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Extracting a reduction system
from a conjunction calculus
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1 Introduction

The purpose of this paper is to show that we can obtain a strongly nor-
malizing and confluent abstract reduction system from a variant of Lawvere
style deductive system [Lambek 94] for a propositional calculus with con-
junctions. The deductive system is reminiscent of a sequent calculus, and
consists of Lawvere style deductions, namely each of which has exactly one
input and one output, and inference rules that includes, initial deduction,
composition rule, and also left and right rules for conjunctions. It enjoys
the composition rule elimination theorem, which is thought of as a kind of
cut elimination theorem. In order to analyze the computational aspects, in
particular the operational semantics, we introduce a Z-term algebra whose
sorts are the deductions and operation symbols correspond to the inference
rules. Then each Y-term corresponds to the unique derivation of a deduc-
tion, and vice versa. First we show that we can eliminate operation symbols
corresponding to composition rule. This result, the weak normalization the-
orem, amounts to the composition rule elimination theorem of the deductive
system. Next, from the proof of the theorem, we extract a binary relation on
the I-terms so that the £-terms and the relation form an abstract reduction
system, which is not a term rewriting system by some reason. Finally we
show that it is strongly normalizing and confluent. As an application the
word problem for the equivalence relation generated by it is thus decidable
as expected. '
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The underlying motivation of this study is to investigate the connection
between reduction systems and deductive systems. For a given deductive
system D, we would like to find an abstract reduction system (T, R), with
T being a set of terms in which each term interprets a proof of D, and R
being a binary relation on 7. As a computational model, R is desired to
be strongly normalizing and confluent. An application of such (T, R) is to
show that the word problem for the equivalence relation generated by R
is decidable by means of confluence method. The reduction system (T’, R)
might also be used as a basis of constructive programming.

As a special case, we can think of the following correspondence between
T-term algebras and sequent calculi, which is called sequents-as-sorts in-
terpretation. Let S be a given sequent calculus that enjoys cut-elimination.
Let ¥ be a signature whose sorts are the sequents and operations correspond
to the inference rules. Then T%, the set of X-terms, is a sound and com-
plete interpretation of derivations of §. Since S enjoys cut-elimination, 1%
is weakly normalizing. Let R be a binary relation on Ty extracted from the
weak normalization. Then the reduction system (%, R) may have further
properties like strong normalization and confluence.

2 A conjunction calculus

In this section we introduce a variant of Lawvere style deductive system for
a propositional calculus with conjunctions. Then we introduce a Y-term
algebra whose sorts are the deductions and operation symbols correspond
to inference rules. For each deduction, there is a bijection between X-terms
of the deduction and derivation of the deduction.

Definition 1 Let PS be some set of propositional symbols. The set of
propositional conjunction formulae, notation F, is defined inductively

as follows

F u= PS|(FAF)
Definition 2 The set of Lawvere style deductions over F is defined by
D u= F-—F.

Definition 3 A deduction A — B € D is derivable, notationt A — B,
if there is a derivation of the deduction, in other words if it can be produced
using the following rules.
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e The identity aziom and the composition rule

A-—C C-—B
A— A ID COMP

A—-—— B

We call C the composition formula.
o The rules for conjunctions

A—C B—C ¢ —A C—B
_— A-L —— A-L A-R
AANB —C AANB —C C— ANANB

Definition 4 (Signature of Proof Terms) The signature ¥ over D con-
sists of D and a D* X D-indexed family '

(Zw,s | weD*, s€D)

of sets, where for any A, B,C € F,

14 € I A—a (X is the empty word) (identity),
03,3 € YA—C C—B, A—B (composition),
TABC € YA—C, ANB—sC (projection),
Tapc € XB-—C, ANB—C (projection),
o aB € Yc—AC—B, C—AAB (product),
Ew,s = @ otherwise.

Definition 5 (Prdof Terms over D) The set of proof terms over D,
notation T, is defined as the set of ground X-terms that is T = Tx.

