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Abstract
In many process algebras, a nondeterministic choice in particular $\mathrm{f}\mathrm{o}\mathrm{r}\ln$ can be translated

to a parallel composition with the expansion law. This translation, $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}1_{1}$ we will call par-
allelization, is not trivial because we must find subprocesses in rather complex pattern in
a given process. This paper gives a parallelization algorithm. The algorithm has a clear
geometric meaning, but $\mathrm{t}1_{1}\mathrm{e}$ precise definition needs Bar constructioll in cohomology theory
of groups.

1 Introduction
Consider the simple process algebra with parallel composition $(P|Q)$ , nondeterministic choice
$P+Q$ (or $\Sigma_{i}P_{i}$ ), sequential composition $P$ ; $Q$ and label restriction $P\backslash L$ over the set $A$ of
atomic actions. We can give the operational semantics as a labeled transition system and we
will describe the transition as $Parrow Q\alpha(\alpha\in A)$ . Also, we can define t,he (strong) bisimulation
$\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\sim \mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}$ the transition. This kind of process algebra has the expansion law:

$(P_{1}|\cdots|P_{1?})\sim\Sigma\{\alpha ; (P_{1}|\cdots|Q_{i}|\cdots|P_{??})|P_{i}arrow Q_{i}, \alpha\in A\}\alpha$

The law indicates that the nondeterministic processes in some particular pat,tern can be trans-
lated to the more efficient processes with true concnrrency. Then, we can consider the rewrite
rule: $\Sigma\{\alpha ; (P_{1}|\cdots|Q_{i}|\cdots|P_{n})|P_{i}arrow Q_{?}\cdot\}\alphaarrow(P_{1}|\cdots|P_{n})$. Applying the rewrite rule
to a given process seems to be rather complicated because we must find the complex pattern of
nondetermillacy in the given process. We will refer to this job parallelization in this paper. The
parallelization algorithm in our sense does not seem to be studied extensively so far.

The aim of this paper is to give a parallelization algorithm that has clear geometric
meaning. The basic idea is to view parallelization as cycle filling procedure in the HDA (higher
dimensional automata) model $[3, 1]$ . We interpret concruirent processes in the domain of CW
complexes [4]. Topological properties of the CW complex represent the nature of the concurrent
processes. In this model, the parallelization algorithm is described as follows. First, we find
suitable branches in the CW complex. Link the end points of the branches to obtain cycles.
As branches may be higher dimensional, t,he cycles may also be higher dimensional. Next we
fill all the cycles with suitable cells. Then the obtained CW complex represents the parallelized
process. Finally, we carry out the reverse interpretation to extract the desired parallelized
process expression from the CW complex.

For the precise description of this simple idea, we need the language in algebraic topology.
In particular, the cycle filling procedure can be clearly described with Bar construction procednre
in cohomology theory of groups [2]. Bar $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{l}\cdot 1\mathrm{l}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$is applicable to simplical complexes, while
the HDA model needs cubical complexes. To fill the gap between the simplical and the cubical
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complexes, we must define a unit square as a collection of simplexes. That makes our HDA
model a little more complicated than the HDA models such as those given by E. Goubault and
T. Jensen [1]. On the other hand, the definition of the reverse interpretation has a feature of
combinatorial geometry rather than algebraic topology. The procedure analyzes the geometric
configuration of the cells in the given HDA space, finds subprocesses and combine them to form
a process expression.

The configuration of the paper is as follows. Section 2 defines our process algebra and
overview the idea of the HDA model. The formalization of the HDA model in terms of bar
expression is given in section 3. The bar expression is the language for Bar construction. Section
4 discusses how we can find the suitable branches whose end points will be linked. Section 5
presents the cycle filling procedure in terms of Bar construction. The reverse interpretation
procedure will be given in section 6 and the concluding remark will be given in the final section.

2 Process Algebra and its HDA model
2.1 Process language and expansion law
We will consider a simple process algebra with parallel composition, sequential composition,
nondeterministic choice and label restriction. Let $\mathcal{L}$ be an enumerable set of of labels. $\overline{\mathcal{L}}=\{\overline{a}|$

$a\in \mathcal{L}\}$ is called the set of $co$ -labels. We assume that $\overline{\overline{a}}=a$ for any $a\in \mathcal{L}\cup\overline{\mathcal{L}}$ . We also define
the set of atomic actions A $\mathrm{d}=^{\mathrm{e}\mathrm{f}}\mathcal{L}\cup\overline{\mathcal{L}}\cup\{\tau_{a}|a\in \mathcal{L}\}$ . The syntax of the process expressions, or
simply processes, is defined as follows.

$P$ $:=$ nil [nil action] $|\alpha(\in A)$ [atomic action] $|\tau_{a}$ [ $\tau$-action]

$|(P|P)$ [parallel composition] $|P+P$ (or $\Sigma_{i}P_{\dot{i}}$ ) [nondeterministic choice]
$|P$ ; $P$ [sequential composition] $|P\backslash L$ [restriction].

where $L(\subset \mathcal{L})$ is a finite set. We can give the operational semantics of the process language as
a labeled transition system as usual, and the strong bisimulation relation $\sim \mathrm{i}\mathrm{s}$ also defined as
expected. We also have the expansion law: Let $P_{i}(1\leq i\leq n)$ be process expressions. Then,

$(P_{1}|\cdots|P_{n})\backslash L$

$\sim$ $\Sigma\{\alpha ; (P_{1}|\cdots|Q_{i}|\cdots|P_{n})\backslash L|P_{i}arrow Q_{i}, \alpha\alpha\not\in L\cup\overline{L}\}$

$+\Sigma\{\tau_{a}$ ; $(P_{1}|\cdot\cdot\cdot|Q_{i}|\cdots|Q_{j}|\cdots|P_{n})\backslash L|\dot{i}\neq j,$ $P_{i}arrow Q_{i},$$P_{j}aarrow Q_{j},$$a\overline{a}\in L\}$

We view the law as the rewrite rule from the right hand side to the left hand side, and call the
rewriting with the rule parallelization.

Now we will define a few more notions. If a process $P$ has a sequence of transitions
$- P=P_{0}\alpha_{1}arrow P_{1}\alpha_{2}arrow$ ... $\alpha_{n}arrow P_{n}=nil,$ we say that the process has a computation path $p=$

$(\alpha_{1}, \alpha_{9,arrow}, \cdots, \alpha_{n})$ . We denote the set of all the computation paths of $P$ by $cp(P).$ Fo.r a process
$P$ , alphabet of the process $P,$ $\chi[P](\subset A)$ , is defined inductively as follows:

1. $\chi[nil]=\phi$ and $\chi[\alpha]=\{\alpha\}$ if $\alpha\in A$ ;

2. If $P$ and $Q$ are processes, then $\chi[(P|Q)]=\chi[P+Q]=\chi[P;Q]=\chi[P]\cup\chi[Q]$ .
3. If $P$ is a process and $L(\subset \mathcal{L})$ be a finite set, then $\chi[P\backslash L]=\chi[P]-L\cup\overline{L}$ .

2.2 HDA model of the process language
The basic idea of the HDA model is to represent a concurrent computation in a CW complex with
a suitable direction. In the CW complex, a connected path represents a computation path and
branches from a single point represent a nondeterministic choice. This is compatible with the
naive idea of representing concurrent computations in ordinary directed graphs. We can find the
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sharp difference from the graph based semantics in the representation of parallel composition. A
true concurrent computation of $n$-atomic actions is represented by an $n$-dimensional unit square
( $n$-cell). For example, consider a process $P=(a\{b)(a, b\in A, a\neq\overline{b})$ . The HDA interpretation
of $P$ is a 2-cell illustrated in Figure 1 (a). $cp(P)=\{(a, b), (b, a)\}$ and its elements are described

(C)

Figure 1: HDA spaces

by the paths $p_{1}=*_{1}arrow a*_{3}-^{b}*_{4}$ and $p_{2}=*_{1}arrow b*_{2}arrow a*_{4}$ in the cell. The initial and the final
states of $P$ are represented by the $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{S}}*_{1}\mathrm{a}\mathrm{n}\mathrm{d}*_{4}$ . Notice that the two paths are homotopic:
they can be continuously transformed to each other through the 2-cell. Namely, the actions $a$

and $b$ are commutative. With this topological property, we regard that the 2-cell represents the
situation in which the actions $a$ and $b\mathrm{r}\iota \mathrm{m}\mathrm{s}$ truly concurrently.

This simple model can easily be refined to adopt the case of synchronous communication.
Consider the process $Q=(a|\overline{a})(a\in \mathcal{L}\cup\overline{\mathcal{L}})$ . $cp(Q)=\{(a,\overline{a}), (\overline{a}, a), (\tau_{a})\}$ . Hence, the HDA
interpretation of $Q$ is as in Figure 1 (b). The 1-cell $\tau_{a}$ represents the synchronous communication
of the actions $a$ and $\overline{a}$ , and $\tau_{a}$ is contained in the 2-cell.

Next, we consider a process: $Q\backslash \{a\}$ . $cp(Q\backslash L)=\{(\tau_{a})\}$ . The HDA interpretation is
obtained by removing the 2-cell and the 1-cells with labels $a$ and $\overline{a}$ from the HDA interpretation
of $Q$ . This is illustrated in Figure 1 (c).

