,, E,, E{, and E} such that Ey U E, C EU[e]
1 2

1 2
and E{ U E} C E U[e]. By Lemma 3 and E, U E, C E U [e], we have a proof Q': ¢f — - ¢’
with w(Q') < 37, w(P;) + 2 = w(P). Hence we can take Q;: t = C[g8] — - & s = C[q'6] with
w(Q) < w(P). Similarly we have Qs: t = C[gb] - — s = Clq'6] with w(Qs) < w(P). Thus, (ii)
WwS.
fou(:ﬁ'ubcase {3 q o g (org ) ¢'}and E' C EU[e]. By Lemma 3 and E’' C ELi[e], we have a proof
Q': g0 — ¢'0 with w(Q') < 7, w(P;) + 2 = w(P). Hence we obtain Q: t = C[qf] — s = C[q'6)
with w(Q) < w(P). For the case of q<}v;q’ we can obtain Q: s « ¢t with w(Q) < w(P) similarly.
Thus, (iii) holds. O



Corollary 1 Let R be a left-right separated conditional term rewriting system. Then R is weight
decreasing joinable if R is non-overlapping.

Example 4 Let R be the left-right separated conditional term rewriting system with the following
rewrite rules:
f(z',2") — h(z, f(z,b)) «2' =z,2" =2
R q f(9(y),9") = by, fl9(¥).0)) ¥ =99 =y

a—b

Here, R has the conditional critical pair
[9(¢') =z,¥" =2,y =y,9y" =9] F (A(z, f(z,b)), h(y, f(9(3),a)))-

Since h(z, f(z,b)) ~ h(y",f(z,b)) ~  h(y", f(g(¥'),b)) ~
[y"'=z} [9(y")==] [v"'=y,y'=y]

h(y, £(9(y);0)) o My: F9(v), @), we have h(z, f(z,b)) 5 Ay, F(g(v), ) where E =g(y) =
z,y" =2,y =y,¥ =y,e|. Thus, from Theorem 1 it follows that R is weight decreasing joinable.

We say that E = [p1 = q1,---,Dm = gm] is satisfiable (in R) if there exist proofs P;: p;6<>g;0
(¢ =1,---,m) for some 8; otherewise E is unsatisfiable. Note that the satisfiability of £ is generally
undecidable. Theorem 1 requests that every conditional critical pair E F (g,q’) satisfies (i), (ii)
or (iii). However, it is clear that we can ignore conditional critical pairs having unsatisfiable E.
Thus, we can strengthen Theorem 1 as follows.

Corollary 2 Let R be a left-right separated conditional term rewriting system. Then R is weight
decreasing joinable if any conditional critical pair E + (q,q') such that E is satisfiable in R
satisfies (i), (ii) or (iii) in Theorem 1.

6 Conditional Linearization

The original idea of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer (1990), Klop and De Vrijer (1989) for giving a simpler proof of Chew’s
theorem (Chew, 1981; Ogawa, 1992). In this section, we introduce a new conditional linearization
based on left-right separated conditional term rewriting systems. The point of our linearization is
that by replacing traditional conditional systems with left-right separated conditional systems we
can easily relax the non-overlapping limitation.

Now we explain a new linearization of non-left-linear rules. For instance, let consider a non-
duplicating non-left-linear rule f(z,z,z,y,¥,2) — 9(2, %, 2, 2). Then, by replacing all the variable
occurrences z, Z, ¢, ¥, Yy, 2 from left to right in the left handside with distinct fresh variable occur-
rences z', 2", 2", y', y", 2’ respectively and connecting every fresh variable to corresponding original
one with equation, we can make a left-right separated conditional rule f(2',z",2",y’, y", 2') —
9(z,z,2,2) =2’ =z,2" =2,2" =2,y =y,y =y,2 = z. More formally we have the following
definition, the framework of which originates essentially from De Vrijer (1990), Klop and De Vrijer
(1989).

Definition 10 (i) If r is ¢ non-duplicating rewrite rule | — r and | = Clyy,---, ym] (all the
variable occurences of l are displayed), then the (left-right separated) conditional linearization
of r is a left-right separated conditional rewrite rulery: I' = r & 1 =91, ", Zm = Ym
where ! = Clz1,-++,%m| and 21,- -+, T, are distinct fresh variables. Note that I'60 =1 for the
substitution 0 = [z1 := Y1, , Zm = Ym).

(ii) If R is a non-duplicating term rewriting system, then Ry, the conditional linearization of R,
is defined as the set of the rewrite rules {ry|r € R}.

Note. The non-duplicating limitation of R in the above definition is necessary to guarantee that
Ry is a left-right separated conditional term rewriting system. Otherwise R does not satisfy the
condition (iv) of Definition 6 in general.
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The above conditional linearization is different from the original one by Klop and De Vrijer
(1989) and De Vrijer (1990) in which the left-linear version of a rewrite rule r is a traditional
conditional rewrite rule without extra variables in the right handside and the conditional part.
Hence, in the case r is already left-linear, Klop and De Vrijer (1989) and De Vrijer (1990) can take
r itself as its conditional linearization. On the other hand, in our definition we cannot take r itself
as its conditional linearization since r is not a left-right separated rewrite rule.