Below the notation f: A — B stands for f € Ty, p.
The following proposition obviously holds.

Proposition 6 (Subformula Property of Operation Symbols)
1. 14: A— A,

ifag'B(f,g) :A— Bthen f:A— Candg:C — B,

if taBc(f): ANB — C then f: A — C,

if s po(f): ANB —— C then f: B — C,
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5. ich'A,B(f;g):C'——+AAB then f:C — A and g : C — B.

This property permits us to omit subscripts of operation symbols of a term
except composition formula of composition symbols provided that the sort
of the term is known. _

It is clear that the next proposition holds, which says that the derivations
of deductions can be interpreted soundly and completely by the X-term
algebra. We call this interpretation the deductions-as-sorts interpretation,
which is a kind of sequents-as-sorts interpretation.

Proposition 7 (Deductions-as-Sorts Interpretation) For each deduc-
tion A — B there ezists a bijection between the derivations of A — B and
Ta—B.

3 A reduction system

In the process of proving the weak normalization theorem in the X-term
algebra, which amounts to the composition rule elimination theorem in the
deductive system, we extract a reduction relatlon, which turns out to be
strongly normalizing and confluent.

Definition 8 The set of normal forms of sort A — B, notation Ny__,g,
is the set of ground L-terms of sort A — B whzch contains no occurrences
of composition symbols

Deﬁnition 9 The degree of a formula A, notation 0(A), is defined as-

follows
e J(P) = 1, where P € PS;
e (AN B) = max(9(A),d(B)) +1, where A,B € F.

The degree of a composition symbol ¢, notation 8(c°), is defined to
be the degree of the composition formula C that is 8(c%) = 8(C).

The degree of a proof term f, notation 9(f), is the sup of the degrees of
its composition symbols, so 3(f) = 0 iff f is a normal form.

The height of a proof term f, notation h(f), is that of its associated tree.

Definition 10 (Redex) LetA,B,C € F. Letf: A— Candg:C — B
such that 8(f),8(g) < 8(C). Then a proof term being of the form

a“(f,9)

is called a redex.
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Note that the degree of a redex o©(f,g) is the degree of the composition
formula C. Then next lemma and proposition can be shown in a usual
constructive manner as in [Girard 89] for example.

Lemma 11 (Principal lemma) Let C be a formula of degree d. Suppose
that

o°(f,9): A— B
is a redex. Then we can make a proof term
h:A— B
such that 8(h) < d.

See appendix A for the proof of the principal lemma. Precise trace of the
proof of this lemma suggests a one-step reduction relation as follows. The
resulting relation is somewhat cumbersome, since we do not ignore the de-
grees of terms. But the degree information ensures that the degree of a term
decreases as reduction proceeds. The relation and the terms form an ARS
(abstract reduction system) but not a TRS.

Definition 12 (Principal Reduction —,) We define a relation —, by
—p=—1 U —=2U—-3U—=4U—gU—=7U—gU—gU —q,

where —;’s, which are extracted from the proof of the principal lemma, are
defined as follows. Below the notation o€ (f,g) —; h denotes that —; is the
D-indezed family of relations :

{(e°(f,9),h) € Ta—p X Ta—B | 8(f),8(g) < 8(C)}.

UA(L )= f,

oB(f,1) =2 f,

oC(aP(f,9),h) =3 oP(£,5%(g,R)),

o (f,0P(9, 1)) =4 oP(%(f,9), ),
a®(x(f),9) =6 7(a°(f,9)),

aC('(f),9) =7 7'(0°(£,9)),
aC(f,1(g1,92)) =8 W(a°(f,91),0°(f,92)),
oC 1 (11( f1, f2),7(9)) =9 0% (f1,9),

g TI( f1, f2),7'(9)) =10 92 (f2, 9)-
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Definition 13 (One-step Reduction —) The relation — is the compat-
ible relation generated by —,, t.e.

f -9 if f—p 9,
o®(fi,f2) — %afa) if fr = ¢,
o®(f1,f2) — o%(f1,92) if fa = g2,

() - 7o)  iff-og
©(f) — ='(g) if f—g,
I(f1,f2) — Mo, fa) ffi— g1,

M(f1, f2) — I(fi,92) f f2— g2
Definition 14 The ARS C is defined by C = (T,—).

