
Concurrent Reflective Computations
in Rewriting Logic

Hiroshi lshikawa Kokichi Futatsugi Takuo Watanabe

{ h-ishika,kokichi, $\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{u}\mathrm{o}$ } $\copyright \mathrm{i}^{\mathrm{a}\mathrm{i}\mathrm{a}}\mathrm{S}\mathrm{t}.\mathrm{C}$. jp
School of Information Science,

Japan Advanced lnstitute of Science and Technology \dagger

(JAIST)

July 26, 1995

Abstract

Rewriting logic can represent dynamic behaviors of concurrent $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ reactive systems declaratively.
Declarative descriptions in rewriting logic are expected to be amenable to analysis of interesting proper-
ties. The group-wide architecture based on the actor model is a specific concurrent reflective computation
model based on “group-wide reflection”. It has a potential of modeling cooperative behaviors of several
software modules (or agents). This paper provides some basic considerations on methods of modeling the
group-wide architecture in rewriting logic.

1 Introduction
The concurrent reflective computation model is recognized to be a useful framework for
constructing reliable and easy-to-maintain concurrent system.

That framework can basically be constructed in two ways. One is called Individual-
Based Architecture $(\mathrm{I}\mathrm{B}\mathrm{A})[11]$. Each object in the system has its own metaobject which
governs its computation. Reflective $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}[5,10,13]$ is realized by sending message
to metaobjects. The computational activity in an object is sequential. This implies each
metaobject model only the local sequential aspects of an object. Therefore, Individual-
Based Reflection is not sufficiently powerful to deal with the global information of a group
of objects.

The other is called Group-Wide Architecture $(\mathrm{G}\mathrm{W}\mathrm{A})[12]$. It is a specific concurrent
reflective computation model based on Group-Wide Reflection. It has a potential of
modeling cooperative behaviors of several software modules (or agents). Our group-wide
architecture is based on the Actor model. All reflective operations are performed solely via

$\uparrow 15$ Asahidai, Tatsunokuchi, Ishikawa 923-12, Japan.

数理解析研究所講究録
918巻 1995年 292-298 292

message sends, which are interpreted at the metalevel concurrently with interpretations
of actors in the baselevel.

Rewriting $\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}[4,6,7]$ can represent dynamic behaviors of concurrent $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ reac-
tive systems declaratively. Declarative descriptions in rewriting logic are expected to be
amenable to analysis of interesting properties.

In this paper, we propose some basic considerations on methods of modeling the group-
wide reflection in rewriting logic, and implement $\mathrm{i}\mathrm{t}[2,3]$. We use a functional programming
language Gofer, which is a sublanguage of functional programming language $\mathrm{H}\mathrm{a}\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{l}\mathrm{l}[8]$,
to describe our model and perform an example of inter-group migration of object.

1.1 Reflection

A system is said to be causally connected to its $\mathrm{d}_{0}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{s}(\mathrm{F}\mathrm{i}\mathrm{g}.1(\mathrm{a}))$ if the internal structures
and the domain they represent are linked in such a way that if one of then changes, this
leads to a corresponding effect upon the other.

A reflective system is a system which incorporates structures representing (aspects of)
itself. We call the sum of these structures the self-representation of the system. This
self-representation makes it possible for the system to answer questions about itself and
support actions on itself. Because the self-representation is causally-connected to the
aspects of the system it represents, we can say that:

(i) The system always has an accurate representation of itself.

(ii) The status and computation of the system are always in compliance with this repre-
sentation. This means that a reflective system can actually bring $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{i}_{0}$.ns to
itself by virtue of its own computation.

Figure 1: The notion of reflective system

293

When we implement a reflective system like Fig.1 (a), the idea of procedural $\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}(\mathrm{F}\mathrm{i}\mathrm{g}.1(\mathrm{b}))$

proposed by $\mathrm{B}.\mathrm{S}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{h}[9]$ is useful to do so.

1.2 Group-Wide Architecture
In this architecture, a group of metalevel objects constructs the metalevel. The behavior
of an object is not managed by metaobjects; rather, the collective behavior of a group of
objects is represented as the coordinated actions of a group of metalevel objects, which
construct meta-group. As mentioned above, the Group-Wide Architecture we make use
of in this study is based on the Actor model. Each object and a group of objects are
regarded as Actors. Of course, metalevel objects and a group of metalevel objects are
also regarded as Actors.

1.3 The Actor model

The Actor $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}[1]$ is one of the concurrent computation models. In the Actor model,
a system consists of a set of autonomous computation agent called Actors; each Actor
represents a physical or conceptual entity in the system’s problem domain.

