
Completion for Multiple Reduction Orderings

Masahito Kurihara1 Hisashi Kondo2 Azulna Ohuchi1
1 Institute of Systems and Information Engineering

Hokkaido University, Sapporo, 060 Japan
e-mail: {kurihara, $\mathrm{o}\mathrm{h}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{i}$ } $@\mathrm{h}\mathrm{u}\mathrm{i}\mathrm{e}.\mathrm{h}\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{i}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

2 Department of Systems Engineering
Ibaraki University, Hitachi, 316 Japan
e-mail: kondo@lily.dse.ibaraki.ac.jp

Abstract

We present a completion procedure (called MKB) which works with multiple reduction
orderings. Given equations and a set of reduction orderings, the procedure simulates a
computation performed by the parallel processes each of which executes the standard Knuth-
Bendix completion procedure $(\mathrm{K}\mathrm{B})$ with one of the given orderings. To gain efficiency,
however, we develop new inference rules working on objects called nodes, which are data
structure consisting of a pair s : t of terms associated with the information to show which
processes contain the rule $sarrow t$ (or $tarrow s$) and which processes contain the equation $srightarrow t$.
The idea is based on the observation that some of the inferences made in the processes are
closely related, so we can design inference rules that simulate multiple KB inferences in
several processes all in a single operation. Our experiments show that MKB is significantly
more efficient than the naive simulation of parallel execution of KB procedures, when the
number of reduction orderings is large enough.

1 Introduction

Given equations and a reduction ordering, the Knuth-Bendix completion procedure $(\mathrm{K}\mathrm{B})[9]$

tries to compute a complete (convergent) set of rewrite rules. As a result, it may either succeed
(with a finite, convergent set of rules), or fail (because of unorientable equations), or loop (in
a diverging process trying to generate an infinite set of rules). The practical interest of the
completion processes is limited by the possibility of the failure and divergence. The success
of the procedure heavily depends on the choice of the reduction ordering. Thus the simplest
(but often effective) way of trying to hopefully avoid the failure or divergence is to change the
orderings. Actually, in many existing implementations the user can interactively change (or
extend) the orderings. Note, however, that this kind of $\mathrm{i}\mathrm{m}\mathrm{p}\dot{\mathrm{l}}$ementation necessarily requires
that the users have knowledge of appropriate class of reduction orderings and intuition which is
hopefully correct. From the viewpoint of interface with software designers $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ AI researchers
who are not familiar with termination proof techniques, automatic change of (or search for) the
orderings is desired. However, the problem is that since the completion process can diverge
(and we can never decide the divergence in general), it is inappropriate to search for a correct
ordering by just sequentially scanning possible orderings. This means that we have to consider,
more or less, parallel execution of the completion procedures each working with one of possible
orderings. However, naive implementation would result in serious inefficiency.

数理解析研究所講究録
918巻 1995年 34-47 34

In this paper, we present a single completion procedure (called MKB) which works with
multiple reduction orderings. Basically, given equations and a set of reduction orderings, the
procedure simulates a computation performed by the parallel processes each of which executes
KB with one of the given orderings. To gain efficiency, however, we develop new inference rules
working on objects called nodes, which are data structure consisting of a pair s : t of terms
associated with the information to show which processes contain the rule $sarrow t$ (or $tarrow s$) and
which processes contain the equation $srightarrow t$. The idea is based on the observation that some of
the inferences made in the processes are closely related, so we can design inference rules that
simulate multiple KB inferences in several processes all in a single operation. Our experiments
show that MKB is significantly more efficient than the naive simulation of parallel execution of
KB procedures, when the number of reduction orderings is large enough. In Section 2 we review
the standard completion very briefly. Then we present MKB as an inference system in Section
3. A possible MKB completion procedure is presented in Section 4. Section 5 summarizes our
work.

2 Standard Completion

We assume that the reader is familiar with the general idea of term rewriting systems. The
reader may consult the surveys by Dershowitz and $\mathrm{J}\mathrm{o}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{a}\mathrm{u}\mathrm{d}[5],$ $\mathrm{K}\mathrm{l}\mathrm{o}_{\mathrm{P}}[8]$, Huet and $\mathrm{O}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{n}[6]$,
Avenhaus and $\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}[1]$, and $\mathrm{P}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{d}[11]$. In this section we briefly review the standard
completion techniques, based on [2, 3, 4].