By using the principal lemma we have the following proposition. See ap-
pendix B for the proof of this proposition.

Proposition 15 Let f : A — B such that 8(f) > 0. Then we can con-
struct a proof term g : A — B such that 0(f) > 0(g) and f —* g.

By iterating the above proposition we have the next result.

Theorem 16 (Weak Normalization) For every proof term f: A — B,
there is a normal form nf(f) € Na—p such that f —* nf(f).

We have the following results. See appendix C for the proof of this theorem.

Theorem 17 (Strong Normalization) FEvery term is strongly normaliz-
ng.

To show that — is locally confluent we need to introduce the next congruence
relation. This relation cannot be extracted from the principal lemma since
it does not involve any composition symbols.

Definition 18 (Congruence relation =r) We define the relation =1 on
proof terms as the D-indezed family of the congruence relations generated
by the union of the relations

{(l,T) € TA]AAz—-——VBlABQ X TA]/\A;——-*BI/\BQ l

1 =T(x(f),7(9)),r = (1I(f,9))
for some f: Ay — By, g: Ay — By}
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and
{(197') € TA]/\Az—’BI/\Bz X 7:41/\.42——&31/\32 |
I=1(x'(f),7'(g)),r = ='(TI(f, 9))
for some f : A — By, g : A2 — B,}.

By checking all the critical situations we get the following result. See ap-
pendix D for the proof of this proposition.

212

Proposition 19 (Local Confluence) The relation — is locally confluent

modulo the congruence =pj.

As a corollary we have the following theorem by the Newman’s lemma.

Theorem 20 The ARSC is strongly normalzzzng and conﬂuent modulo the
congruence =.

As an application the word problem for the equivalence relation generated
by the ARS Cis thus decidable as expected.

4 Related Work

There have been some attempts to investigate equational meaning of cut

elimination from the categorical point of view. Among such attempts,
[Lambek 68] is an early investigation of categorical semantics of the Syn-
tactic calculus, which is now called Lambek calculus, and a recent paper
by the same author [Lambek 93] dealt with the same subject in a more so-
phisticated manner. A categorical semantics of propositional fragment of
Gentzen’s LJ was explored in [Szabo '_74!. gzategorical semantics of sequent
calculus of prepesitienal intuitionisticylogic is systematically described in
[Szabo 78]. These investigations has brought us a basis of the denotational
semantics of reduction systems extracted from cut-elimination theorems.
On the other hand, the intention of this study is to understand the
connection between sequent calculi and reduction systems by means of the
sequents-as-sorts interpretation. This kind of investigation will bring us a

basis of the operational semantics of reductlon systems extracted from cut-

elimination.

5 Conclusion

We have a:ttempted amethod to investigate operational semantics of deduc-
tive systems although the target deductive system was quite simple. Firstly,



we introduced a X-term algebra corresponding to a variant of conjunction
calculus by means of sequents-as-sorts interpretation. This interpretation is
clearly sound and complete. Secondly, after having showed the weak nor-
malization theorem, we extracted a reduction relation from the principal
lemma. Finally the reduction system was shown to be strongly normalizing
and confluent modulo a congruence relation.