The features of the Actor model are as follows.

Message passing: Actors can send messages to their acquaintance asynchronously.

Dynamic topology: A communication topology can be changed by sending an Actor’s
address with a message.

Concurrency: Any two Actors may run simultaneously.

Let S be a system composed by actors. A configuration C represents a computational
state of S at a certain frame of reference. This is represented by a pair which is composed
by two sets. One is a finite set of actors in S and the other is a finite set of tasks in
S . Computation in S is modeled as transitions between configurations in the set of all
configurations of S .

Now we construct a causally connected metalevel representation for an actor system
S . Let $\uparrow S$ be a metalevel representation for S . It is constructed as another actor system
which implements the transition system of S . $\uparrow S$ is an actor system which represents the
concurrent computational aspects of S . In our model, $\uparrow S$ is also used as a meta-circular
interpreter for S . Therefore, the causal-connection between $S\mathrm{a}\mathrm{n}\mathrm{d}\uparrow S$ is automatically
guaranteed.

In this way, it becomes clear that $\uparrow S$ is also an actor system, then a special configu-
ration of $\uparrow S$ is called a meta-configuration.

1.4 Rewriting logic
First, we introduce the definition of rewriting logic [4, 6, 7].

Definition 1 A (labelled) rewriting theory 71 is a 4-tuple $\mathcal{R}=(\Sigma, E, L, R)$ where Σ

is a ranked alphabet of function symbols, E is a set of Σ-equations, L is a set of labels,
and R is a set of pairs $R\subset L\cross(T_{\Sigma,E}(X)^{2}$ whose first component is a label and whose
second component is a pair of E-equivalence classes of times, with X $=\{x_{1}, \cdots, x_{n}, \cdots\}$ a
countably infinite set of variables. Elements of R are called rewrite rules. We understand

294

a rule $(r, ([t], [t’]))$ as a labelled sequent and use for it the notation r : $[t]arrow[t’]$.
To indicate that $\{x_{1}, \cdots, x_{n}\}$ is the set of variable occurring in either t or $t’$, we write
r : $[t(X_{1}, \cdots, Xn)]arrow[t’(X_{1}, \cdots, x_{n})]$, or in abbreviated notation r : $[t(\overline{x^{n}})]arrow[t’(\overline{xn})]\cdot\blacksquare$

Given a rewrite theory \mathcal{R} , we say that 7? entails a sequent $[t]$ $arrow$ $[t’]$ and write
$R\vdash[t]arrow[t’]$ if and only if $[t]arrow[t’]$ can be obtained by finite application of the
following rules of deduction:

l.Reflexivity. For each $[t]\in T_{\Sigma,E}(X)$,

$\overline{[t]arrow[t]}$

2. $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{g}\Gamma \mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$. For each $f\in\Sigma_{n},$ $n\in \mathrm{N}$,

$.$.$, \frac{[t1].arrow[t_{1}’]\cdots[tn]arrow.[t_{n}]}{[f(t_{1,n}t)]arrow[f(t_{1}/,\cdot\cdot,t_{n}\prime)]}$

,

3. $\mathrm{R}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$. For each rewrite rule r : $[t(x_{1}, \cdots, x_{n})]arrow[t’(X_{1}, \cdots, Xn)]$

in R ,

$\frac{[w_{1}]arrow[w_{1}’]\cdots[wn]arrow[w_{n}’]}{[t(\overline{w}/\overline{x})]arrow[t(w/\overline{X})]}$,

4.Transitivity.

$\frac{[t_{1}]arrow[h][h]arrow[t_{3}]}{[t_{1}]arrow[t_{3}]}$

\blacksquare

Rewriting logic is understood as a method of correct reasoning about some class of
entities. For rewriting logic, the entities above are concurrent systems having states, and
evolving by means of $trans\dot{i}tions$. Therefore, we can describe concurrent object-oriented
models with rewriting logic. In this logic, concurrent object-oriented computation is
formalized as concurrent ACI-rewriting. The Actor model is a special case of those models.

2 Group-Wide Architecture in Rewriting Logic
In [12], both baselevel and metalevel of the group-wide architecture are composed by an
each group of actors. In order to describe them in rewriting logic, we define them, namely
actors(objects), messages, and rewrite rules as terms. After that, we compose the Term
Rewriting System and some functions to construct a causally connected between baselevel
and metalevel.

Because of using in rewriting logic to describe our system, terms and rewriting corre-
spond to states and transition of the computational system, respectively. In our group-
wide architecture, the state of the system consists of finite set of messages and finite set
of objects. In addition, the transition of the system means a change of the states. In
rewriting logic, we can represent terms as the states and a pair of terms as a change of
the states. Furthermore a simple example, modeling migration of objects, is executed on
our system.

