0000000000
9180 19950 277-291 277

Grobner Bases for Set Constraints

Yosuke Sato
Dept.of Computer Science Ritsumeikan University
1916 Nojicho,Kusatu,Siga,525-77, Japan
E-mail: ysato@theory.cs.ritsumei.ac.jp

Abstract

This paper proposes the application of Grobuer bases to solve set constraints
given in terms of symbols such as N,U,C, € and €. Set constraints can be repre-
sented in the form of polynomial equations of a certain Boolean ring, hence we can
apply Boolean Grobner bases we introduced in order to handle polynomial ideals of
Boolean polynomial rings. In this paper we study Boolean Grébner bases in more
detail and show they have several nice properties which do not necessarily hold
for standard Grobner bases. Using these properties we describe how we can apply
Boolean Grobner bases to solve set constraints. '

1 Introduction

In constraint programming, there are often applications in which we want to solve con-
straints written in terms of membership or inclusion of sets such as € and C. Since a
family of sets is naturally interpreted as a Boolean ring, many of such constraints, called
set constraints in this paper, can be represented by polynomial equations over Boolean
rings of sets. For example, the constraints « € X,b ¢ Y and X C Y, where a,b are
constant symbols of elements and X, Y are variables for sets, are represented by the equa-
tions {a}X = {a}, {b}Y =0 and XY = X respectively. Hence there arises an interest if
we can apply Grobner bases to solve them.

Grobner bases introduced in [Buchberger 65] are extremely useful tools to decide
many problems of polynomial ideals. When a coefficient domain is not a field, however, it
generally is not so simple to define or calculate Grobner bases since we can not induce a re-
duction from a polynomial straightforwardly. General framework of constructing Grobner
bases of polynomial rings over commutative Noetherian rings with some conditions about
computability were first introduced in [Trinks 78] and [Zacharias 78]. It, however, is not
very efficient since the reductions are not defined so simple that calculation of Grébner
bases is very heavy. For more limited coefficient domain, [Weispfenning 89] introduced
Grobner bases for polynomial rings over commutative regular rings based on special reduc-
tions. The same notion of Grobner bases for Boolean polynomial rings was independently
introduced by us and called Boolean Grébner bases in [Sakai 88], and more detailed study
was given in [Sakai 90].

In this paper, we prove two nice properties of Boolean Grobner bases. One is about the
extendability of special solutions presented in Theorem 2.5. When we use an admissible
total order > of power products of variables X = X;,X,,..., X, and Y =1, Y5,..., Y,
such that ¥; > X7'X}* ... X3 for each variable Y; and power product X' X5?... X3
Boolean Grobner bases in general have the form {g1(X,Y), g2(X,Y),...,q(X, Y), hi(X),

278

hy(X), . hk(X)}. Theorem 2.5 ensures us that we can extend each solution of the
equatlons {hl(X) = 0,hy(X) = 0,...,h(X) = 0} to a solution of the whole equations
{91 X,Y) = 0,_(]3()(,)/) = 0, v .,gl(X,Y) = 0, hl(X) = O, hg(X) = 0, RN hk()() = O}
The another one presented in Theorem 2.6 shows the existence of parametric Boolean
Grobner bases. For a given set of polynomials { f;(X,Y), (X, Y),..., fi(X,Y)}, we can
construct a parametric Boolean Grobner base C’(X) = {q(X,Y), gz(X Y),...,o(X,Y)},
that is G(@) = {¢(a,Y),92(a,Y),...,a(a Y)} becomes a Boolean Grobner basis of -
{fi(@,Y), f2(a,Y),..., fu(a,Y)} for each instantiation a for the variables X.

These properties play especially important rolls in our application of Boolean Grobner
bases to solve set constraints.

In section 2, we first give brief review of Boolean Grobner bases together with several
classical results of polynomial ideals of Boolean rings, then we show our main results
concerning Boolean Grobner bases. In section 3, we describe several methods to solve
set constraints using Boolean Grobner bases. In section 4, we give some examples of our
methods from our implementation. We also compare our methods with other solvers of
Boolean equations in the last section.

2 Boolean Grobner bases

A Boolean ring B is a commutative ring with identity such that every element of B is
idempotent, i.e.
a®*=a foralla € B.

It has the following important property:
a+a=0 foralla € B.

In this section we fix such a computable Boolean ring B, and describe our Grobner bases
method to solve polynomial equations over B. Since each element of a Boolean ring is
idempotent, a quotient ring B[X;, X»,...,X,]/I is more convenient to work on, rather
than a polynomial ring B[X;,X,,. .., X,] itself, where I is the ideal generated by the set
of polynomials {X? + X1, X3 + X»,..., X2 + X,,}. This quotient ring is called a Boolean
polynomial ring and denoted by B(X1, Xo,...,X,). We also call its element a Boolean
polynomial. The important property of this quotient ring is that it also becomes a Boolean
ring.