What we have shown in this paper indicates that the sequents-as-sorts
interpretation is an effective way to investigate the operational semantics
of sequent calculi. There do not seem any significant obstacles to obtain
Y-term algebra interpretations of other sequent calculi, including substruc-
tural logics [Ono 90], or even Gentzen’s LJ. To extract strongly normalizing
and confluent reduction relations, we may, however, need to invent some
technique to handle structural rules. This issue will be a future work.
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A Proof of Principal lemma

Let C be a formula of degree d. Suppose that o°(f,g) : A — Bis aredex.
We construct a proof term h by induction on A(f) + h(g).
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. Suppose that C = A andthat f=1: A~ Aand ¢: A — B. Then
his g.

. Suppose that C = B and that f: A — Bandg=1: B — B. Then

his f.

. Suppose that

f=0P(fi,fa): A—C

where f; : A — Dand f; : D — C for some D € F such that 9(D) <
d. Then by the induction hypothesis for f, and g, we have a proof term
hy : D — B such that d(hy) < d. And so we obtain a proof term h
as follows

h= O’D(fl,hl) :A— B.
Suppose that
g=0P(g1,92):C ~— B

where g1 : C — Dand g, : D — B for some D € F such that d(D) <
d. Then by the induction hypothesis for f and ¢;, we have a proof
term hy : A — D such that d(hy) < d. Arnd so we obtain a proof

term A as follows
h=dP(hi,92): A — B.

Suppose that A = A; A A, and that
f=r(fi):Ai1NAy — C,

where f; : Ay — C. Then by the induction hypothesis for f; and g,
we have a proof term hy : Ay — B such that d(h;) < d. And so we
obtain a proof term A as follows

h = W(h])ZAl /\A2 —— B.

Suppose that A = A; A A5 and that
f= ﬂ"(fl) A1 /\Ag —— C’

where f; : A —— C. Then by the induction hypothesis for f; and g,
we have a proof term h; : A3 — B such that d(h1) < d. And so we
obtain a proof term h as follows

h= 7I'I(h1) ZA1 /\A2 - B.
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& 7. Suppose that B = B; A By and that

9 g.

(0 9.

O

B

g =1I(g1,92) : C — B1 A B3,

where ¢g; : C — By and g, : C — B;. Then by the induction hy-
potheses for f and ¢; and for f and g;, we have a proofterms hy : A — B,
and hy : A — B such that d(hy),0(h;) < d. And so we obtain a
proof term h as follows

h = H(hl,hg) A - B1 /\Bz.

Suppose that C = Cy A Cy and that
f=1(f1,f2):A— C1 ACy and g=1n(g1):C1 ACy — B,

where f1: A —— Ci, fa: A — Ca, and g1 : C1 —> B. Since (C1) <
d(C) we obtain a proof term & as follows

h = O’C(fl,g1) :A— B.

Suppose that C = C; A Cy and that
f=1(f,f2) : A— CLACy,
where f1 i A — C and f; : A — (5, and also that
g=7'(g1):C1ACy — B,

where ¢; : C2 = B. Since 8(C2) < 9(C) we obtain a proof term h as
follows

h = O'Cg(fg,g]_)ZA —-— B.

Proof of Proposition 15

Let f: A —— B such that §(f) > 0. By induction on A(f) we show that
there is a proof term g : A — B such that 8(f) > 9(g) and f =" g. |

1.

Suppose that A = Band f =1: A — A. Then 0(f) = 0, and so the
claim holds vacuously. ‘
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2. Suppose that
f= ac(f11f2) :A-— B,
for some f; : A—— C and f,:C — B.
There are several cases.
(a) Suppose that 9(f1),0(f2) < 8(C) = d. Then by the induction hy-

pothesis for f; and f, there exist f{ : A —— C and f3: C — B
such that 8(f]),0(f5) < 8(C), fr —»* f1 and fo —* f;. Then

T BF DO -<-0(6)=d. is a redex, and so we obtain a proof

term g by the above lemma.