Based on the idea given above, we define the HDA interpretation [ $\cdot \mathrm{I}$ of our process algebra.

[HDA interpretation of the processes]
Empty action nil: $\ovalbox{\tt\small REJECT} n\dot{i}l\mathrm{I}=\phi$ .
Atomic action: [$\alpha \mathrm{J}(\alpha\in A)$ is the directed line segment $i_{\alpha}arrow\alpha f_{\alpha}$ where $\dot{i}_{\alpha}$ and $f_{\alpha}$ are the

initial and the final states of the action.
Parallel composition: $\ovalbox{\tt\small REJECT}(P|Q)\mathrm{I}=[P\mathrm{I}\cross[Q\mathrm{I}\cdot$ Let $\dot{i}p$ and $\dot{i}Q$ be the initial states of $P$ and $Q$ ,

and let $F_{P}$ and $F_{Q}$ be the set of final states of $P$ and $Q$ . Then $\dot{i}_{(p|Q)}=<\dot{i}p,\dot{i}_{Q}>\in \mathrm{I}(P|Q)\mathrm{J}$

and $F_{(P|Q)}=F_{P}\cross F_{Q}\subset \mathbb{I}(P|Q)\mathrm{I}$ .
Nondeterministic choice: [$P+Q\mathrm{J}=[P\mathrm{I}\cup \mathbb{I}Q\mathrm{J}$ , and we assume that $[P\mathrm{J}\cap[Q\mathrm{J}=\{\dot{i}_{P+Q}\}$ .

The set of final states is $F_{P+Q}=F_{P}\cup F_{Q}$ .
Sequential composition: [$P;Q\mathrm{I}$ is constructed as follows: Let $F_{P}=\{f_{1}, \cdots f_{n}\}$ . Then

$\mathbb{I}^{P}$ ; $Q \mathrm{J}=[P\mathrm{I}\cup\bigcup_{i=1}^{n}[Q_{i}\mathrm{I}$ where $Q_{i}$ are the copies of $Q$ such that $f_{i}=\dot{i}_{Q}$ .
Restriction: $\beta P\backslash L\mathrm{I}$ is constructed as follows: First make [$P\mathrm{I}$ , then remove all the cells repre-

senting the actions from $L$ that do not communicate with their co-actions.

3 Bar Realization of the HDA Model
The HDA model can be formalized with tensor product notation as in [1]. However, we will use
the bar expressions. There are two reasons for this. The first reason is that the computation
paths can be directly represented in bar expression and this makes the analysis of the HDA
model easier. The second reason is that we can use Bar construction in cohomology theory of
groups. The parallelization algorithm and its justification rely on the properties of the universal
covering space constructed by Bar construction. The bar expressions play the central role in the
construction.
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3.1 Bar expression
Let $M$ be the free monoid over $A$ with the unit word 1. An $n$-dimensional bar expression is the
$M$-coefficient $n$-tuple $u[w_{1}|\cdots|uf]n(u, w_{i}\in M)$ such that $u[w_{1}|\cdots|w_{n}]=0$ if $w_{i}=1$ for some
$i$ . This is in fact defined by the equation $u[u\prime_{1}|\cdots|u\prime_{n}]=$ $(u, uw_{1}, uw_{12}uf, , uw_{1}w_{2}\cdots w_{n})$ .
This expression has a useful geometric interpretation. $u[w_{1}|\cdots|u\prime_{n}]$ is the $n$-simplex with $n+1$

$\mathrm{v}.\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{e}\mathrm{s}u,$ $uu)1,$ $uw1u’ 2$ , $\cdot$ . . , $uw_{1}w2\ldots ufn$ . For any two vertices $v_{1}=uw_{1}\cdots w_{p}$ and $v_{2}=$

$uw_{1}\cdots w_{q}(p<q),$ $u[w_{1}|\cdots|w_{n}]$ has a unique directed edge from $v_{1}$ to $v_{2}$ . The edge is labeled by
$uw_{1}\cdots w_{p}[w_{p+}1w_{q}+2\ldots wq]$ . For any three vertices $v_{1},$ $v_{2}$ and $v_{3}=uw_{1}\cdots w_{r}(p<q<r)$ , the ’$\iota-$

simplex has a unique triangle face, $\mathrm{i}.\mathrm{e}.,$ $2$-simplex, labeled by $uw_{1}\cdots w_{p}[wp+1^{\mathrm{Y}}\cdot u\prime q|u’\cdots w_{r}]q+1$ .
The higher dimensional subsimplexes are constructed similarly. The following figure illustrates
the examples of $n=2$ and $n=3$ .

(b) $\mathrm{w}\mathrm{l}\mathrm{w}2\mathrm{w}3$

The boundary of the simplex is given by the boundary operator $\partial_{n}$ (or simply $\partial$ ) $:\partial_{n}=$

$\partial_{0,1}+\partial_{1,n}$ where

$\partial 0_{n},u[w_{1}|\cdots|w_{n}]$ $=$ $\Sigma_{i=1}^{n-}1(-1)i[w_{1}|\cdot\cdot, |wi-1|wiu\prime_{i}+1|u)\cdot+2|?\cdots|w_{\eta}]+(-1)nuu[w_{1}|\cdots|wn-1]$

$\partial_{1,n}u[u)1|\cdots|w_{n}]$ $=$ $uw_{1}[w_{2}|\cdots|w_{n}]$

Notice that the boundary is represented with the formal sum of the edges with suitable sign
$(+/-)$ . For example, $\partial u[uf1|w2]=uw1[w_{2}]-u[w_{1}w2]+u[w_{1}]$ .

3.2 Cells in bar expression
A bar expression $u[w_{1}|\cdots|u1]n$ represents an $n$-simplex, but it is not an $n$-cell, which is really
necessary in the HDA model. Hence we must construct an $n$-cell with $\eta_{\Gamma}$-simplexes by gluing
them. First of all, we can define a pseudo $n$-cell $a_{1}\otimes\cdots\otimes a_{??}$ as

$a1\otimes\cdots\otimes an=\Sigma\in s\sigma n\epsilon(\mathrm{d}\mathrm{e}\mathrm{f}\sigma)[a(1)|\sigma\ldots|a_{\sigma}(n)]$

where $S_{n}$ is the $n$-dimensional symmetric group acting on the set of indices 1, 2, $\cdots$ , $n$ . $\epsilon(\sigma)$ is
the sign of the permutation $\sigma\in S_{n}$ .

As in [1], the boundary of a cell is divided into the $\mathit{0}$-boundary, which represents the initial
part of the computation, and the 1-boundary, which represents the final part of the computation.
This division represents the direction of the computation. The 0/1-boundary operators on the
pseudo $n$-cells are induced from the operators $\partial_{0,n}$ and $\partial_{1,n}$ for bar expressions:

$\partial 0_{n},u(w_{1}\otimes\cdots\otimes w_{n})$ $=$ $u\Sigma_{1\leq p<q\leq n}(-1)q-1(W^{(}1)-W(2))p,qp,q$

$+u(\Sigma_{i=}^{?t}1(-1)^{i}w1\otimes\cdots\otimes w_{i}-1\otimes w_{i1}+\otimes\cdot\vee\cdot\otimes wn)$

$\partial_{1,n}u(w_{1}\otimes\cdots\otimes w_{n})$ $=$ $u(\Sigma_{i=1}\eta(-1)^{i-1}w_{?}.(w_{1}\otimes\cdots\otimes wi-1\otimes w_{i}+1\otimes\cdots\otimes wn))$

where $W_{p,q}^{(1)}=w_{1}\otimes\cdots ufp-1\otimes w_{p}w_{q}\otimes ufp+1\otimes\cdots\otimes w_{q-1}\otimes w_{q+1}\otimes\cdots\otimes w_{n}$ and $W_{p,q}^{(2)}=$

$w_{1}\otimes\cdots w_{p-1}\otimes w_{q}w_{p}\otimes w_{p+1}\otimes\cdots\otimes u)q-1\otimes w_{q+1}\otimes\cdots\otimes w_{n}$ . Notice that if the words $\{w_{i}\}_{1\leq i}\leq n$

satisfy the commutativity property with regard to word concatenation, i.e., $w_{i}u_{j}$) $=w_{j}w_{i}$ for
$1\leq i,j\leq n$ , then $u\Sigma_{1\leq p<q}\leq n(-1)q-1(W_{p,q}^{(1)}-W_{p,q}^{(2)})=0$. This indicates that the pseudo n-cell
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$u(w_{1}\otimes\cdots\otimes w_{n})$ represents the $n$-cell spanned by $w_{1},$ $\cdots$ , $u$ )
$n$ if the commutativity property is

satisfied. If we view the words $\{w_{i}\}$ as the names of the processes, the commutativity property
means that any process in $\{u_{i})\}$ can run in any order so that the $n$-cell represents truly concurrent
execution of these processes.