A power product of variables X;,X,,..., X, is a term X;'X5%.-- X3 for some non-
negative integers si, $2,...,5,. When every s; is 0 it is denoted by 1. The set of power
products naturally forms a commutative monoid. We express elements of B by lowercase
letters a, b, ¢, ..., power products by lowercase Greek letters a, 3, ¥,... (possibly with
suffix). A power product X7'X,?--- X3 is called a Boolean power product if s; < 1 for
each 7. Note that each equivalent class of the quotient ring B(X;, Xy, ..., X,,) is uniquely
represented by a form Y!_, a;a;, where a,. .., q; are different Boolean power products.
In this section we regard Boolean polynomials as such representation forms. Using this
representation the Boolean polynomial ring becomes computable using the rewriting rules
(X} - X1, X3 > Xy,..., X2 > X, }.

Let us first present the following classical result of Boolean polynomial rings. It enables
us to deal with semantic properties of equations concerning their solutions by handling
ideals only syntactically.

279

Theorem 2.1

Let I be an finitely generated ideal in a Boolean polynomial ring B(X3, Xo,...,X,). Any
n-tuple @ = aj,ay,...,a, of elements of B is called a solution of I if f(a) = 0 for every
f € I. We say a Boolean polynomial h(X) is valid under I if (@) = 0 for any solution @
of I. Then we have the following properties.

(1) A finitely generated ideal I has a solution if and only if there is not any non-zero
element of B in I.

(2) When I has a solution, h(X) is valid under I if and only if A(X) € I,
for each Boolean polynomial h(X). a

A total order > on the commutative monoid of power products is called admissible if it
satisfies the following properties.

1. If & > 3, then ay > 3v for any 7.

2. a > 1, for any power product a(# 1).

Let us fix such a total admissible order >. Note the trivial fact that the restriction of
> on the set of Boolean power products is also a total order. For a Boolean polynomial
f= Eﬁzl a;q;, the greatest Boolean power product among «j, ..., q; is called the leading
Boolean power product of f(denoted by Ipp(f)), its coeflicient is called the leading coef-
ficient(denoted by le(f)). The rest part of f is also denoted by res(f). The notation
aah denotes a Boolean polynomial but also indicates le(aabh) = a, Ipp(aarh) = o and
res(aa>h) = h. A Boolean polynomial f is called a rule if lc(f)res(f) = res(f).

For a rule f = aaph, we define a reduction = on the set of Boolean polynomials.
It reduces a Boolean polynomial bay + ¢ such that ab # 0 as follows:

boy+ g = (1+a)bay+byh+g

For a set F of rules and Boolean polynomials h, b/, we say h is reduced to b’ by F' (denoted
h =p B')if h =; b for some f € F. The transitive reflexive closure and symmetric
transitive reflexive closure of =, are denoted by =, and &, respectively. For any finite
set F' of rules, we can show the reduction =, has a termination property, i.e. there is no
infinite reduction sequence of Boolean polynomials such that fo =5 fi = fo =p ..
We abuse the notation h | to denote one of Boolean polynomials A’ such that h =, b/
and F is not reducible by = . Rules are induced because of the following reason. Let F
be an arbitrary set of rules, then for each Boolean polynomial f and g we have f+g¢g € I if
and only if f & g, where I is the ideal generated by F. This property does not generally
holds unless F' is a set of rules.

Definition 2.1
Let I be a finitely generated ideal of B(X1, Xs,...,X,). A Boolean Grébner basis of I is
a finite set G of rules satisfying the following.

(BG 1) G generates [.

(BG 2) g+ ¢ € I if and only if there is a Boolean polynomial h such that g =g h
and ¢ =¢ h. In particular, g € I if and only if g =¢ 0.

280

In addition if it has the following two properties, it is called a normal Boolean Grobner
basis.

(BG 3) Each g € G is not reducible by =, for any ¢’ € G distinct from g.

(BG 4) The leading Boolean power product of each Boolean polynomial of G is
distinct each other.

In the definition of standard Grobner bases of polynomial rings over fields, the property
(BG 4) is not included. It is a direct conclusion from the property (BG 3). We require it
in order to have the following property (P 2).

(Normal) Boolean Grébner bases have the following important properties.

(P 1) The constraint given by F, that is a set of equations {f = 0|f € F},
is unsatisfiable if and only if the Boolean Grobner bases of (the ideal
generated by) F' includes a non-zero constant element of B.

(P 2) For any finitely generated ideal, there uniquely(w.r.t. >) exists its normal
Boolean Grobner basis.

The property (P 2) enables us to consider the normal Boolean Grébner basis of F' as a
canonical solution of the constraint given by F.