(b) Suppose that d(f1),d(f2) > 0(C). Then by the induction hy-
potheses for fi; and f; we have proof terms g; : A — C and
go : C — B such that 8(g1),0(g2) < d, fi =* g1 and f —=* g2.
And so we obtain a proof term ¢ as follows

9=0%g1,92): A— B.
3. Suppose that A = A; A A3 and that
f=7(fi): AtANAy — B, -

where f; : Ay — B such that d(f1) = d. Then by the induction hy-
pothesis for f, we have a proof term g; : A3 — B such that 0(¢,) < d
and f; —* g1. And so we obtain a proof term g as follows

g=7('(g1)IA1/\A2—*—+B.

4 Suppose that A = Aj AA; and that f = #'(f1) : A; A Ay — B, where
f1: A2 — B such that §(f1) = d. Same as the above case.

5. Suppose that B = B; A By and that f = II(fy, f2) : A — B1 A By,
where f1 : A — Bj and f, : A — Bj such that 9(f1) = dor 0(f2) =
d. Same as the above case.

O

C Proof of Strong Normalization
It is clear that if f, f1 and f, are strongly normalizing, then «(f), ='(f) and
II( f1, f2) are. Below we implicitly use this fact.

Proposition 21 Let f: A— C and g: C — B. If f and g are strongly
normalizing, then o€ (f,g) is strongly normalizing.



Proof Letf:A—— Candg:C —— B. Suppose that f and g are strongly
normalizing. To show that o%(f,g) is strongly normalizing it is sufficient to
show that whenever ¢€(f,g) — h, h is strongly normalizing. Induction on
v(f) + v(g), where v(f) is a upper bound of length of every normalization
sequence beginning with f.

1. 8(f),0(g) < 0(C). Then o°(f,g) is a redex. Suppose that A is the
result of the reduction. By induction on the degree of the composition
formula C we show that h: A — B is strongly normalizing. Note
that 8(f),d(g) < 8(C) since c®(f,g) is a redex.

(a) Suppose that C € PS. By induction on the sum of the lengths
of f and g, we show that h is strongly normalizing. Note that f
cannot be of the form II( f1, f2) for some f; and f;, and also both

“of f and g are normal forms since d(f) = 9(g) = 0. And so there
are next five cases.

i.

ii.
iil.

iv.

C = A and f = 1. Then o°(f,g) = 04(1,9), and so h = g.
By assumption g is strongly normalizing.

C = B and g = 1. Same as the above case.

A = A; A A, for some A; and Az, and f = 7(f1). Then

O’C(f,g) = UO(W(fl),g)’

and so .
h = m(a°(f1,9))-

Since f is strongly normahzmg, fi is, and so by the induction
hypothesis for f; and g, o c( fl, g) is strongly norma.hzmg
Therefore h is.

A = Ay N A; for some A; and Ag, and f=7'(f1) This case

is same as the above case.

. B = By A B; for some B; and Bs, and g = II(g1,g2)- Then

&C(f,g) = o%(f,1(g1,92)),

and so

= II(O’G(f) gl)) C(f; 92))

Since g is strongly normalizing, g1 and g, are, and so, by the.

induction hypotheses for f and gy and for f and g2, 0 C(f,q)
and € (f, g2) are strongly normalizing. Therefore £ is.
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(b) C = Cy A C; for some Cy and C,. Note that 9(f),d(g) < 8(C).

By induction on the sum of the lengths of f and g, we show that

h is strongly normalizing. We consider the next four cases since
other cases are same as the base step.

i. f=0P(f1,f:) for some D, f; and f. Then

°(f,9) = a%(P(f1, 2), ),

and so
h = UD(fhaC(f?)g))'

Since f is strongly normalizing, f is, and so, by the induction
hypothesis for f; and g, 0€(f2,g) is strongly normalizing.
Note that f; is strongly normalizing since f is, and 9(D) <
0(C) since 9(f) < 9(C). Therefore, by the induction hy-
pothesis for D, h is.

ii. ¢ = oP(g1,02) for some D, g; and go. Same as the above
case.

iii. f =1II(f1, f2) for some fi and f3, and g = 7(g1) for some g;.
Then '

ac(f’ g) = 0.01/\02(11(}'1,](2)’71.(91)),

and so

h = UCl(fl)gl)-

Note that 9(Cy) < 0(C), and that f; and g; are strongly
normalizing since f and g are. And so, by the induction
hypothesis for Cy, h is strongly normalizing.

v, f = II(f1, f2), for some f; and f2, and g = 7’(g1) for some
g1. Same as the above case.