A set R of rewrite rules is convergent (or complete) if it is terminating and confluent. The
system is $(inter)reduced$ if for all $larrow r$ in $R,$ r is irreducible with R and l is irreducible with
$R-\{larrow r\}$. A convergent, reduced system is called canonical. $\mathrm{L}\mathrm{e}\mathrm{t}\succ \mathrm{b}\mathrm{e}$ a reduction ordering
(i.e., a well-founded, strict partial ordering on terms such that $s\succ t$ implies $C[s\sigma]\succ C[t\sigma]$ for
all contexts $C[]$ and substitutions σ). Given a set E of equations and a reduction $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}\succ$,
the standard completion procedure tries to generate a convergent (canonical) set R of rewrite
rules which is contained $\mathrm{i}\mathrm{n}\succ$ and which induces the same equational theory as E (if rules of R

are regarded as equations). The standard completion is defined in terms of the inference system
KB that consists of the following six inference rules:

DELETE: $(E\cup\{srightarrow s\};R\})\vdash(E;R)$

COMPOSE: $(E;R\cup\{sarrow t\})\vdash(E;R\cup\{sarrow u\})$ if $t-_{R}u$

SIMPLIFY: $(E\cup\{srightarrow t\};R)\vdash(E\cup\{srightarrow u\};R)$ if $tarrow_{R}u$

$\mathrm{o}_{\mathrm{R}\mathrm{l}\mathrm{E}\mathrm{N}\mathrm{T}}$: $(E\cup\{srightarrow t\};R)\vdash(E;R\cup\{sarrow t\})$ if $s\succ t$

COLLAPSE: $(E;R\cup\{tarrow s\})\vdash(E\cup\{urightarrow s\};R)$ if $larrow r\in R,$ $tarrow\{larrow r\}u$,
and $t\triangleright l$

DEDUCE: $(E;R)\vdash(E\cup\{srightarrow t\};R)$ if $sarrow Ruarrow Rt$

where \triangleright is a well-founded ordering on terms. In this paper, we use as $\triangleright \mathrm{t}\mathrm{h}\mathrm{e}$ encompassment
ordering: $s\triangleright t$ if a subterm of s is an instance of t , but not vice versa.

In practice we assume that the symbol \cup used in the left-hand sides of the inference rules
denotes disjoint union. We write $(E;R)\vdash_{\mathrm{K}\mathrm{B}^{\succ}}(E’;R’)$ if the latter may be obtained from the
former by one application of rule in $\mathrm{K}\mathrm{B}$. We usually $\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{v}\mathrm{e}\succ \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}$ and $\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}\vdash_{\mathrm{K}\mathrm{B}}$. Moreover,
the subscript KB will be left out, if it is understood.

A completion procedure is any program that takes as input a finite set E_{0} of equations and a
reduction ordering \succ , and computes a sequence of inferences $\mathrm{h}\mathrm{o}\mathrm{m}(E_{0;}R\mathrm{o})$ with $R_{0}=\emptyset$. The
results of a possibiy infinite completion sequence $(E0;R\mathrm{o})\vdash(E_{1;}R_{1})\vdash\cdots$ are the sets $E_{\infty}=$

35

$\bigcup_{i\geq 0}\bigcap_{j\geq i}E_{j}$ and $R_{\infty}= \bigcup_{i\geq 0}\bigcap_{j\geq i}R_{j}$ of persisting equations and rules. For a finite sequence
ending with $(E_{n}; R_{n})$, we let $(E_{\infty}; R_{\infty})=(E_{n}; R_{n})$. A completion sequence is successful if E_{∞}

is empty and R_{∞} is convergent.
The rules in KB are evidently sound, in that the class of provable theorems is unchanged by

an inference step, i.e., $rightarrow^{*}E\cup R^{=rightarrow}E’\cup R*$, whenever $(E;R)\vdash(E’;R’)$. Moreover, $R’\subseteq\succ \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}$

$R\subseteq\succ$. Consequently, the result R_{∞} of any successful completion sequence is terminating and
presents the same equational theory as E_{0} .