In order to calculate Boolean Grobner bases, we need to define several notations.
For a pair of rules f and g, its critical polynomial(denoted cp(f, ¢)) is the following Boolean
polynomial:

"G e’ 'V eem). re)’

where GCD(Ipp(f),lpp(g)) denotes the greatest common divisor of Ipp(f) and Ipp(g).
For a rule f, its variable critical polynomial is the following Boolean polynomial:

(1+X)f

where X is a variable included in Ipp(f). The set of variable critical polynomials of h is
denoted by vep(h).

Critical polynomials are generally called S-polynomials in calculation of standard Grobner
bases. Variable critical polynomials are induced since we are working on quotient rings.
In calculation of a Boolean Grobner basis, a variable critical polynomial (1 + X) f plays
the same roll as the S-polynomial between f and X2+ X.

We can describe Boolean Grobner bases as follows. Hence, we can construct them using
these polynomials by a similar completion method of Buchberger’s algorithm to construct
standard Grobner bases.

Theorem 2.2
A finite set G of rules is a Boolean Grobner basis if and only if every critical polynomial
and variable critical polynomial constructed by rules of G is reduced to 0 by . O

Throughout the rest of the paper whenever we use Boolean Grobner bases, they are always

281

supposed to be normal. Let us present an important classical result before proving several
nice properties of Boolean Grobner bases.

Let B(X,Y) be a Boolean polynomial ring with variables X = X}, Xs,..., X, and Y =
1,Y,,...,Y,,. For each ideal I of B(X,_)_’), IN B(X) (denoted by I 5(x)) forms also an
ideal of the Boolean polynomial ring B(X). Any n-tuple @ = aj, ay, . .., a, of elements of
B is called an (X)-solution projection of I if there exists an m-tuple b = by, by, ..., b, of
elements of B such that @, b is a solution of I. Clearly any (X)-solution projection of I is
a solution of Iy xy. The converse does not generally hold for arbitrary polynomial rings.
But in Boolean polynomial rings it fortunately follows from the following classical result.

Lemma 2.3 o
Let I be a finitely generated ideal of the Boolean polynomial ring B(X,Y). Suppose
Iy xy has a solution, then each solution can be extended to a whole solution of .

proof: We give a brief sketch. We assume there is only one variable Y = Y. General
case easily follows inductively. Recall that any finitely generated ideal in a Boolean ring
is a principal ideal. Hence there is a Boolean polynomial f such that I = (f). Note that
we can express f = Yg(X)+ h(X). Then we can show that I xy = ((9(X) + 1)R(X)).
Let a be a solution of Iy, i.e. (g(a)+1)h(a) = 0. Then the equation Yg(a)+ h(a) =0
has a solution ¢(g(a) + 1) + h(@) where c is any element of B.
0
Let us consider the following two problems.

Problem 1. How can we find solution projections ?

Problem 2. How can we extend a given solution projection to a whole solution ?

We first consider the first problem.
The next lemma is a standard technique of Grobner bases to calculate Iy y) which im-
mediately follows from the definition of Boolean Grobner bases.

Lemma 2.4

Let > be an admissible total order on the set of power products of variables

Y,Y,, ..., Y, X1, Xs, ..., X, such that ¥; > X' X2 .- X3 for any Y; and power prod-
uct X7 X357+« X5». Under this order let G be the Boolean Grobner basis of a finitely
“generated ideal I of B(X,Y). Then G N B(X) is a Boolean Grobner basis of I B(x)- O

By the above Lemma 2.3-2.4, we can immediately conclude the following property of
Boolean Grobner bases.

Theorem 2.5 .
Using the same notations as in the above lemmas, a is an (X)—solu_t.ion projection of I if
and only if g(a) = 0 for every Boolean polynomial g(X) € GN B(X). O

This theorem provides us a nice own property of Boolean Grébner bases in the following
sense. In a general polynomial ring, after we find a candidate @ of (X)-solution projections
of I by solving the equations {g(X) = 0|g(X) € G N B(X)}, we have to check if there
exists b such that @,b is a solution of I. This check, in general, depends on each a. But,
in a Boolean polynomial ring, it does not depend. In fact, Theorem 2.5 guarantees us

that this check is not even necessary.

282

Let us now consider the second problem. That is we want to find how we can extend
a (X)-solution projection @ of I to a whole solution a,b of I. Since b is a solution of
the instantiated ideal I(@) = {p(a,Y)|p(X,Y) € I} of B(Y) and it is generated by
G(a) = {p(a,Y)|p(X,Y) € G}, we can solve it by calculating its Boolean Grobner basis
in B(Y). This calculation, however, strongly depends on the values a.

Fortunately there is an another approach which allows us extend (X)-solution projections
simultaneously.