2. f — f'. Then o(f,g) — o®(f',g). Note that f’ is strongly normal-
izing since f is. And so, by the induction hypothesis for f’ and g,
a%(f’, g) is strongly normalizing.

3. g — ¢'. This case is same as the above.
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Proof of Theorem 17 Let f: A — B be an arbitrary term. By the
induction on f, we show that f is strongly normalizing.

1. A= B and f = 1. Then clearly f is strongly normalizing.

2. f = 0%(fi1, f2) for some C and f; and f;. Then by the induction
hypotheses for f; and f;, they are strongly normalizing. Hence f is
by the above proposition.

3. f = n(fy) for some f;. Then, by the induction hypothesis for fi, it is
strongly normalizing, and so f is.

4. f ='(f1) for some f1. Same as above case.

5. f = 1(f1, f2) {for some fl' and f;. Then, by the induction hypotheses
for -f1 and f,, they are strongly normalizing, and so f is. '

a

D Proof of Local Confluence

For f:A——C and ¢g:C — B, we introduce a notation f % g which
stands for o®(f,9). Below we implicitly use Theorem 17.

Lemma 22 Let f:A—~— B, g: B— C and h: C — D, where 0(B) =
d(C), be normal forms. And let m and n be normal forms of foB g and
g% h respectively. Then there exists a term k : A — D such thatm o0 h —*
k and foBn —* k.

We can prove this lemma by induction on the sum of lengths f, g and h.

Proof of Proposition 19 Let f,h,k € Ty p. Assume that f — h and
- f — k. Then we need to show that there exists g € T4—,p such that h—"g
and k—*g. We check all the critical situations.

1. Slippose that B = A and f = 154 1. Since 8(1) = 0 < 8(4), we have
f—1hand f =9k, where h =k =1. We set g =1.

2. Suppose that ‘ -
f=164(f10 fo)



for some f; : A — D and f, : D — B such that 8(f1 »© f5) < 8(A).
Then f —1 h and f —4 k, where

h=fivl fo and k=162 f)o? fo.

But since 8(f1) < (A) we have 1o4 f; -1 fi, and so k — h. We set
g=h.

. Suppose that B = By A By and

f= 104 II( f1, f2)

for some f;: A —— By and f3: A —— B, such that 3(H(f1,f2)) <
0(A). Then f —; h and f —g k where

hzn(fl,f'l) and k;H(leflylefZ)-

But since 8(f1),d(f2) < (A) we have 164 f; —; f; for i = 1,2, and
so k —t h. We set g = h.

. Suppose that
f=(froP f2)oP 1.

for some f; : A — D and f; : D — B such that 3(fy P f,) < 8(B).
Then f —2 h and f —3 k where

=fioP f, and k= f P (f20B1).

But since 0(f;) < 0(B) we have f,55 1 =, f,, and so k — h. We set
g =h.

. Suppose that A = A; A Ay and
f=n(fi)eB1

for some fy : Ay — B such that d(r(f1)) < d(B). Then f —3 h and
f —¢ k where

h=m(fi) and k=n(fo81).

But since 8(f,) < 0(B), we have f; B 1 =, f; and so k — h. We set
g = h.
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6. Suppose that A = A; A Az and f = 7'(fy) »B 1 for some f; : A, — B
such that 8(x’'(f1)) < 8(B). Same as the above case.