Since the rule DEDUCE can lead to infinitely long chains of inference, fairness conditions aim to
minimize applications of that rule, while ensuring that it is not completely ignored. Let $CP(R)$

denote the set of all critical pairs between rules in R . In particular, $CP(R_{\infty})$ denotes the set
of all persistent critical pairs. A completion sequence $(E_{0;}R\mathrm{o})\vdash(E_{1;}R_{1})\vdash\cdots$ in KB is fair if
(1) all persistent critical pairs are generated $(CP(R_{\infty}) \subseteq\bigcup_{i\geq 0}E_{i})$ and (2) no equation persists
$(E_{\infty}=\emptyset)$. An n-step KB completion sequence fails at step n if no fair sequence has it as a
prefix; in that case the completion procedure fails. Assuming the procedure never discriminates
against any critical pair or simplifiable rule or equation, the only possible reason for failure is
that all equations are unorientable. A completion procedure is correct if it generates only fair
or failing sequences. The main result in $\mathrm{H}\mathrm{u}\mathrm{e}\mathrm{t}[7]$ and Bachmair, Dershowitz, and $\mathrm{H}\mathrm{s}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}[2]$ is
that if a completion sequence is $\mathrm{f}\mathrm{a}\mathrm{i}\dot{\mathrm{r}}$, then the limit rewrite system R_{∞} is convergent. Therefore,
if a correct completion procedure does not fail, then it generates a convergent system in the
limit. Moreover, if neither COMPOSE nor COLLAPSE is applicable to (\emptyset, R_{∞}) , then R_{∞} is even
canonical.

3 Completion for Multiple Reduction Orderings

3.1 Inference Rules

Let us define a completion procedure MKB for multiple reduction orderings. Let $O=\{\succ_{1}$

, . . $.,$
\succ_{n} } be a finite set of reduction orderings and $I=\{1, \ldots, n\}$ its index set. (Actually, we

may allow O to be a multiset in order to avoid the problem of deciding the identity of orderings.)
Given O and an initial set of equations, MKB simulates a computation performed by the parallel
processes $\{P_{1}, \ldots, P_{n}\}$, where the process P_{i} executes KB for the reduction ordering \succ_{i} . Thus
we may regard I as indices of the parallel processes. However, naive implementation could
result in serious inefficiency, because many inferences made by several processes are related so
closely (or even essentially the same) that they could cause much waste of computation time.
We can be smarter by exploiting this observation to design inference rules that simulate the
related KB inferences all in a single operation. The following inference system MKB is based
on this idea.

MKB is an inference system that works on objects called nodes. A node is a tuple \langle s :
$t,$ $L_{1},$ $L_{2},$ $L_{3}\rangle$, where s : t is an ordered pair of terms s and t , and $L_{1},$ $L_{2},$ L_{3} are subsets of I such
that

\bullet $L_{1},$ L_{2} , and L_{3} are mutually disjoint,

\bullet if $\dot{i}\in L_{1}$ then $s\succ_{i}t$, and

\bullet if $\dot{i}\in L_{2}$ then $t\succ_{i^{S}}$.

The pair s : t is called a datum and $L_{1},$ $L_{2},$ L_{3} are called labels of the node. This node is
identified with the node $\langle t : s, L_{2}, L_{1}, L_{3}\rangle$. Intuitively, $L_{1}(L_{2})$ denotes the set of indices of
processes (executing the $\mathrm{K}\mathrm{B}$) in which the current set of rules, R , contains a rule $sarrow t(tarrow s)$;

36

L_{3} denotes the set of indices of processes in which the current set of equations, E , contains an
equation $srightarrow t$ (or $trightarrow s$). MKB consists of the following inference rules:

DELETE: $N\cup\{\langle s:s, \emptyset, \mathrm{o}, L\rangle\}\vdash N$ if $L\neq\emptyset$

REWRITE-I: $N\cup\{\langle_{S:t}, L_{1}, L_{2}, L_{3}\rangle\}\vdash N\cup$

if $\langle l : r, L, \ldots,\ldots\rangle\in N,$ $tarrow\{larrow r\}u,$ $L\cap(L_{1}\cup L_{3})\neq\emptyset$, and
either $t=l$ or $L\cap L_{2}=\emptyset$