Let I be an ideal of a Boolean polynomial ring B(X' Y). For each n-tuple @ of elements
of B, let I(a) = {p(a,Y)|p(X,Y) € I}. Then it is easy to check that I() is an ideal of a
Boolean polw nomial ring B(Y)

Since a Boolean polynomial ring is also a Boolean ring, B(X,Y) can be regarded as a
Boolean polynomial ring (B(X))(Y) over a Boolean ring B(X) with variables Y. In this
Boolean polynomial ring we can also calculate a Boolean Grobner basis of I. Let it be
denoted by G(X). For each n-tuple @ of elements of B, define

i) = {g(a,Y) | g(X,T) € G(X) and g(a,¥) # 0.
We call G(X) a parametric Boolean Grébner basis because of the following theorem.

Theorem 2.6
For each n-tuple a of elements of B,

(1) G(a) is the Boolean Grobner basis of the ideal I(@) of B(Y).

Moreover for each Boolean polynomial f(X,Y), we have

(2) £(a,7) lo@w= (F(X,¥) low)(@, V).

proof: Note that a substitution X « @ naturally induce a homomorphism from B(X)
into B. Hence we can easily show the following lemmas and corollary. Using them together
with Theorem 2.2, at first (1) follows, then (2) follows immediately. a

Lemma 2.7

If f(X,Y) =yxp F(X,Y)in (B(X)(Y), i
then f(a,Y) = f(a,Y) or f(a,Y) =4,y f'(a,Y) in B(Y) for each a. O

Corollary 2.8))
If f(‘Y"Y-) =*>G(X) f(Y) in (B("))(Y—)‘
then f(a,Y) ¢ f(a,Y) i fi

Lemma 2.9 o
If f(X,Y) is not reducible by =(x) in (B(X))(Y),
then f(a,Y) is not either reducible by =G(a) I B(Y) for each a. a

By (1) of Theorem 2.6, we can give an alternative method to answer the above problems
1 and 2.

In general G(X) has the following form, where a;, vy, . . ., @y, are power products consisting
of only variables Y1,Y5,...,Y,,.

G(X) = {(X)ar>n (X, T), ho(X)azsga(X,7), ..., he(R)awpge(X, ¥), h(X))

283

Then we have:
1. @ is an (X)-solution projection of I if and only if h(a) = 0.

2. If @ is an (X)-solution projection of I, G(a) can be regarded as a canonical
solution for the variables Y of the whole extension of @, by the property (P 2) of
Boolean Grobner bases. Hence, we can consider G(X) as a functional which assigns
the canonical solution for the variables Y of the whole extension for each (X)-solution
projection of I.

Note that this approach is better than the previous one for the problem 2 since it pro-
vides us simultaneous extensions with parameter X. For the problem 1, however, it is not
complete. We have to check if there exists @ such that h(a) = 0.

We conclude this section, by showing the following type of problems concerning validity
defined in Theorem 2.1 can be solved also using Boolean Grobner bases.

Problem 3.
Let f1i(X,Y), fo(X,Y),..., il X,Y) and f(X,Y) be Boolean polynomials of a Boolean
polynomial ring B(X,Y) = B(X1,Xs,..., X, Y1,Ys,...,Y,,). Then our problem is de-

scribed as follows. . ;
Find an n-tuple @ of elements of B such that the set of equations { f1(@,Y) = 0, fo(a,Y) =
0,...,fi(a,Y) = 0} has a solution and the equation f(a,b) = 0 holds for each solution b

By theorem 2.1 it is equivalent to finding @ such that the ideal I(@) of B(Y) generated
by {f1(a,Y) =0, fy(a, Y) =0,...,£1(a,Y) =0} does not include non-zero elements of B
and f(a,Y) is included in I (a)

Let G(X) = {hi(X)a1bgi(X,Y), ha(X))y go(X, Y),. hk(X)akbgk (X,Y),h(X)} be
the Boolean Grébner basis of {f1(X,Y), fo(X,Y),..., (X, Y)} in ’Z')) (Y) and let

F(X,¥) = (F(X,7) Lo (X, V),)

By Theorem 2.6, it is equivalent to finding @ such that h(a) = 0 and f'(a,Y) = 0. Let
F(X,Y) = p1(X)B1 +p2(X)Bs + - - + pr(X) 3k be the representation of f/ in (B(X))(Y).
Then f/(@,Y) = 0 is equivalent to that @ satisfies the equations pi(a) = 0,py(a) =
0,...,pr(a) = 0. Hence, we can solve @ by calculating the Boolean Grobner basis of

{R(X), p1(X),p2(X), ..., pe(X)}.

3 Set Constraints

In this section we describe how we can apply Boolean Grobner bases to solve set con-
straints. In order to describe set constraints, let us first give a language.

A language of set constraints is a second order language given by the following symbols.
a,b,c,... : first-order constant symbols for elements
z,Y,2,... : first-order variables for elements
() : second-order constant symbols for an empty set

X.,Y,Z,... : second-order variables for sets

284

€,¢,C : predicate symbols for elements and sets
{}h {4} ... : function symbols for functions from elements to sets

N,U,” : function symbols for functions from sets to sets
(*X denotes the complement of X)
V,A\,n,— : logical symbols

Let us first note that any constraint given by the above language can be represented as
the following form.

k i . i— Al]
Vi1 H', where H' = A\j_, H;

Each H; is either an atomic formula or a negation of an atomic formula.
We will concentrate on solving each component H?. (The set of solutions of V¥_, H is
given as a union of each set of solutions of H*.)