We now consider the example of the case of $n=2$ . If we assume the commutativity
$ab=ba$ , we obtain $\partial(a\otimes b)=\partial_{0}(a\otimes b)+\partial_{1}(a\otimes b)=([a]-[b])+\langle a[b]-b[a])$ and this is
in fact the boundary of the 2-cell spanned by $a$ and $b$ . This situation is $\mathrm{i}\mathrm{l}1_{11}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ in $\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{t}\mathrm{u}\cdot \mathrm{e}$

$2$ , which is in fact the formalized version of Figure $1(\mathrm{a})$ . The 2-cell is obtained by gluing the
bar expressions $[a|b]$ and $[b|a]$ . Notice that the label of a vertex represents the path fronl the

Figure 2: Construction of 2-cell with Bar expressions

base point 1 to the vertex. For example, if we call $\mathrm{a}\mathrm{l}\cdot \mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}$ at a vertex by passing the edges
$[a_{1}],$ $a_{1}[a_{2}],$ $\cdots,$ $a1a_{2}\cdots a_{n-}1[a_{n}]$ in this order, then the vertex is labeled by $a_{1}a_{2}\cdots a_{n}$ . The
label of a vertex is unique in a given bar expression. However, the uniqueness is destroyed when
bar expressions are glued. In the above example, one of the vertices in $a\otimes b$ has two labels $ab$

and $ba$ . This indicates that we can arrive at this vertex from the base point 1 in two ways: one
is through the path $[a],$ $a[b]$ and another is through the path $[b],$ $b[a]$ . These paths correspond to
the computation paths $(a, b)$ and $(b, a)$ of $P=(a|b)$ , and the vertex $\mathrm{r}\mathrm{e}\mathrm{p}_{\mathrm{l}\mathrm{e}}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ the final state
of $P$ , whose labels $ab$ and $ba$ indicate the paths.

We must also consider the treatment of the $\tau$-action. Consider the process expression
$P=(a|\overline{a})$ . This may also be interpreted by the 2-cell $a\otimes\overline{a}=[a|\overline{a}]-[\overline{a}|a]$ , but the
synchronous $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{t}\mathrm{m}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}P^{\mathcal{T}}arrow a$ (nil $|$ nil) is not modeled explicitly. The 2-cell must contain
the 1-cell that represents the $\tau_{a}$-action. One solution of this problem is to introduce the new
relation: $[ab]-[ba]=[\tau_{a}]$ if $b=\overline{a}$ and $[ab]-[ba]=0$ otherwise. The idea behind this relation is as
follows. The label $a\overline{a}\mathrm{r}\mathrm{e}_{\mathrm{P}^{\mathrm{r}}}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ a single $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{f}_{}\mathrm{e}$ in which the actions $a$ and $\overline{a}$ are finished. There are
two ways to arrive at this state: $a$ and $\overline{a}$ run in this order, or $a$ and $\overline{a}\mathrm{r}\iota \mathrm{m}$ simultaneously carrying
out the $\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{o}\iota \mathrm{l}\mathrm{s}$ communication, namely the $\tau_{a}$ -action. The latter case is represented by the
1-cell $[a\overline{a}]$ . On the other hand, by the silnilar discussion about the label $\overline{a}a$ , we can regard that
the 1-cell $[\overline{a}a]$ also represents the $\tau_{a}$ -action. Hence we can regard that the collection of the actions
$[a\overline{a}]$ and $[\overline{a}a]$ represent a single $\tau_{a}$-action. The equation $[a\overline{a}]-[\overline{a}a]=[\tau_{a}]$ represents this situation
algebraically. The new relation allows the 2-cell $a\otimes\overline{a}$ to contain the 1-cell $[\tau_{a}]$ , which occurs as
the special part of the boundary of the cell. Namely, $\partial(a\otimes\overline{a})=([a]+a[\overline{a}]-\overline{a}[a]-[\overline{a}])+[\overline{a}a]-[a\overline{a}]=$

$([a]+a[\overline{a}]-\overline{a}[a]-[\overline{a}])-[\tau_{a}]$ . We can understand that $[a]+a[\overline{a}]-\overline{a}[a]-[\overline{a}]$ part is the boundary
in the ordinary sense, and that $[\tau_{a}]$ is the $\tau_{a}$-action contained in the 2-cell $a\otimes\overline{a}$ . Thus, the cell
$a\otimes\overline{a}$ is illustrated in Figure 3, which is in fact the formalized version of Figure 1 (b).

Now we generalize this idea on the treatment of $\tau$-actions. Let $E=\tau\iota(w_{1}\otimes\cdots\otimes w_{?},)$ be
a pseudo $n$-cell. If we postulate (1) $W_{p,q}^{(1)}-W^{(}p,q2)=w_{1}\otimes\cdots\otimes w_{p-1}\otimes\tau_{a}\otimes v\prime_{p+1}\otimes\cdots\otimes w_{q-1}\otimes$

$w_{q+1}\otimes\cdots\otimes w_{n}$ if $u;_{p}=\overline{w}_{q}=a$ or $u\overline{\prime}_{p}=w_{q}=a$ for $1\leq p<q\leq n$ , and (2) the commutativity
property $w_{i}w_{j}=w_{j}w_{i}$ for all $\dot{i},j$ such that $w_{i}\neq\overline{w}_{j}$ , then,

$\partial(E)$ $=$ $u(\Sigma_{i=1}^{n}(-1)iw1\otimes\cdots wi-1\otimes u\prime i+1\otimes\cdot .. \otimes w_{n})$

$+u(\Sigma_{i=1()^{i-1}w(\otimes w\otimes}^{\eta}-1iw1\otimes\cdots u\prime_{i}-1i+1 .. \otimes w,))+\mathrm{c}\iota R$

where $R=\Sigma(-1)^{q-1}w_{1}\otimes\cdots\otimes u\prime_{p-1}\otimes\tau_{a}\otimes w_{p+1}\otimes\cdots\otimes w_{q-1}\otimes w_{q+1}\otimes\cdots\otimes ufn$ and $\Sigma$ ranges
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Figure 3: 2-cell containing $\tau$-action

$p$ and $q$ such that $1\leq p<q\underline{<}n$ and $w_{p}=\overline{w}_{q}=a$ or $\overline{w}_{p}=w_{q}=a$ for some $a$ .

3.3 Note on the equality between states
We postulated a kind of equality of words to make the simulated $n$-cells. The words to be
equated are labels of the terminal states of the truly concurrent processes. In fact, this is not
the algebraic equality. Hence we will call the equality the merging relation and denote by $\perp$

instead of $=$ . For example, if $ab=ba$ holds, we wish to derive the new equality $wab=wba$

for arbitrary word $w$ . Unfortunately, this is not accepted. For example, consider the process
$P=(a|b)+c;(a ; b+b ; a ; d)$ . The actions $a$ and $b$ should be commutative in $(a|b)$ , but the
same actions should not be commutative in $c$ ; $(a ; b+b ; a ; d)$ : $cab\neq cba$ . Hence, the right
extension rule “If $U\perp V$ , then $WU\perp WV$ ( $W$ is a word)” must be excluded. On the other hand,
a simple observation will show that 1 must satisfy symmetry, transitivity and the left extension
rule $‘(\mathrm{i}\mathrm{f}U\perp V$ then UELVE” where $U$ and $V$ are words and $E$ is a word or a bar expression.
These rules are easily justified with the definition of bar expression.

3.4 HDA interpretation in the domain of bar expressions
Now we will reformulate the interpretation map [ $\cdot \mathrm{J}$ given in section 2 in the domain of bar
expressions. Because a unit square is not a primitive notion in our model, the interpretation of
parallel composition is more complex than that given in [1]. We must introduce the $\star$-product for
the construction of product spaces interpreting parallel composition. We will use the notations
$ST=\{st|s\in S, t\in T\},$ $St=\{st|s\in S\}$ , and $S\pm T=\{s\pm t|s\in S, t\in T\}$ for given sets $S$

and $T$ .

3.4.1 $\star$-product for parallel composition
$\star$-product is defined with the set of interleaving of elements in sequences. Let $x=a_{1},$ $a_{2},$ $\cdots,$ $a_{p}$

and $y=aa2,$ $\cdots,$$ap+1,p+p+q$ be the sequences of length $p$ and $q$ . The set of all the patterns
of interleave can be represented as $I(x, y)=\{a_{\sigma(1)}, a_{\sigma}(2), \cdots, a_{\sigma(q}p+)|\sigma\in S_{p+q}/S_{p}S_{q}\}$ where
$S_{p+q}/S_{p}S_{q}$ is the subset of $S_{p+q}$ such that any element of $S_{p+q}/S_{p}S_{q}$ does not change the order
of 1, 2, $\cdots,p$ and the order of $p+1,p+2.\cdot-$ . , $p+q$ . The set $I(x, y)$ will simply be called an

interleave of two words $x$ and $y$ . For a set $W$ of words, we define $I(x, W) \mathrm{d}\mathrm{e}\mathrm{f}=\bigcup_{w\in \mathrm{I}l^{\mathrm{v}}}.I(x, w)$ .
$I(W, x)$ . $I(W_{1},$ $W_{2}\mathrm{I}$ will be defined similarly.