7. Suppose that
f=(fioP f2)vC (faoF fa),

for some fy:A—— D, f3:D—C, f3:C ——E,and f4: E— B
such that 8(f1 oL f2),0(fav® f1) < 8(B). Then f —3 h and f —4 k

where

h= fioP (f20° (f3oF f1)),
k= ((fio £2)0° f3)oF fa.

But since 8(f;), d(D), 8(E) < 8(C) we have

b - fi oD ((fz >C f3) > f4) —* ny »D (nz & n3) = h’,
and
ko= (fioP (f2 DC' f)oF fa = (mePng)ePng=#,

where n1, ny and n3 are normal forms of fi, fa »C f3 and f4 respec-
tively. There are three cases.

o 9(D) < O(E). Then we have k' — k', thereby we set g = &'.

o O(E) < (D). Then we have &' — K, thereby we set g = h'.

e &(D) = &(E). Let p and g be normal forms of ny >E n3 and
ny >2 ngy respectively. Then, by the above lemma, there exists r
such that n; o? p —* r and ¢o¥ ng »* 7. And so h —* r and
k —* r. Thereby we set g = r.

8. Suppose that B = By A B, and

f = (f1oP £2) o T(f3, fa),

forsomef1:A——~—>D,fg:D——+C,f3:C—ﬁBl,andf4:C—_—>Bg
such that 8(f1 oL f2), 8(1L(f3, f4)) < (B). Then f »3 h and f —g k

where

h = fl DD (f2 DC H(f3)f4)),
ko= T((f1o° £2)5° f3,(f1eP f2)5C fa)



10.

11.

But since 9(f;), (D) < 6(C) we have

h — fioP H(f2 »C fs,fz bC fy) —* f1 D 1(ny,ng)
— I(fy P nq, f1 D ny),
ko= T(fy 5B (f20° fa), f1 o2 (f25C £1)) =* T(f1 6P ny, fi P my),

where ny and n are normal forms of f; ¢ f3 and f, 6€ f, respectively.
Thereby we set g = II( f1 v© ny, f1 >0 ny).

Suppose that A = A; A A2 and

£ = 7(£1)5C (f25 fi)

for some f; : Ay — C, fzzC——+Da.ndf3:D———+Bsuchthat
(m(f1)), 0(f2>P f3) < 0(B). Then f —4 h and f —¢ k, where

((f1) »° f2) o fa,
k = wn(fieC (f200 f3)).
But since 9(f),8(D) < d(B) we have

h = w(fie° fz)DD f3 = m((f1o° f2)»P fa),
k - w((f »C f2) oD fs)-
Thereby we set g = 7((f1 % f2) oD f3).

Suppose that A = A1 A Ay and f = 7'(f1)oC (f2oP f3) for some
fi: A — C, fo: C — D and f3: D — B such that
(7 (f1)), 0(f2»P f3) < 8(B). Same as the above case.

Suppose that A = Ay A A2, B = By A By and

f = x(f1)»% (U(f2, f3))

for some f; : Ay — C, fo: C — By and f3:C — By such that
0(m(f1)), 0(IL(f2, f3)) < O(B).
Then f —¢ h and f —g k, where

h = =(fieC 0(f2, f3)),
ko= H((f1)o° fa,n(f1) 5 fa).



12.

But since 9(f1),8(f2),0(f3) < 0(B) we have

h = a(l(fivC fo, f15C f3)) = K/,
k= I(x(f10f fo),n(f1oC fa)) = K.

Thereby we set ¢ = h' =1 ¥'.
Suppose that A = A; A A3, B = B; A By and
f=7(f1) »¢ (f2, f3)

for some f1 : Ay — C, fa C —— Bj and f3: C — By such that
A(r'(f1)), 0(II(f2, f3)) < O(B). Then f —7 h and f —3 k, where

o= o'(fieC T(f2, f3)),
ko= L('(f1)vC fo,7'(f1)vC f3).

This case is same as the above case.
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