Let us first consider the following constraint H with only atomic formulas Hj;.
— Al

Suppose H includes first order variables x;,x,,...,z, Let X;,X,,..., X, be some sec-
ond order variables which do not appear in H. We translate H; into HJ’ by eliminating
T1,Ty,...,Tp using Xp, Xy,..., X, as follows.

If H; has a form such as z; € T or x; ¢ T for some first-order variable z;, it is translated
into {z;} N T = {z;} or {z;} NT = () respectively. After this translation any first-order
variable z; occurs only in a term such as {---, z;,---}. Note that any term such as {---}
can be represented as a union of singletons of first-order variables and a finite set of con-
stant symbols. For example {a,z,b,y} is represented as {z} U {y} U {a,b}. Replacing
each singleton {z;} by Xj, any term is translated into a term with no first-order variables,
and we get H} which does not include any first-order variables.

By the construction, the following should be clear.

H < 3X13X,---3X,(X; = {z1) A Xy = {zo} A+ A X, = {2} Nj=y H))

Let U be the set of all constant symbols a,b,c,.... Then the set of all subsets of I/ nat-
urally forms a Boolean ring by defining X +Y = (XN"Y)U("XNY)and XY =X NY
for each X,Y C U with an empty set as 0 and a whole set U as 1.

We denote this Boolean ring by B in the rest of this section. Note that the atomic for-
mula a € X,a ¢ X and X CY are represented by the equations {a}X = {a},{¢}X =0
and XY = X respectively. Hence, if a constraint in the form of an atomic formula has
no first-order variables for elements, it can be represented by a polynomial equation of a
Boolean polynomial ring B(Y1,Ys,...,Y,), where Y1,Ys, ..., Y, are second-order variables
included in the constraint.

Therefore we can translate /\9=1 H]’ into the form /\g=1 f; = 0 with some Boolean polynomi-
als f1,..., fiin B(X1,Xs, ..., X, Y1,Y,, ... Y,) for some second-order variables Y1, Y5, ...,Y,
and X1, Xy, ..., X,.

Now we have the following representation.

H 3«¥13X2 s 3)(1)()(1 = {Tl} ANXy = {.'I'g} A /\Xp = {‘TP} /\;=1 fJ = O)

285

We will describe two methods to solve this constraint by using Boolean Grobner bases.
The first one is appropriate when we are interested in the first-order variables x1, 2y, ..., p,
the second one is appropriate when we are interested in the second-order variables Y1, Y,,...,Y,.

Solution method 1
Let > be a total admissible order such that Y; > X7* X3? .- X_» for each Y; and power

product X7*X3*--- Xp». Under this order, calculate the Boolean Grébner basis G of
{A(X,Y), /o(X,Y),..., i X,Y)}. In general it has the following form.

G= {gl(X,?), gg(X,)?), NS gm(X,Y'), hl(X), hg(}_(). ceey h,(X)}

By Theorem 2.5, we can conclude that any solution for the first-order variables z1, 7y, ..., 7,
of the constraint H is a solution of the equations {hy({z}) = 0, ho({z}) =0,...,h.({z}) =
0}, and vice versa.

In order to solve second-order variables_Y, we have to calculate the Boolean Grobner
basis of {g1({a},Y), g2({a}.Y),. ., gm({a},Y)} for each solution @ = ay, ay, ..., q, of the
above equations. Where {z} and {a} denote {z1},{z2},...,{xp} and {a1},{as}, ..., {ap}
respectively. .

Solution method 2 . o .
Calculate the parametric Boolean Grobner basis G(X) of { f1(X,Y), fo(X,Y),..., i(X,Y)}.
In general it has the following form. 4

By Theorem 2.6 (1), we can conclude the following.

The constraint H has a solution if and only if A({z}) = 0 has a solution. Furthermore, for
each solution @ of it, G({a}) can be considered as a canonical solution for the second-order
variables Y1,Y,,...,Y,.

Remark 1
In case there are no first-order variables in H, these methods are same.

Remark 2

Note that we can also solve first-order variables by solving h({x}) = 0. In general, how-
ever, it is more complex than solving {h;({z}) = 0, hs({z}) = 0,..., h.({z}) = 0}, since
{h1(X), ha(X), ..., h(X)} is the Boolean Grobner basis of {h(X)}.