Definition 1: ($\star$-product)
Let $u,$ $v,$ $w$ and $\{w_{i}\}$ are words over $A$ . Then, the $\star$-product between bar expressions is a set
of new bar expressions together with the set $R$ of merging relations such that $w_{1}[u_{1}|\cdots|u_{n}]\star$

$w_{2}[u_{n+}1|\cdots|u_{n}+m]=I(uf1, w2)J([u_{1}|\cdots|u\eta], [u_{n}+1|’\cdot\cdot|u_{n+m}])$

where $J([u_{1}|\cdots|u_{n}], [u_{n+1}|\cdots|u_{n+m}])=\Sigma Sns_{m}\epsilon\tau\in s_{n+m}/(\mathcal{T})[u(\tau 1)|\cdots|u_{\tau(n+)}77?]$, and the accom-
panied set of the merging relations are

$R_{w_{1}[u_{1}\cdots],[u_{n}}w2+1\ldots]=\{$

$\{w_{12}\perp u)|w_{1,2}uf\in I(w1, w_{2})\}$ if $n=7?\mathrm{t}=0$

$\phi$ Otherwise.
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The following properties simplifies t,he calculation of $\mathrm{p}_{1}\cdot \mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}$ HDA space.

Proposition 1 (Properties $of\star$ -product)
(1) $(E_{1}\star E_{2})\star E3=E_{1}\star(E_{2}\star E_{3})$ for bar expressions $E_{i}$ ,

(2) $u([w_{1}]\star\cdots\star[w_{n}])=\{u(w_{1}\otimes\cdots\otimes w_{n})\}$ for words $u$ and $w_{i}$ , and
(3) $w_{1}(u_{1}\otimes\cdots\otimes u_{n})\star w_{2}(v_{1}\otimes\cdots\otimes v_{m})=I(u_{1}f, u_{2}f)(u1\otimes\cdots\otimes u_{\eta}\otimes v_{1}\otimes\cdots\otimes v_{n?})$

for words $w_{i},$ $u_{j},$ $v_{k}$ .

3.4.2 Projection map $\varphi_{L}$ for restriction
Let $L(\subset \mathcal{L})$ be a finite set. We will call the word in the form of $a\overline{a}$ or $\overline{a}a(a\in L)$ the commu-
nication of a. In a bar expression, if the occurrence of an element from $A$ is not contained in a
communication of any symbol from $L$ , it will be called the isolated $occur7$ence. The projection
map $\varphi_{L}$ removes all the bar expressions that contains the isolated occurrences and replaces the
communications such as $a\overline{a}$ and $\overline{a}a$ by the $\tau$-action $\tau_{a}$ . For example, let $H$ be the HDA space

illustrated in Figure 3. Then, $\varphi_{\{a\}}(H)$ is the line segment 1
$\frac{[\tau_{a}]}{}$

. $\tau_{a}$ .

3.4.3 The interpretation map $[\cdot \mathrm{I}$

First of all, we define $com(s)$ procedure that generates the cells representing the synchronous
communication.

Definition 2: ($com(S)$ procedure)
Let $S$ be a set of bar expressions. Then the set $com(s)$ is constructed as follows: For arbitrary
element $W\in S$ in the form of $W=u(a_{1}\otimes\cdots\otimes a_{n?})$ , if there exits $1\leq p<q\leq n$ such that
$a_{p}^{-}=a_{q}$ and $\{a_{p}, a_{q}\}\cap \mathcal{L}=\{\alpha\}$ , then construct a bar expression $E=u(a_{1}\otimes\cdots\otimes a_{p-1}\otimes\tau_{a}\otimes$

$a_{p+1}\otimes\cdots\otimes a_{q-1}\otimes a_{q+1}\otimes\cdots\otimes a_{n})$ and make the new set $S\cup\{E\}$ . $co7’\tau(E)$ is the closure of
this extension procedure.

Next we define the set of final states $F(P)$ for a process P. $F(P)$ is inductively defined
as follows:

1. $F(n\dot{i}l)=\phi,$ $F(a)=\{a\}$ and and $F(\tau_{a})=\{a\overline{a},\overline{a}a\}$ where $a\in\Sigma$ ;
2. If $P$ and $Q$ are process expressions, then $F((P|Q))=F(P)F(Q)\cup F(Q)F(P),$ $p_{(P}$ ; $Q$ ) $=$

$F(P)F(Q),$ $F(P+Q)=F(P)\cup F(Q)$ and $F(P\backslash L)=\varphi_{L}(F(P))$ for $L\subset L$ .

Then we can define the interpretation map $\mathbb{I}\cdot \mathrm{I}$ .

Definition 3: (HDA interpretation of process expressions)
Let $P$ be a process expression. The $HDA$ interpretation $\mathbb{I}^{P}\mathrm{I}$ of $P$ together with the set $R_{\mathrm{Q}P\mathrm{I}}$ of
the merging relations is defined inductively as follows:

1. [$n\dot{i}l\mathrm{J}=R_{\mathrm{I}^{nil}\mathrm{I}}=\phi,$ [$a\mathrm{I}=\{1, a, [a]\}$ and $R_{\mathrm{I}a\mathrm{I}}=\phi$ , and [$\tau_{a}\mathrm{I}=\{1, a\overline{a},\overline{a}a, [\tau_{a}]\}$ and $R_{\mathrm{I}^{\tau_{a}}\mathrm{I}}=$

$\{a\overline{a}\perp\overline{a}a\}$ where $a\in A$ ;
2. If $P$ and $Q$ are process expressions, then

$\bullet$ [ $(P|Q) \mathrm{I}=com(\bigcup_{f\in \mathbb{I}P\mathrm{I},\in\ovalbox{\tt\small REJECT}}gQ\mathrm{I}f\star g)$ and $R_{\mathrm{I}(P|Q)\mathrm{I}}=R_{[P\mathrm{I}} \cup R_{[Q\mathrm{Q}}\cup\bigcup_{f\in \mathrm{I}P1_{\mathit{9}}},\in\beta Q\mathrm{I}R_{fg}$,

where $R_{fg}$, is the set of merging relations generated by the $\star$-product $f\star g$ ;
$\bullet$ [$P;Q\mathrm{I}=[P\mathrm{J}\cup F(P)[Q\mathrm{I}$ and $R_{\mathrm{I}^{P};Q\mathrm{I}}=R_{\beta P\mathrm{I}}\cup F(P)R_{[Q\mathrm{I}}$ where $F(P)R_{[Q\mathrm{J}}=$

$\{fg\perp fh|f\in F(P), gLh\in R_{[Q\mathrm{I}}\}$ ;
$\bullet$ [$P+Q\mathrm{J}=[P\mathrm{J}\cup[Q$I and $R_{\mathrm{I}^{P}+Q\mathrm{I}}=R\ovalbox{\tt\small REJECT}_{P}\mathrm{I}\cup R_{\mathbb{I}Q\mathrm{I}}$

$\bullet$ [$P\backslash L\mathrm{J}=\varphi_{L}(\beta P\mathrm{I})$ and $R_{\beta P\backslash L\mathrm{J}}=\varphi_{L}(R_{\mathrm{Q}P\mathrm{I}})$
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The following lemma claims that our HDA interpretation [$P\mathrm{I}$ is certainly a collection of
the (simulated) n-cells.

Lemma 1 For a process expression $P,$ [ $P\mathrm{I}$ has the decompositi,on into the disjoint union $[P\mathrm{I}=$

$\bigcup_{i=}^{n}0[P\mathrm{I}i$ for some $n$ , where [PIn $\mathrm{d}\mathrm{e}\mathrm{f}=\ovalbox{\tt\small REJECT} P\mathrm{I}\cap\{u(uf1\otimes\cdots\otimes w_{n})|u, w_{i}\in M\}$ . The number $n$ will
be called the dimension of [$P\mathrm{J}$ and denote by $n=d_{im}\mathbb{I}P\mathrm{I}$ .

Example 1: $\mathrm{C}_{\mathrm{o}\mathrm{n}\mathrm{S}}\grave{\mathrm{i}}\mathrm{d}\mathrm{e}\mathrm{r}$ the process expressions $P=(a|b|\overline{a})$ and $Q=P\backslash \{a\}$ . Then,

$\mathbb{I}^{P}\mathrm{I}=$ { $1,$ $a,\overline{a},$ $b$ , ab, $ba,$ $a\overline{a},\overline{a}a,\overline{a}b,$ $b\overline{a},\overline{a}ab,$ $a\overline{a}b,$ $ab\overline{a},\overline{a}ba,$ $b\overline{a}a,$ $ba\overline{a}$ }
$\cup$ $\{[a], [\overline{a}], [b],\overline{a}[a], b[a], a[\overline{a}], b[\overline{a}], a[b],\overline{a}[b], ab[\overline{a}], ba[\overline{a}], a\overline{a}[b],\overline{a}a[b],\overline{a}b[a], b\overline{a}[a], [\tau_{a}], b[\tau_{a}]\}$

$\cup$ $\{a\otimes b,\overline{a}(a\otimes b), a\otimes\overline{a}, b\otimes\overline{a}, a(b\otimes\overline{a}), b(a\otimes\overline{a}), \tau\otimes ab\}\cup\{a\otimes b\otimes\overline{a}\}$

and $[Q\mathrm{I}=\varphi\{a\}[P\mathrm{I}=\{1, b, \tau_{a’ aa}\tau b, b\mathcal{T}\}\cup\{[b], \tau_{a}[b], [\tau_{a}], b[\tau_{a}]\}\cup\{\tau_{a}\otimes b\}$ .