295

2.1 System Design
In the first place, we define some terms and termschemas (using for definition of rewrite
rules) as follows:

data Name $=$ String
data Term $=\mathrm{V}\mathrm{a}\mathrm{r}$ Name $–\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$

$\}$ Val Name –value
1 $\mathrm{C}\mathrm{o}\mathrm{n}$ Int – number
$|$ App Term Term – function application
1 $\mathrm{L}\mathrm{i}\mathrm{s}$ [Terml – list
1par Term Term – pair

data $\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}_{\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{m}}\mathrm{a}=$ SVar Name – variable
1 SVal Name – value
$|$ SCon Int – number
1 SApp $\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}_{\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{m}}\mathrm{a}\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}_{\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{m}}\mathrm{a}$ – function $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}\mathrm{a}}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

$|$ SLis [TermSchema] – list
1 SPar $\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}_{\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{m}}\mathrm{a}\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}_{\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{m}}\mathrm{a}$ – pair

In the second place, we define actor(object), message, configuration, and rewrite rule
as follows:

– actor(object)
Lis [Val $\uparrow’ 0\mathrm{i}\mathrm{d}^{1\uparrow},$ Lis [. . .1 , . . .]
– message
Lis [(Par Val ’${}^{\mathrm{t}}\mathrm{M}\mathrm{i}\mathrm{d}^{1}$ ’ Val $||\mathrm{D}\mathrm{e}\mathrm{s}^{11}$) , . . .]
– configuration
Par $1\mathrm{i}\mathrm{s}\mathrm{t}-_{\mathrm{o}\mathrm{f}}$ bjects $1\mathrm{i}\mathrm{s}\mathrm{t}-_{\mathrm{o}\mathrm{f}}$-mesages
– rewrite rule

$(\mathrm{l}\mathrm{h}\mathrm{s},\mathrm{r}\mathrm{h}\mathrm{S})$

where lhs $–$ SPar $1\mathrm{i}\mathrm{s}\mathrm{t}^{-}\mathrm{o}\mathrm{f}^{-}1\mathrm{h}\mathrm{S}$ -objects $1\mathrm{i}\mathrm{s}\mathrm{t}-\mathrm{o}\mathrm{f}-_{1\mathrm{h}}\mathrm{S}$-messages
rhs $–$ SPar $1\mathrm{i}\mathrm{s}\mathrm{t}-_{\mathrm{O}}\mathrm{f}-_{\mathrm{r}}\mathrm{h}\mathrm{S}$-objects $1\mathrm{i}\mathrm{s}\mathrm{t}-_{\mathrm{o}\mathrm{f}\mathrm{h}\mathrm{S}}-_{\mathrm{r}}$-messages

Finally, we define some functions which can translate data and rewrite rules in baselevel
into data in metalevel and those inverse one.

– from base to meta
$\mathrm{m}\mathrm{a}\mathrm{k}\mathrm{e}_{-^{\mathrm{m}\mathrm{e}}}\mathrm{t}\mathrm{a}_{-\mathrm{o}\mathrm{n}}\mathrm{C}\mathrm{f}$: : [$(\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a},$ TermSchema)] $->$ Term $->$ Term
– from meta to base
baserule : : Term $->$ [$(\mathrm{T}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a},$ TermSchema)]

baseconf : : Term $->$ Term

Function make-meta- conf needs two arguments-list of rewrite rules and configuration
of baselevel–and translates them into data of metalevel. Function baserule needs one
argument–metalevel representation of rewrite rules of baselevel–and translates it into
rewrite rules used in baselevel. In same way, function baseconf needs one argument-
metalevel representation of configuration of baselevel-and translates it into configuration
representing baselevel.

2.2 An Example

Migration of an object from node (a group of metaobjects) to node is described as an
example of group-wide reflection. A node is constructed some metalevel objects, such as

296

External Mailer, Task Handler, Database, Evaluator, and Migrator. Migrator is a special
object that has a method of doing migration.

When Evaluator accepts the message with the requirement to migrate an object A_{1}

in node N_{1} to another node N_{2} and rules of migration, it starts to interpret the rules,
referring already-known data and rewritten terms. The migration rules are as follows.

\bullet Obtain the Migrator of the
destination N_{2} .

\bullet Ask for the address of the
database of destination N_{2} .

\bullet Get the immigrant’s new
address in the destination
N_{2} .