Theorem 2 If a conditional linearization Ry of a non-duplicating term rewriting system R is
Church-Rosser, then R has unique normal forms.

Proof. By Propsiton 1, similar to Klop and De Vrijer (1989). O

Example 5 Let R be the non-duplicating term rewriting system with the following rewrite rules:

£(2,2) = h(z, (,b)
R f(9(¥),y) = h(y, f(9(3),a))

a—b

Note that R is non-left-linear and non-terminating. Then we have the following Ry as the lin-
earization of R:

f(z',2") — h(z, f(z,b)) « 2’ = , =z
RL Fe("),y") = h(y, f9(¥),0)) ¥/ =y,9" =y

a—b

In Example 4 the Church-Rosser property of Ry has already been shown. Thus, from Theorem 2
it follows that R has unique normal forms.

7 Church-Rosser Property of Non-Duplicating Systems

In the previous section we have shown a general method based on the conditional linearization
technique to prove the unique normal form property of non-left-linear overlapping non-duplicating
term rewriting systems. In this section we show that the same conditional linearization technique
can be used as a general method for proving the Church-Rosser property of some class of non-
duplicating term rewriting systems.

Theorem 3 Let R be a term rewriting system in which every rewrite rule | — r is right-linear
(i.e., r is linear) and no non-linear variables in I occur in r. If the conditional linearization Ry, of
R is weight decreasing joinable then R is Church-Rosser.

Proof. Let R and Ry have reduction relations — and 7 respectively. Since > extends —

and Ry is weight decreasing joinable, the theorem clearly holds if we show the claim: for any t, s
and P: t«i» s there exist proofs Q: t—;uw-;—; s with w(P) > w(Q) and t5r < s for some term r.

We will prove this claim by induction on w(P). Base Step (w(P) = 0) is trivial. Induction Step:
Let w(P) = p > 0. Form the weight decreasing joinability of Ry, we have a proof P': t-% . %s
with p > w(P’). Let P’ have the form t—gé% . e-;:-s. Without loss of generality we may assume

that CL[”I,"’,mmryl,"'7y'n7"',zla"'azp’vl,"')wl] - CR['”,"',w] < 1 =2, 00, T,y =T
YI = Yoy Yn =Y, sty 21 = Z,000,2p = 2,0 = v,---,w; = w ( all the variable occurrences

are displayed) is a linearization of a right-linear rewrite rule Crlz,---,2,y, - *,¥%,-",2, -, 2,
v,---,w] = Cglv,---,w] and t = C[CL[t}, -, tZ,, t¥, --- ¥, -+, 3, ot t‘l’,---,t‘l"]]?é =
C|Cg[t?,- - -,t*]] with subproofs P?: tf%t‘" (t=1,--,m), P} t?«-;jty (j=1,---,n), ---, PE:
t;«;—l»t‘ (k =1,---,p) for some t*, t¥, ---, t*, and P: ¥ i»t", e, P t}”%t‘”. Then, we can

take ¢ = C[CL[tf"'Wtfm tgl” T t";/u ey B, e ’t;zntv "7tiu]]?3, C[Cﬂ[ti,y T tiu]] (';—j 5=

C[CRr[t?,--- ,t"’]]—;:) . i— s with the weight w(P’). Let P": t = C[C[t}, ---, t%,, ], ---, t¥

z
na""th
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AR i | 2 s' = C[Cg[t},---,t"]]. Then, from Lemma 2 and the induction hypothesis
we have proofs t2 5S¢, (i = 1,---,m), t?—gtﬁy (G=1,---,n), - ti>t, (k=1,---,p). Hence we can
take the reduction t = C[CL[t?, -+, t5,,tY, -, t¥,---,tf, ---, ;,t’;,---,t;"]]—‘»C[CL[t;, ooy tay by,
ey by eyt b, 13,0, tY]] = 8" = C[CRr[Y -oo,t]]. Let P: s'%é—;: . 4—2—3. From p > w(P)
and induction hypothesis, we have Q: s’—%r«-}s with w(P) > w(Q) and s'2r&s for some r. Thus,
the theorem follows. O

Corollary 3 Let R be a term rewriting system in which every rewrite rule l — 7 is right-linear and
no non-linear variables in | occur in r. If the conditional linearization Ry, of R is non-overlapping
then R is Church-Rosser.

The following corollary was originally proven by Oyamaguchi and Ohta (1993).

Corollary 4 [Oyamaguchi] Let R be a right-ground term rewriting system having a non-overlapping
conditional linearization R;. Then R is Church-Rosser.

Example 6 Let R be the term rewriting system with the following rewrite rules:
f(m’ m’ y) - h(y7 C)

R g(z) — f(z,¢,9(c)
¢ — h(c,c)

Note that R is non-left-linear and non-terminating. Then we have the following Ry as the lin-

earization of R:

f(mla :E”,y’) - h(y’ C) <z = 22,.’11" =z, y, =Yy
Ry 9(2') = f(z,c,9(c)) =2’ =2
¢ — h(c,c)

From Corollary 1, Ry, is Church-Rosser. Thus, from Corollary 3 it follows that R is Church-Rosser.
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