3.4.4 Note on the occurrences of atomic actions
The same label may occur in a process expression more than once. For example, consider the
processes $P=a+b;(c|c)$ and $Q=a+b;(c+ ((a+c ; d)|e))$ . In both cases, [ $\cdot \mathrm{J}$ generates
$b[c]$ twice according to the multiple occurrences of $c$ . The naive set theoretic formulation of
the interpretation cannot distinguish these $b[C]\mathrm{s}$ . We may avoid this problem by relabeling or
attaching the occurrence numbers to the labels in the process expressions. However, for sim-
plicity of the discussion, we will restrict the syntax so that this problem does not occur. We
first define the head action map zeta inductively as follows: (1) $\zeta(\alpha)=\{\alpha\}$ where $\alpha\in A;(2)$

$\zeta(P+Q)=\zeta(P)\cup((Q);(3)((P ; Q)=\zeta(P);(4)\zeta((P|Q))=\zeta(P)\cup((Q)\cup\triangle(P, Q)$ where
$\triangle(P, Q)=$ { $\tau_{a}|l\in((.P),\overline{l}\in((Q),$ $l\in \mathcal{L}\cup\overline{L},$ $l=a$ or $\overline{a}$ } $;(5)\zeta(P\backslash L)=((P)-L$ . Then, we
have the following.

Lemma 2 Let $P$ be a process expression. Then the $HDA$ interpretation procedure does not gen-
erate duplicate bar expressions if and only if (1) for any subexpression $(Q|R),$ $\chi[Q]\cap\chi[R]=\phi$

and (2) for any subexpression $Q+R,$ $\zeta(P)\cap\zeta(Q)=\phi$

We will exclude the processes that does not satisfy the conditions in the above lemma.
Because of the restriction of the syntax, the notion of strong bisimulation is drastically simple.

Lemma 3 Two $proceSS$ expressions $P$ and $Q$ are bisimilar if and only if [$P\mathrm{I}i=[Q\mathrm{I}i$ for $\dot{i}=0$

and 1, where the merging relation between elements are not taken into account.

4 Postulating Merging Relations
Consider, for example, process expressions $P=a$ ; $b+b;$ $a$ and $Q=(a|b)$ . $P\sim Q$ by the
expansion law, so that the parallelization of $P$ must be $Q$ . Then, how should we find $Q$ from
$P$? The idea is that we tregard the computation paths $(a, b)$ and $(b, a)$ in $cp(P)$ are homotopic,
namely they can be continuously transformed to each other. For the two paths being homotopic,
their end points must be equal and there must be the higher dimensional object in which the
paths are continuously transformed. In our HDA model, the end points of the paths are $ab$

and $ba$ , so that we must first postulate the merging relation $ab\perp ba$ . We will simply call this
procedure merging. Then, we obtain a cycle that consists of the 1-cells $[a],$ $[b],$ $a[b]$ and $b[a]$ . For
the higher dimensional object that ensures homotopy relation, we fill the cycle with the 2-cell
$a\otimes b$ to obtain a new HDA, which is in fact the HDA interpretation of $Q$ .
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In realizing this idea, we encounter the following problems: (1) How can we find the points
to be merged? (2) How can we fill the cycles created by merging? (3) How can we obtain the
parallelized process expressions from the new HDA spaces? This section is devoted to the first
problem. The remainder will be considered in the sections 5 and 6.

Let $P$ be a process. Then, the pairs of elements from $\ovalbox{\tt\small REJECT} P\mathrm{I}\mathrm{o}$ in the form of $<WAB,$ $WBA>$
$(W\in M, A, B\in\chi[P])$ are called the merging candidate pair of $P$ . We cannot merge all the
merging candidate pairs. For example, consider a process expression $P=a;b+b;a;c$. Then
[$P\mathrm{I}\mathrm{o}=$ { $1,$ $a,$ $b$ , ab, $ba,$ $bac$ } and we obtain the candidate pair $<$ ab, $ba>$ . Assume that the
candidate is merged and the cycle created with the merging is filled with the 2-cell $a\otimes b$ , we
obtain the HDA illustrated below. In fact, this is not the HDA interpretation of any process.

Hence, the candidate must be discarded.
Now we will see this example closely. The computation path $(a, b, c)$ is not allowed in $P$ , but

it is allowed in the obtained HDA space. This means that this merging changes the observation
behavior. Hence, we must check whether two computations beginning at a merging candidate
pair are bisimilar. We introduce the bisimilar condition to check this. Based on Lenlma 3, the
condition is formally described as follows: Let $P$ be a process expression. Then, we say that
a merging candidate pair $<w_{1},$ $w_{2}>$ satisfies the bisimilar condition if $[P(w_{1})\mathrm{I}i=[P(w_{2})\mathrm{I}i$

$(i=0,1)$ where $[P(w)\mathrm{I}n=\{u[a_{1}|\cdots|a_{n}]|ulu[a1|\cdots|a_{n}]\in \mathbb{I}P\mathrm{J}_{n}\}$ .

5 Cell Construction in Bar Construction
In the parallelization procedure, we fill the cycles created by merging. The cycles are filled with
the cells of various dimensions. We present here the systematic method of constructing the cells
that fill the cycles. The cell construction is carried out in the framework of Bar $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{l}\cdot \mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$.

5.1 Bar construction
Following [2], we will briefly explain (normalized) Bar construction for homology of monoid. Let
$P$ be a process expression and $M$ be the $\mathrm{f}\mathrm{i}\cdot \mathrm{e}\mathrm{e}$ monoid over $\chi[P](\subset A)$ . Let $\mathrm{Z}M$ be the monoid
ring. Let $B_{n}$ be the free $\mathrm{Z}M$-module over $M^{n}\mathrm{d}\mathrm{e}\mathrm{f}=\{[u_{1}|\cdots|u_{n}]|u_{i}\in M, u_{i}\neq 1\}$ . Notice that
$B_{n}$ is also a $\mathrm{Z}$-module whose base is $\{u[uf1|\cdots|w_{n}]|\tau\iota, w_{?}\cdot\in M, u)i\neq 1\}$ . By identifying $u[]$ with
$u$ , we regard $B_{0}=\mathrm{Z}M$ . Then the

$\mathrm{s}\mathrm{e}_{\partial_{n}}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$

of modules

. .. $\partial_{n+1 ,arrow}B_{n}arrow\cdotsarrow B_{1}\partial_{2}arrow \mathrm{Z}Marrow \mathrm{Z}\partial_{1}\epsilonarrow 0$

where $\epsilon(\Sigma_{n_{i}\in^{\mathrm{z}}}, m_{i}\in Mnim_{i})=\Sigma n_{i}$ , is called the Bar construction of $M$ over Z. In this sequence,
a $(n-)\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}$ is the element of $Ker\partial_{n}$ . It is known that this sequence is exact. The geometric
intuition of the Bar construction is as follows. We have the base $X_{0}=\{w|u)\in M\}$ of points
labeled by $M$ . Next, we construct the space $X_{1}=\{u[uf]|u, w\in M, w\neq 1\}$ of edges that link the
points in $X_{0}$ . Then we construct the space $X_{2}=\{u[w_{1}|w_{2}]|u, w_{i}\in M, w_{i}\neq 1\}$ of 2-simplexes
spanned by the edges from $X_{1}$ and so on. $X_{n}$ interprets $B_{n}$ and the Bar construction means
the construction of the space $X= \bigcup_{n=0^{X}n}^{\infty}$ . This space is in fact contractible, that is $X$ has
no cycles and is connected. Consider the $n$-skeleton $X^{(n)}= \bigcup_{i=0^{X_{i}}}^{n}$ . It is also known that $X^{(_{?}\iota)}$

does not have $(n-1)$ -cycles. $\mathrm{B}\mathrm{e}\mathrm{c}\mathrm{a}\iota\iota \mathrm{s}\mathrm{e}$ a HDA interpretation is represented in bar $\exp_{1}\cdot \mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}_{0}\mathrm{n}$ ,
the space can be embedded in $X$ and we can find the cells that fill the cycles in $X$ .

246



We do not need all part of the construction. Let $Q$ be the parallelization of $P$ . Consider
the set of process expressions whose alphabet is $\chi[P]$ . In this set, the process that has the largest
degree of true concurrency is $(b_{1}|\cdots|b_{k})(b_{i}\in\chi[P]).\cdot$ Hence, the construction up to degree
$\# x[P]$ is sufficient.

5.2 Cycles and constracting homptopy
We first define the constracting homotopy.

Definition 4: (Contracting homotopy)
Given a Bar resolution as in 5.1. Let $s_{-1}$ : $\mathrm{Z}arrow B_{0}$ be the $\mathrm{Z}$-homomorphism such that
$s_{-1}(1)=$ $[]$ . Also for $n\geq 0$ , let $s_{n}$ : $B_{n}arrow B_{n+1}$ be the $\mathrm{Z}$-homomorphism such that
$s_{n}$ $(X[X_{1}| . . . |x_{n}])=[x|x_{1}| . . . |x_{n}]$ . $\{s_{n}\}$ is called the contracting homotopy of the
resolution.

The contracting homotopy satisfies the equation $\partial_{n+1^{S}n}+s_{n-1}\partial_{n}=I_{B_{n}}$ . If $C\in B_{n}$ is a
cycle, $\partial_{n+1^{S_{n}()}}C+s_{n-1}\partial_{n}(C\rangle$ $=\partial_{n+1^{S_{n}}}(c_{)}=C$ . This means that the map $s_{n}$ makes the space
$s_{n}(C)$ whose dimension is $d\dot{i}mC+1$ and whose boundary is $C$ . In other words, $s_{n}$ fills the cycle.