One might think that we can get hi, hy, ..., h, by calculating the Boolean Grobner basis of
{h} after calculating h by the second method. Our experimental data show that calcula-
tion of Boolean Grobner bases of the Boolean polynomial ring (B(X))(Y) is much heavier
than calculation of Boolean Grobner bases of the Boolean polynomial ring B(X,Y). The
essential reason is that calculation of Boolean polynomials of B(X) are generally much
heavier than calculation of elements of B.

We next consider a constraint H = /\;-=1 H; where each H; can be not only an atomic
formula but also a negation of an atomic formula.

If the inside of the negation is either of a form € or ¢, it can be represented by an atomic
formula. Otherwise representing the inside as an equation f = 0 as before, it is repre-
sented by f # 0. Note that this is equivalent to 3z{z}f = {z}(i.e. 32z € f) for some
first-order variable z which does not occur in f.

286

Therefore by adding some new first-order variables we can translate H into a form with-
out negations.

Remark 3

In the above solutions, if we are not interested in all second-order variables Y7,Y5,...,Y,
but only some varlables Y:,,Y:,,...,Y:,, we can solve the constraint only for these vari-
ables using a total admls31ble order such that any power product consisting of only

Yi.Y,,..., ,Y;,. is less than any of other variable Y.

tyn?

tm

We conclude this section with a solution method for a special type of set constraints with
quantifiers.
Special type of set constraints

Given Boolean polynomials fi(X,Y), fo(X,Y),..., fi(X,Y) and f(X,Y) of _B()_? Y).
Find constant symbols @ such that the set of equations {f;(X, {a}) = O,f'z(:-‘(,_{a}) =
0,..., it X,{a}) = 0} has a solution for the second-order variables X and f(S,{a}) =0

holds for each solution S of it.

It can be solved by the method given at the end of section 2. Using the same notations
there, it is equivalent to finding @ such that a satisfies the equations h({a}) 0,pm({a}) =
0,p2({a}) = 0,..., pe({a}) = 0.

Since our domain is not all subsets of B but only singleton sets of B, we can not solve it
by simply calculating the Boolean Grobner basis H of {h(X),p1(X),p2(X),...,pe(X)}.
We have to solve the equations in the domain of singleton sets of B. In general it is
easier to solve {q({r}) = 0|¢(X) € H} than solving the equations h({z}) = 0,p1({z}) =

0,p({z}) = 0,....pe({2}) = 0.

4 Examples

We give several examples of our implementation of set constraint solvers based on the
methods described in section 3.

In the following query “?- solve_set_element(Cons,SetVar,AtomVar).”, we input a
constraint in a form of a list of equations for Cons, a list of second-order variables in which
we are interested for SetVar and a list of first-order variables for AtomVar. The symbols /\
and \/ represent N and U respectively. The symbols al,a2, ... in { } represent different
constant symbols of elements unless they are included in the list AtomVar. Symbols
included in AtomVar represent first-order variables.

?7- golve_set_element ([

{a1,a9}/\(X2\/ ~X1)= {a2,ab5,a7}/\S5,

S1/\(82/\ ~{aB}\/(83/\(84/\ ~(X1\/{a6}))))=(S5/\S6)\/(S4/\S7/\S2)\/S8,
S5/\S4/\89/\S6/\S2/\(S10\/X3\/{a7}) /\ ({a9}\/X2)=0,55/\88/\ ~(X3\/{a5,a8})=0,
S2/\("{a6,a8})=84\/58,52/\("{a9})=S11\/S10\/X2\/{a5,a7}\/S7,S11/\83=0,
S$10/\83=0,812=59\/587,59/\S7/\S15/\ ~(X1\/X2\/X3\/{a4,a5,a6,a7,a8,a9,a10})=0,
{a4}/\S6={a4},X1/\S9=X1,X3/\S7=X3,S1\/S10\/X1\/X2=(S12\/813) /\{a4}\/X2\/S10,
(S1\/S12\/S2) /\X1\/X2\/S6=(S10\/S9)\/ (S7/\X3)\/S2,

(S5\/S3\/{a4}) /\ (S2\/S4\/S3\/S6)=(S1\/ (X1\/X2/\ (83\/S10)))/\S1\/S14

1, [X1,X2,X3],[1).

contradiction deduced as follows
{a9} = 0

287

In this query, there is no first-order variables. Hence two methods described in section
3 are same. Our program calculated the Boolean Grobner basis of the first list to solve
X1,X2 and X3 and detected it includes the constant element {a9}. Hence it returned the

above answer.

Since we got a contradiction by {a9} = 0, in the next query we made a9 a variable in
order to get some conditions to make the constraint satisfiable. The symbol C1 denotes

the equations in the first list of the above query.

?- solve_set_element ([C1], 1, [29]).

constraint is satisfiable when
("{a2,a4})*{a9} = 0

Our program proceeds the method 1 when we input no second-order variables. Hence,
it returned the answer (“{a2,a4})*{a9} = 0. We can see that it holds if and only if

a9 = a2 or a9 = a4.