\bullet Perform Migration.
Figure 2: Migration for object

3 Discussion
Constructing the example in a way mentioned above, we faced the following problems:

\bullet When we describe a mechanism for inter-group migration of objects, we must con-
sider the direct sum of baselevel and metalevel of those groups. In our case, there
are two groups N_{1} and N_{2} . Then there will be a possibility of conflict of rewrite
rules, that is, a rewrite rule application to a configuration can not be decided.

\bullet Whether do the direct sum of the metalevel both N_{1} and N_{2} represent the direct
sum of their baselevel or not.

We will be able to clear the former in the following way. When we define the rewrite
rules of such groups, we do the rules without same identifiers beforehand.

The latter one is as follows. In [12], it is proved $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\uparrow S$ correctly represents S in
terms of transition relations, where S and $\uparrow S$ mean a group of actors and the group which
forms a metalevel representation of S respectively. In our case, we will be able to prove
such a property in the same way.

4 Conclusion and Future Work
We described group-wide reflection based on actor model in rewriting logic. By construct-
ing direct sum of configurations and rewriting rules in two groups, we were able to describe
a mechanism for inter-group migration of objects. We can expect that we describe it more
than three groups in the same way.

The research reported in this paper is their first attempt of formalizing group-wide
reflective architecture in rewriting logic. This research would become important.

Our group-wide architecture is based on the Actor model. After this we will describe
some other examples for GWA. Based on this work, we expect that it will be possible

297

to construct a new general reflective architecture based on the rewriting logic in future.
Moreover we expect that it will be possible to design and implement metalevel architecture
of concurrent reflective computations more sutable to Rewriting Logic. The architecture
would be more effective in analyzing the properties of the concurrent reflective computa-
tion from several aspects.

References
[1] Gul Agha. Actors : A Model of Concurrent Computation in Distributed Systems. The MIT

Press, 1987.

[2] Hiroshi Ishikawa, Kokichi Futatsugi, and Takuo Watanabe. Concurrent Reflective Com-
putations in Rewriting Logic (in Japanese). In 11th Conference Proceedings Japan Society
for Soflware Science and Technology, pp. 313-316. Japan Society for Software Science and
Technology(JSSST), 1994.

[3] Hiroshi Ishikawa. Concurrent Reflective Computations in Rewriting Logic (in Japanese).
Master Thesis, Japan Advanced Institute of Science and Technology, February 1995.

[4] Jos\’e Meseguer, Kokichi Futatsugi, and Timothy Winkler. Using Rewriting Logic to Specify,
Program, Integrate, and Reuse Open Concurrent Systems of Cooperating Agents. Technical
Report SRI-CSL-92-11, Computer Science Laboratory, SRI International, 1992.

[5] Pattie Maes. Computational reflection. Ph. D. Thesis 87-2, Artificial Intelligence Laboratory,
Vrije Universiteit Brussel, 1987.

[6] Jos\’e Meseguer. Conditional rewriting logic as a unified model of concurrency. Technical
Report SRI-CSL-92-08, Computer Science Laboratory, SRI International, 1992.

[7] Jos\’e Meseguer. A logical theory of concurrent objects and its realization in the maude
language. In Peter Wegner Gul Agha and Akinori Yonezawa, editors, Research Directions
in Concurrent Object Oriented Programming. The MIT Press, 1993.

[8] Paul Hudack, Philip Wadler, et al. Report on the programming language Haskell, a non-
strict purely functional language (Version 1.2). Technical report, Yale $\mathrm{U}\mathrm{n}\mathrm{i}_{\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{s}}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{G}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{g}\mathrm{o}\mathrm{w}$

University, 1992.

[9] Brian Cantwell Smith. Reflection and Semantics in a Procedural Language(ph D.Thesis).
Technical Report TR-272, Laboratory for Computer Science, MIT, 1982.

[10] Brian Cantwell Smith. Reflection and Semantics in Lisp. In Proceedings of the A CM
Symposium on Principles of Programming Languages (POPL), pp. 23-35, 1984.

[11] Takuo Watanabe, Akinori Yonezawa. Reflection in an Object-Oriented Concurrent Lan-
guage. In ABCL:An Object-Oriented Concurrent System, pp. 45-70. The MIT Press, 1990.

[12] Takuo Watanabe, Akinori Yonezawa. An Actor-Based Metalevel Architecture for Group-
Wide Reflection. In Proceedings of REX $School/Worksh_{\mathit{0}}p$ on Foundations of Object-
Oriented Languages $(REx/FOOL)$, Lecture Notes in Computer Science 489, pp. 405-425,
New York, 1991. Springer-Verlag.

[13] Takuo Watanabe. A Tutorial Introduction to Computational Reflection (in Japanese).
Computer Software, 11 (3):5-14, May 1994.

298