The cells constructed by the naive application of the contracting homotopy are not always
preferable for our purpose. The following lemma indicates the way how we should use the map.

Lemma 4 Let $x$ be a cycle in $B_{n}$ and let $w$ be the largest common header in $x$ , namely $x=ufy$
and $y$ has no common header. Then $ws_{\chi},(y)\approx s_{n}(x)$ (homotopic) in the universal covering space.

Now we can give the cycle filling procedure. First we find cycles to be filled by calculating
the homology group [1]. For a cycle $C=\Sigma_{i}E_{i}\in B_{n}$ , let $u$) be the largest common header
of $\{E_{i}\}:C=w(\Sigma_{i}F_{i})(E_{i}=wF_{i})$ . Then $B=ws_{n}(\Sigma iFi)$ is the ( $n+1\rangle$-cell that fills the
cycle $C$ . Add all such cells to the given HDA space. New cycles can be generated in the new
HDA. Hence, we calculate the homology group of the new HDA and repeat the application
of the contracting homotopy. The application of the contracting homotopy is in fact the Bar
construction procedure, and the loop of the cycle filling procedure terminates in finite steps as
explained in the end of 5.1.

Example 2: Let $P=a$ ; $(b|c)+b$ ; $(a ; c+c ; a)+c$ ; $(a|b)$ . Then.
[ $P\mathrm{I}\mathrm{o}$ $=$ {1, $a,$ $b,$ $c$ , ab, $ba,$ $ac,$ $Ca,$ $bC$ . $Cb$ , cab, $cba,$ $baC,$ $bca,$ $ab_{C,a}cb$ },
$[P\mathrm{J}_{1}$ $=$ $\{[a], [b], [c], b[a].c[a], a[b].c[b].a[c], b[C], bC[a], Cb[a], aC[b], Ca[b].ab[C].ba[c]\}$ .
$[P\mathrm{J}_{2}$ $=$ $\{a(b\otimes c), c(a\otimes b)\}$ . $R_{[P\mathrm{I}}=\{abc\perp aCb, cab\perp_{C}ba\}$

After merging, we obtain the new merging $1^{\cdot}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}R=$ {abLba. $aCLca,$ $bc\perp cb,$ $bac\perp bca$ }. Now
we have four 1-cycles $C_{1}=[a]+a[b]-b[a]-[b],$ $C2=[a]+a[C]-c[a]-[c]$ . $C_{3}=[b]+b[c]-C[b]-[c]$

and $C_{4}=b[a]+ba[C]-b[c]-bc[a]=b([a]+a[c]-[c]-c[a])$ . The 2-cells that fill these cycles
are constructed with the contraction homotopy $s_{1}$ : $B_{1}arrow B_{2}$ : $s_{1}C_{1}=[a|b]-[b|a]=a\otimes b$ ,

$s_{1}C_{2}=[a|c]-[c|a]=a\otimes c,$ $s_{1}c3=[b|c]-[c|b]=b\otimes c$, and, for $C_{4},$ $bs_{1(}[a]+a[c]-[c]-c[a])=$

$b([a|c]-[c|a])=b(a\otimes c)$ by Lemma 4. Then we extend the HDA by adding these 2-cells to
obtain the new HDA, $HDA_{1}=[s\mathrm{J}\cup\{a\otimes b, a\otimes c.b\otimes c, b(a\otimes c)\}$ . Now $HDA_{1}$ has a 2-cycle
$C_{5}=-a\otimes b+a\otimes c-b\otimes c+a(b\otimes c)-b(a\otimes c)+c(a\otimes b)$ and the 3-cell that fills this cycle is
$s_{2}(C_{5})=[a|b|c]-[a|c|b]-[b|a|c]+[b|c|a]+[c|a|b]-[c|b|a]=a\otimes b\otimes c$ . Then we
extend $HDA_{1}$ by adding this 3-cell to obtain the new HDA,

$HDA_{2}=HDA_{1}\cup\{a\otimes b\otimes c\}=$

{1, $a,$ $b,$ $c$ , ab, $ba.ac.ca.b_{C.Cb}$ , cab, $cba,$ $baC,$ $b_{Ca,a}bC,$ $acb$ },
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$\cup$ $\{[a], [b], [c], b[a], c[a], a[b], c[b], a[c], b[C], bC[a], Cb[a], aC[b], Ca[b], ab[C], ba[c]\}$,

$\cup$ $\{a\otimes b, a\otimes c, b\otimes c, b(a\otimes c).a(b\otimes c), c(a\otimes b)\}\cup\{a\otimes b\otimes c\}$

This is in fact acyclic and the cell construction procedure finishes. Notice that $HDA_{2}$ is $\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{a}\mathrm{i}_{1}\mathrm{d}\mathrm{y}$

$[(a|b|C)\mathrm{J}$ .

6 Reverse Interpretation
In the parallelization algorithm, we construct the new HDA spaces from the HDA interpretations.
The final stage of the algorithm is to extract the parallelized processes $\mathrm{f}\mathrm{i}^{\backslash }\mathrm{o}\mathrm{m}$ the new HDA
spaces. We will call this step the reverse interpretation. Notice that any HDA space, even the
HDA spaces obtained by the cycle filling, is not always the HDA interpretation of a process
expression. For example, consider a process $P=a$ ; $b+b;(a+c)$ . We obtain a HDA space
$H_{wrong}=$ { $1,$ $a,$

$b$ , ab, $ba,$ $bc$} $\cup\{[a], [b], a[b], b[a], b[c]\}\cup\{a\otimes b\}$ with the new merging relation
$ab\perp ba$ , and $H_{wrong}$ does not interpret any process expression. The basic idea of the reverse
interpretation is that the HDA interpretation of a process expression consists of the higher
dimensional computation paths (HDCP) and the HDCPs may branch and intersect according
to the nature of the given process.

6.1 HDCP searching
We will first define the notion of higher dimensional computation paths (HDCP). In a HDA
space we consider the maximal cells according to the partial ordering defined by set inclusion. A
higher dimensional computation path (HDCP) is a sequence of the maximal cells. For example,
consider the HDA space given in the following figure which consists of four maximal 1-cells $[a]$ ,
$L_{1},$ $L_{2}$ and $L_{3}$ , and three maximal 2-cells $A,$ $B$ and $C$ .

The HDCPs are $s_{1}=([a], A, L_{1}),$ $s_{2}=([a], B, L_{2})$ and $s_{3}=([a], C, L_{3})$ . We can interpret
a HDCP as a fragment of concurrent computation. For example, $s_{1}$ means that first $a$ runs,
after that $b$ and $d$ run truly concurrently and finally $e$ runs.

Now we will give the rule by which the maximal cells are arranged in a HDCP. Consider
the HDCP $s_{1}$ in the above example. The 1-boundary of $[a]$ is $a$ and it is at the same time a
part of the $0$-boundary of $A$ . In fact, $\partial_{0}(A)=a[b]-a[d]$ and $\partial_{0(a}[b])=\partial_{0(a}[d])=a$ . Hence we
can regard that $a\in\partial_{0}(A)$ . On the other hand, the $0$-boundary of $L_{1}$ is $abd(=\partial_{0}(L_{1}))$ and this
is at the same time a part of the 1-boundary of $A$ . Recall that the $0$-boundary represents the
initial part of the subprocess and the 1-boundary represents the final part of the subprocess.
Then, the arrangement of the cells in a HDCP gives the direction of the computation. Assume
the maximal cells $C_{1}$ and $C_{2}$ . If $C_{1}\cap C_{2}$ is the cell which is a part of the 1-boundary of $C_{1}$

and a part of the $0$-boundary of $C_{2}$ , we will denote it by $C_{1}\Rightarrow C_{2}$ . We will call $’\Rightarrow$
’ the next-to

relation and a HDCP is a maximal sequence, $C_{1}\Rightarrow\cdots\Rightarrow C_{n}$ , of maximal cells ordered by the
next-to relation such that the start point of $C_{1}$ is 1.

Now the HDCP searching procedure is abstractly described as follows: [Step 1] Construct
the set $SE$ of maximal sequences $C_{1}\Rightarrow\cdots\Rightarrow C_{n}$ in a given HDA space, [Step 2] If there is
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a sequence $C_{1}\Rightarrow\cdots\Rightarrow C_{n}\in SE$ such that the start state of $C_{1}$ is not 1, then HDCP search
fails. Otherwise, output $SE$ . Notice that HDCP search fails in Step 2 for the HDA space $H_{wr\sigma ng}$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\backslash$osition 2 For arbitrary process expression $P,$ (1) the HDCP search procedure succeeds for
[$P\mathrm{J}$ and (2) the set of HDCPs covers [$P\mathrm{J}$ , namely every cell in [ $P\mathrm{J}$ is contained $i,n$ a maximal
cell in one of the HDCPs.