In the following third and forth queries, we replaced a9 by a2 and a4 respectively, that is

C2 (C3) is given from C1 replacing a9 by a2 (a4).

?- solve_set_‘element ([c2], [X1,X2,X3],[1).

constraint is always satisfiable

under the above condition [X1,X2,X3] has the following form
{ab}*X3%X1 = 0

{ab,a7}*X3%xX2 = {ab,a7}*X3

{a2}*X3 = 0

{a1,a2}*X1 = {al}

{a1,a2}*X2 = 0

?7- solve_set_element ([C3], [X1,X2,X3].[1).

constraint is always satisfiable

under the above condition [X1,X2,X3] has the following form
{ab}*X3%X1 = 0

{a2,ab,a7}*X3xX2 = {a2,a5,a7}*X3

{a4}*X3 = 0

{a1,a4}*X1 = {al,ad}

{al1,a4}*X2 = 0

In the next query, each list of variables is non-empty. In this case, our program proceed

the method 2.

288

?- solve_set_element([C1], [X1,X2,X3],[a9]).

constraint is satisfiable when

("{a2,a4})*{a9} = 0

under the above condition [X1,X2,X3] has the following form
({ab}*{a9}+{ab})*X3*X1 = 0

({a2,a5,a7}*{a9}+{a2,a5,a7})*X3*X2 = ({a2,ab,a7}*{a9}+{a2,ab,a7})*X3
({a2,a4}*{a9})*X3 = 0
({a1,a2,a4}*{a9}+{a1})*X1
({a1,a2,ad}*{a9}+{al})*X2

{a1,a4}*{a9}+{al}
0

Note that the solution of X1,X2,X3 is a general form of the above two solutions, i.e. when
a9 = a2 (a9 = a4) it is same as the solution of the third(forth) query.

We next show an example of the solvers discussed at the end of section 3.

In the following query “?- get_gb(Cons,AtomVar,GB).”, we input a list of equations for
Cons and a list of first-order variables for AtomVar as before. Our program returns its
Boolean Grobner basis into the output variable GB.

In the query “?- make_valid_under_gb(Eq,GB).”, we input an equation for Eq and a
Boolean Grobner basis given by the above query. Our program returns conditions of
first-order variables such that Eq becomes valid under the constraints given by GB.

Using the same list of equations [C1] as above, let us execute the following query.
?- get_gb([C1], [a9],GB).

Our program returned a Boolean Grobner basis into the variable GB. For arbitrary equa-
tion, we can ask conditions to make it valid, using this Boolean Grobner basis.
Let us execute the following query.

?- make_valid_under_gb({a9}/\(S1\/S82)=0,GB).

equation is valid when

("{a2})*{a9} = 0

It means {a9}/\(S1\/S2)=0 is valid under the constraints if and only if
("{a2})*{a9} = 0,i.e. a9 = a2.
We can also ask other questions using the same GB.

?- make_valid_under_gb({a9}/\(S11\/S12)={a9},GB).

equation is valid when

("{ad})*{a9} = 0

289

It means {a9}/\ (S11\/S12)={a9} is valid under the constraints if and only if
("{a4})*{a9} = 0,1i.e. a9 = a4.

5 Conclusion

Our research of this paper was originally motivated by a desire to install a set constraint
solver in CAL that is a constraint logic programming language we have developed in
ICOT([Aiba 88]). In constraint logic programming, we have to keep a constraint in a
form of its canonical representation. The following two properties are indispensable for
this representation.

1. Canonical representation is unique, that is if two constraints are equivalent(usually
defined as they have same solutions), their canonical representation forms are identical.

2. We can easily check satisfiability of a constraint using its canonical representation
form.

In general, simple canonical representation is preferable in order to get simple solutions.
It is also preferred that we can handle more problems relating to a constraint besides
checking only satisfiability.

In our set constraint solver, we did not want to use any parameter to represent a canon-
ical form in order to make solutions easy to read. Moreover, in order to manage many
problems relating to a constraint, we wanted to make its canonical solution have powers
to decide problems concerning validity.

Boolean Grobner bases enable us to have such canonical solution forms. In fact, they
have the following further nice property.

Boolean Grobner bases provide many types of canonical solution forms according
to the employed admissible total orders of power products.

Admissible total orders of power products heavily affect the shapes of Grobner bases.
When we use an admissible total order > of power products of variables X = X, Xy,..., X,

and Y = Y1,Ys,...,Y,, such that ¥; > X{'X;?... X3 for each variable Y; and power
product X7' X, .-+ X, Grobner bases generally have the following form:

{gl(-’{(a)7—): 92(}2? }—;)a s agl(}za Y')v hl(_"?)a h2(X)* te 'hk(j)}

Hence, if we want to solve equations with priority for the variable X over the other vari-
ables Y, that is we are more interested in X than Y, such orders are suitable. Especially,
if we want to solve equations with a strict order of variables for priority, a purely lexico-
graphic order is suitable.

On the other hand, if we do not want to give priority to any variable, a total degree order
(or a total degree reverse lexicographic order to get complete influence) is suitable.

In our Boolean polynomial rings of sets, Boolean Grobner bases generally have simple(
i.e. easy to read) forms when we use a total degree order. In the first example of our
programs in section 4, the power products of the variables in SetVar are compared by a
total degree order to get simple answers.

Of course there are many other methods to solve Boolean equations. As far as we know,
they are essential divided into two types of methods. One is based on Boole’s classical

290

variable elimination method, another is based on Lowenheim’s formula. In order to com-
pare our method with them, let us see how the answer of the third example of the section
4 looks like when we solve it by the above two classical methods.

If we use Boole’s classical variable elimination method, we can have a canonical solution
form with parameters U, U, and Uy as follows.

= (Ha1,a2}) * Uy +{ar }
)(2 = ("{al,ag}) * U2
.X3 = {as} * Ul * L’rg * L73 -+ {(15, (17} * L’yg * Lrg + (”{ag,a5,a7}) * L”3

It is possible to eliminate parameters to get the following canonical solution form, al-
though we can not simply use it to decide problems concerning validity.

{01} <X S~{az}
0 < Xy <™{a1,ay}
0 < X3 <{as}*X1xXo+{as,a7} * Xo+"{as,a5,a7}

Neither of then seem to look simpler than the solution of our method. By Boole’s method,
each set of equations is solved with a strict order of variables for priority, that is variables
are solved step by step. In the example, X3 is solved by using the solutions of X, and
X5, hence the solution does not look so simple for Xj.

Lowenheim’s formula constructs a general solution form of given equations using as many
parameters as the variables included in the equations from a special instance of solution
of them. (It does not offer a unique canonical solution form since a general solution form
strongly depends on an instance of solution we choose. In general, it is not either possible
to get a canonical solution form without parameters by simply eliminating its parame-
ters.) By this formula, we can get a general solution with parameters Uy, U, and U as
follows. We used X; = {a1}, X2 = 0, X5 = 0 as an instance of solutions.

X1 ={a7} * Us x Uy x Ur + {a5,a7} * Us x U1 +"{a1, a2} * U1 + {a1}
Yg = {(15} * L"g % []2 * L’Y1+~{(11,(lg} * L72
Xs={a1,a5} xUsx Up % Uy + {as, a7} * Us x Us + {1 } * Us x Ur+" {01, a2, a5, a7} % Us

This, again, does not seem to look simpler than the solution of our method.

We did not describe our solvers for constraints among first-order variables such as the
equation (“{a2,a4})*{a9} = 0 of the examples of section 4, since solving these equa-
tions belong to discrete combinatorial problems and very few mathematical (Boolean)
structures seem to be embedded.

References

[Aiba 88] Akira Aiba, Ko Sakai, Yosuke Sato, David J.Hawley, Ryuzo Hasegawa (1988).
Constraint Logic Programming Language CAL Proceedings of The International
Conference on Fifth Generation Computer, 263 276

[Buchberger 65] Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenrings nach einem nulldimensionalen Polynomideal. PhD thesis,
Universitat Innsbruck.

291

[Buchberger 85] Buchberger, B. (1985). Grobner bases: An algorithmic method in poly-
nomial ideal theory, chap 6 in Recent Trends in Multidimentional System Theory, N.
K. Bose Ed., Reidel Publ. Comp.

[Martin 79] Martin, U., Nipkow, T. (1990). Boolean Unification - The Story So Far.
Unification, ed. C.Kirchner, Academic Press, 437 455.

[Robbiano 85] Robbiano, L. (1985). Term orderings on the polynomial ring, EUROCAL
’85, Springer LNCS Vol 204, 513 517.

[Rudeanu 74] Rudeanu, S. (1974). Boolean Functions and Equations, North-Holland

[Sakai 88] Sakai, K., Sato, Y. (1988). Boolean Grébner bases. Proceeding of LA-
Symposium in winter, RIMS, Kyoto Univ., 29 40

[Sakai 90] Sakai, K., Sato, Y., Menju, S. (1990). Boolean Grébner bases(revised). ICOT
Technical Report 613, also submitted for publication.

[Trinks 78] Trinks, W. (1978). Uber B.Buchbergers Verfahren, Systeme algebraischer Gle-
ichungen zu losen. J.Number Theory 10, 475 488.

[Weispfenning] Weispfenning, V. (1989). Grobner bases in polynomial rings over commu-
tative regular rings, EUROCAL ’87, J.H. Davenport Ed., Springer LNCS Vol 378,
336 347.

[Zacharias 78] Zacharias, G. (1978). Generalized Grobner bases in commutative polyno-
mial rings. Thesis at M.I.'T., Dept. Comp. Sci.