6.2 Interleaving search
A set of HDCPs may represents an interleaving subprocess. For example, consider a HDA
interpretation $H=\mathbb{I}^{a}$ ; $((b;c)|(d;e))$ ; $f\mathrm{I}$ in the following figure. We find three HDCPs $s_{i}$

$(\dot{i}=1\sim 3)$ in $H:s_{1}=[a]\Rightarrow A\Rightarrow B\Rightarrow D\Rightarrow abcde[f],$ $s_{2}=[a]\Rightarrow A\Rightarrow C\Rightarrow D\Rightarrow abcde[f]$ ,
$s_{3}=[a]\Rightarrow A\Rightarrow D\Rightarrow abcde[f]$ . The cluster of the cells $A,$ $B,$ $C$ and $D$ forms the interpretation
of the subprocess $((b;c)|(d ; e))$ . We can also observe that $s_{1}$ and $s_{2}$ suffice to find the cells
in the cluster and these HDCPs are different only at the third element, $B$ and $C$ . We first
generalize this nature of $s_{1}$ and $s_{2}$ to obtain the notion of pre-interleaving model.

Definition 5: (Homotopy relation of HDCP)

Let $s=C_{1}\Rightarrow\cdots\Rightarrow C_{m}$ and $t=D_{1}\Rightarrow\cdots\Rightarrow D_{n}$ be HDCPs. Then, $s$ and $t$ are called adjacent
iff $m=n$, and there exists at most one index $\dot{i}_{0}$ such that $1<\dot{i}_{0}<m$ and $C_{i}=D_{i}$ for arbitrary
$\dot{i}(\neq i_{0})$ . The homotopy relation, $\approx$ , between HDCPs is the reflexive, symmetric and transitive
closure of the adjacent relation.

Definition 6: (Pre-interleaving model)
Let $S=\{s_{i}\}_{1\leq i}\leq m$

’ where $s_{i}=C_{i,1}\Rightarrow C_{i,2}\Rightarrow\cdots\Rightarrow C_{i,n(i)}$ , be a subset of HDCPs in a given
HDA. Then, $S$ is called a pre-interleaving model iff (1) $s_{i}\approx s_{j}$ for arbitrary $1\leq i,j\leq m$ ,
hence $n(i)$ is a constant $L,$ (2) there exist $p$ and $q(1\leq p<q\leq L)$ such that for arbitrary
$1\leq k.\leq p$ and $q\leq l\leq L,$ $C_{i,k}$ and $C_{i,l}$ are constants for arbitrary $\dot{i}$ , and (3) for $p$ and $q$ in (2),
$d_{i}m(c_{i},p-1\cap C_{i,p})=d_{\dot{i}}m(C_{i,l}\cap C_{i,l+1})=0$ for all $\dot{i}$ .

A pre-interleaving model may not contain sufficient number of cells to intepret an inter-
leaving process. In the above example, $\{s_{2}\}(\subset\{s_{1}, s_{2}\})$ is a pre-interpretation model, but we
cannot find sufficient number of cells in the model. On the other hand, the pre-interleaving
model $\{s_{1}, s_{2}\}$ covers sufficient number of maximal cells. Thus, we introduce the notion of in-
terleaving model, which has sufficient cells in the cluster. Before that we define the notion of
sequential component system (SCS) of a pre-interleaving model.

For simplicity, we focus our attention to the cell clusters and we assume $p$ and $q$ in Def. 6
equal to 1 and $L$ . Let $S=\{s_{i}\}_{1\leq i\leq m}=\{C_{i,1}\Rightarrow\cdots\Rightarrow C_{i,L}|c_{i,j}=w_{i},j(x_{i,j}^{1}\otimes\cdots\otimes x_{i,j}^{n(j)})i,\}_{1}\leq i\leq m$

be a pre-interleaving model. Assume that there exists a natural number $N\geq 2$ , such that, for
all $i$ and $j,$ $\overline{x}_{i,j}=$

$(x_{i,j}^{1}, \cdots , x_{i,j}^{n(i,j)})$ is divided to nonempty subsequences $\overline{x}_{i},j=(\overline{\alpha}_{i,j}^{1}, \cdots,\overline{\alpha}_{i,j})N$

carrying out permutation of elements if necessary. We also assume that (1) for arbitrary $\dot{i}$ there
exists only one index $k_{i}$ such that for arbitrary $j,$ $\overline{\alpha}_{i,j}^{k}=\overline{\alpha}_{i,j+1}^{k}$ if $k\neq k_{i}$ and (2) for arbitrary
$\dot{i}$ and $j$ if $w_{i,j}=a_{1}\cdots a_{p}$ and $w_{i,j+1}=b_{1}\cdots b_{q}$ then there exists $k$ such that $\overline{\alpha}_{i,j}^{k}=(c_{1}, \cdots, c_{r})$
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where $\{c_{1}, \cdots, c_{r}\}=\{b_{1}, \cdots, b_{q}\}-\{a_{1}, \cdots, a_{p}\}(\subset\{x^{1}i,j’\cdots, x^{n}\}i,i(i,j))$ . In this case, we will simply
say that the partition of the pre-interleaving model is given. Also we will call the number $N$ the
partition number.

Example 3: Consider the cell cluster given in the following figure. We have a pre-interleaving

model $\{s_{1}\}=\{A\Rightarrow C\Rightarrow D\}$ , and and $\overline{x}_{1,1}=(a, b, e, f),$ $w_{1,1}=1,$ $\overline{x}_{1,2}=(a, b, g, h),$ $w1,2=ef$ ,
$\overline{x}_{1,3}=(a, c, g, h)$ and $w_{1,3}=bef$ . Then we have two candidates of partitions of the cell cluster.

$\overline{x}_{1,1}$ $=$ $(\overline{\alpha}_{1,1}^{12},\overline{\alpha}_{1,1})=((a, b),$ $(e, f))$ , $\overline{x}_{1,1}$ $=$ $(\overline{\alpha}^{1}1,1’\overline{\alpha}^{2}1,1’\overline{\alpha}1,1)3(=(a), (b),$ $(e, f))$
$\overline{x}_{1,2}$ $=$ $(\overline{\alpha}^{1}1,2’\overline{\alpha}1,2)2=((a, b),$ $(g, h))$ , and $\overline{x}_{1,2}$ $=$ $(\overline{\alpha}_{1,2}^{1},\overline{\alpha}^{2}1,2’\overline{\alpha}_{1,2}^{3})=((a), (b),$ $(g, h))$

$\overline{x}_{1,3}$ $=$ $(\overline{\alpha}^{1}1,3’\overline{\alpha}^{2}1,3)=((a, c),$ $(g, h))$ , $\overline{x}_{1,3}$ $=$ $(\overline{\alpha}_{1}^{1},3’\overline{\alpha}^{2}1,3’\overline{\alpha}^{3}1,3)=((a), (c),$ $(g, h))$

The first partition is the case of $N=2$ and the second is the case of $N=3$ . Both cases
satisfy the condition (1) above. Next consider the condition (2). The partition of the sequence
$(a, b, e, f)$ must contain the subsequence $(e, f)$ . Also, the partition of $(a, b, g, h)$ must contain
the subsequence $(b)$ , which is obtained by $\{b, e, f\}-\{e, f\}$ . Hence, we can accept only the case
of $N=3$ .

A partition of a pre-interleaving model induces the partition of a HDCP in the model. The
partition of a HDCP $s_{i}=C_{i,1}\Rightarrow\cdots\Rightarrow C_{i,L}$ can be conveniently represented by the $(L\cross N)-$

matrix $PM_{i}$ which will be called the $part_{\dot{i}}t_{\dot{i}}onmatr\dot{i}x$ . $PM_{i}$ is defined as $PM_{i}=[E_{k,l}]_{k,l}$ where
$E_{k,l}=\overline{\alpha}_{i,k}^{l}$ and $\overline{x}_{i,j}=(\overline{\alpha}_{i}^{1}’\overline{\alpha}^{2}oi,j’\cdots,\overline{\alpha}^{N}i,j)$. Then, by removing duplicated elements in each column
and with suitable renaming of indices, we obtain the vectors: $A_{1}^{i}={}^{t}[\overline{\alpha}_{i,1}^{1},\overline{\alpha}_{i,2}^{1}, \cdots , \overline{\alpha}_{i,\varphi(1)}^{1}]$ ,
$A_{2}^{i}={}^{t}[\overline{\alpha}^{2}i,1’\overline{\alpha}^{2}i,2’\ldots , \overline{\alpha}_{2,\varphi(2)}^{2}],$ $\cdots,$ $A_{n}^{i}={}^{t}[\overline{\alpha}_{i},\overline{\alpha}n_{1’ i}n_{2},’\ldots , \overline{\alpha}_{?}^{n}]$ , where we used the transposition
$t_{(\cdot)}$ simply for the typographical reason. We will omit the transposition in the following. Then,
we will call $\{A_{k}^{i}\}_{1\leq k}\leq n$ the sequential component system (SCS) with regard to $s_{i}$ . We will
interpret $A_{j}^{i}$ as the sequential composition $seq_{j}=P_{1}$ ;.. . ; $P_{\varphi(j)}$ where $P_{p}=(a_{1}^{p}|\cdots|a_{k}^{p}.)$ and
$d_{i,p}^{-}=(a_{1’ k}^{p}\ldots, a^{p})$ . Then the process expression $(seq_{1}|\cdots|seq_{n})$ will be called the process
interpreting the partition of the HDCP.

Example 4: Consider the cell cluster explained in the previous example. We consider the
HDCP $s_{1}$ and $s_{2}$ . We obtain the following partition matrices.

$PM_{1}=[\overline{\alpha}^{1}\overline{\alpha}_{1}^{1}\overline{\alpha}_{1,3}^{1’}1,12$ $\overline{\alpha}_{1,3}^{2}\overline{\alpha}^{2}\overline{\alpha}^{2}1,11,2$ $\overline{\alpha}^{3}\overline{\alpha}^{3}\overline{\alpha}_{1,3}^{3}1,11,2]=$ $PM_{\mathit{2}}=$

For $s_{1}$ , the SCS is $A_{1}^{1}=[(a)],$ $A_{2}^{1}=[(b), (c)]$ and $A_{3}^{1}=[(e, f), (g, h)]$ . Then the process inter-
preting the partition is $(seq_{1}|seq_{2}|seq_{3})=(a| (b ; c)|(e|f) ; (g|h))$ . For $s_{2}$ , we obtain the
same SCS and the process expression.

The SCS is determined uniquely when the partition is given. On the other hand, given
a HDCP the partition is not always determined uniquely. For the uniqueness of the process
interpreting the partition, we have the following result.

Lemma 5 Given a HDCP in a pre-interleaving model, the obtained process expression is uniquely
determined regardless of the partition of the model.
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Now we introduce the notion of interleaving models. A pre-interleaving model may contain
sufficient number of cells to form a cell cluster that interprets an interleaving process. The
number of cells needed can be given by a simple combinatorial reasoning. On the other hand,
the process expression interpreting a partition is in fact the candidate for the interleaving process.
Hence, if all the process interpreting the partition, which are determined for each HDCP in a
model, are equal, then the model may be the interpretation of the process. An interleaving
model is the pre-interleaving model that contains sufficient number of cells and the common
process expression interpreting the partitions.

Definition 7: (Restricted version of Interleaving model)

Let $S=\{s_{i}\}1\leq i\leq m$ be a pre-interleaving model and $P$ be a process expression. Then, $S$ is called
the interleaving model of $P$ iff (1) $P$ is the common process interpreting the partitions of all $s_{i}$ ,
(2) $L=\Sigma_{i=1}^{n}\varphi(i)-n+1$ , and (3) $m=(\Sigma_{i=1}^{n}(\varphi(i)-1))!/\Pi_{i=1}^{n}(\varphi(\dot{i})-1)!$ , where $L,$ $n$ and $\varphi(i)$

are the common length of $s_{i}$ , the partition number and the length of the $i$-th element of the SCS.

Now we return to the general setting of $p$ and $q$ in Def. 6. Let $\{s_{i}\}_{1\leq i}\leq m$
’ where $s_{i}=$

$C_{i,1}\Rightarrow\cdots\Rightarrow C_{i,L}$ , be a pre-interleaving model with the index $p$ and $q$ as in Def. 6. If $S’=$

$\{C_{i,p}\Rightarrow\cdots\Rightarrow C_{i,q}\}_{1\leq i}\leq m$ satisfies the condition given in Def. 7, we will call $\{s_{i}\}1\leq i\leq\eta l$ the
interleaving model with the common process $P=(seq_{1}|\cdots|seq_{n})$ .

Then, the interleaving search procedure goes as follows. Given an interleaving model as
above. We will make the new HDCP $C_{1,1}\Rightarrow\cdots C_{1,p-1}\Rightarrow(seq_{1}|\cdots|seq_{n})\Rightarrow C_{1,q+1}\Rightarrow\cdots\Rightarrow$

$C_{1,L}$ . After that we remove all the HDCPs passing through the cell cluster represented by $S’$ .
For example, the HDCPs $s_{i}(i=1,2,3)$ given in the beginning of this subsection pass through
the cell cluster, and we obtain the new HDCP $[a]\Rightarrow((b;c)|(d;e))\Rightarrow[f]$ in this case.

If there exists a pre-interleaving model that is not contained in any interleaving model,
the interleaving search will fail. For example, if the maximal cell $B$ lacks in the cell cluster given
in the beginning of this subsection, the HDA is not the interpretation of any process expression.

6.3 Reverse interpretation algorithm
We will give the algorithm revInt of reverse interpretation. This algorithm may fail. If it fails,
the HDA space does not interpret any process expressions and this means that the given process
expression cannot be parallelized. The basic idea of revInt is that the HDCPs after the inter-
leaving search represent nondeterministic branches so $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\Rightarrow \mathrm{c}\mathrm{a}\mathrm{n}$ be replaced by the sequential
composition, each cell $C=W(E_{1}\otimes\cdots\otimes E_{n})$ can be replaced by the parallel composition
$W(E_{1}|\cdots|E_{n})$ , and the HDCPs can be combined with the nondeterministic choice. However,
the situation is a little more complex because the HDCPs may intersect at the cells other than
1. For example, consider the HDA spaces $H_{1}=[a$ ; $((b|c)+d)\mathrm{J}$ and $H_{2}=[((a+b)|c)\mathrm{I}\cdot$ We
can find the set of HDCPs $s_{1}=a\otimes d$ and $s_{\mathit{2}}=a\otimes b\otimes d$ for $H_{1}$ and $t_{1}=a\otimes c$ and $t_{2}=b\otimes c$

for $H_{2}$ . Notice that $s_{1}\cap s_{2}=\{[a]\}$ and $t_{1}\cap t_{\mathit{2}}=\{[c]\}$ . Then we cannot make the process
$(a|d)+(a|b|d)$ from $s_{i}$ nor the process $(a|c)+(b|c)$ from $t_{i}$ . Hence, we must introduce a
set of rewrite rules to handle this problem.

Algorithm: revInt

1. Let $SE$ be the set of HDCPs obtained by the HDCP search procedure followed by the
interleaving search procedure. If the interleaving search fails, the hole procedure fails.

2. For each HDCP $s=C_{1}\Rightarrow\cdots\Rightarrow C_{n}$ in $SE$ , replace $’\Rightarrow$
’ by ’ ; ’ and replace $‘\otimes$

‘ (in $C_{i}$ ) by
$,|’$ . Let $PP$ be the set of process expressions obtained by this translation.

3. Make the expression $Exp^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\Sigma_{p}\in PpP$ .
4. $r_{\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{S}}1\mathrm{a}\mathrm{t}\mathrm{e}Exp$ with the rewrite rules given below.
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Rule 1: ( $P$ ; (X $|Y_{1}$ ) ; $\cdots \mathrm{i}(X|\mathrm{Y}_{k})$ ; $Q$ ) $+$ ( $P$ ; (X $|Z_{1})$ ;... $|(X|Z_{l})$ ; $R$ )
$arrow P$ ; (X $|((Y_{1}$ ; $\cdots|Y_{k})+(Z_{1}|\ldots|Z_{l}))$ ) ; $Q$

Rule 2: $(P ; Q)+(P;R)arrow P$ ; $(Q+R)$
Rule 3: $(P ; S)+(Q ; S)arrow(P+Q)$ ; $S$

Rule 4: $\tau_{a}arrow(a|\overline{a})\backslash \mathrm{f}^{a}\}$

If a redex of $Exp$ matches the left hand side of Rule 1, revInt fails rrnless $Q=R$. If a
redex of $Exp$ matches the left hand side of Rule 2 and $\zeta(Q)\cap\zeta(R)\neq\phi,$ $revI?1t$ fails unless
Rule 1 can be applied to $Q+R$ part.

Example 5: Consider again the HDA space in the beginning of 6.1.

$Exp$ $=$ $s_{1}+s_{2}+S_{3}$

$=$ $(a ; (d|b) ; e)+(a ; (d|c) ; e)+(a ; (f|g) ; h)$

$=$ $(a ; (d|(b+c)) ; e)+(a ; (f|g) ; h)$ by Rule 1
$=$ $a$ ; $((d|(b+c)) ; e+(f|g) ; h)$ by Rule 2

Then we know that the HDA is [$a$ ; $((d|(b+c)) ; e+(f|g) ; h)\mathrm{I}$ .

The following theorem claims the fundamental property of the parallelization procedure.

Theorem 1 Let $P$ be a process expression. Let genHDA be the procedure that generates new
$HDA$ spaces by merging and the cell construction, and let par $(P)\mathrm{d}\mathrm{e}\mathrm{f}=revInt(genHDA(P))$ .
Then (1) If par $(P)$ has a value, $P\sim par(P)$ and par $(par(P))=par(P),$ (2) The parallelization
is compatible with the expansion law: $(\overline{P}_{1}|\cdots|\overline{P}_{n})\backslash L=revInt(genHDA(\Sigma\{\alpha$ ; $(P_{1}|\cdots|Q_{i}|$

$|P_{n})\backslash L\}+\Sigma\{\tau_{a} ; (P_{1}|\cdots|Q_{i}|\cdots|Q_{j}|\cdots|P_{n})\backslash L\}))$ where $\overline{P}_{i}$ is the parallelized version
of $P_{i},$ (3) $revInt(\mathbb{I}^{P}\mathrm{J})=P$ .

7 Conclusion
The HDA model of true concurrency gives a geometrically simple idea for parallelization algo-
rithm: Find the states to be merged and fill the cycles to obtain the HDA interpretation of the
parallelized process. We showed that the algorithm has close relation with Bar construction and
combinatorial geometry. Unfortunately, we could not present the proofs of propositions or the
extensive discussion on subtle issues because of the limitation of the space. See [5] for the detail
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