REWRITE-2: $N\cup\{\langle S:t, L_{1}, L2, L_{3}\rangle\}\vdash N\cup$

if $\langle l : r, L, \ldots, \ldots\rangle\in N,$ $tarrow\{larrow r\}u,$
$t\triangleright l$ and $L\cap L_{2}\neq\emptyset$

ORIENT: $N\cup\{\langle S:t, L_{1}, L2, L3\cup L\rangle\}\vdash N\cup\{\langle_{S:t}, L_{1}\cup L, L_{2}, L_{3}\rangle\}$

if $L\neq\emptyset$ and $s\succ_{i}t$ for all $\dot{i}\in L$

DEDUCE: $N\vdash N\cup\{\langle s:t, \emptyset, \emptyset, L\cap L’\rangle\}$

if $\langle l : r, L, \ldots, \ldots\rangle\in N,$ $\langle l’\sim. r’, L^{;}, \ldots, 5\cdot.\rangle\in N,$ $L\cap L’\neq\emptyset$, and
$sarrow\{\iotaarrow r\}uarrow\{l\prime\prime\}arrow rt$

where N denotes a finite set of nodes. The equation $t=l$ in the condition of REWRITE-I denotes
that t is an instance of l andffice versa; in other words, t and l are syntactically the same up
to renaming variables. Note that with $tarrow\{larrow r\}u$ and $\triangleright \mathrm{b}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{g}$ the encompassment ordering,
the negation of $t\triangleright l\wedge L\cap L_{2}\neq\emptyset$, appearing in REWRITE-2, is equivalent to $t=l\vee L\cap L_{2}=\emptyset$,
appearing in REWRITE-I.

DELETE rule of MKB removes a node with a trivial equation $srightarrow s$. It simuiates,. in a single
operation, applications of DELETE operation (of $\mathrm{K}\mathrm{B}$) performed in all processes P_{i} with $\dot{i}\in L$.

REWRITE-I and REWRITE-2 rewrite a term t to u by the rule $larrow r$. The result is the
modification of the labels of the node $\langle s:t, \ldots\rangle$ and the creation of a node $\langle s : u, \ldots\rangle$. REWRITE-
1 simulates COMPOSE operation in the processes $P_{i},$ $i\in L\cap L_{1}$, and SIMPLIFY operation in the
processes $P_{i},\dot{i}\in L\cap L_{3}$. All these KB operations in the processes $P_{i},$ $i\in L\cap(L_{1}\cup L_{3})$,
are simulated by this single MKB operation. Moreover, REWRITE-2 additionally simulates
COLLAPSE operation in the processes $P_{i},$ $i\in L\cap L_{2}$. To see this, consider the following two
nodes:

$\langle l:r, L, \ldots, \ldots\rangle$ (1)

$\langle_{S:t,L_{1}}, L2, L_{3}\rangle$ (2)

We assume that $tarrow\{larrow r\}u$. In our interpretation, the current set of rules, R , in every process
$P_{i},\dot{i}\in L\cap L_{1}$, contains both $larrow r$ and $sarrow t$. Therefore, COMPOSE may be applied on the two
rules. As a result, the rule $sarrow t$ is replaced by a new rule $sarrow u$. This could be simulated by
the modification of the node (2) to

$\langle s : t, L_{1\backslash }L, L_{2}, L3\rangle$

and the creation of the node
$\langle s : u, L\cap L_{1}, \emptyset, \emptyset\rangle$.

37

Similarly, in every process $P_{i},$ $i\in L\cap L_{3},$ R contains $larrow r$ and E contains $srightarrow t$. Therefore,
SIMPLIFV operation would result in the replacement of the equation $srightarrow t$ by a new equation
$srightarrow u$. This could be simulated by the modification of the node (2) to

$\langle_{S:t,L_{1},L_{2}}, L3\backslash L\rangle$

and the creation of the node
$\langle_{S:u,\emptyset}, \emptyset, L\cap L3\rangle$.

It follows that the combination of COMPOSE and SIMPLIFY could be simulated by REWRITE-I,
which modifies the node (2) to

$\langle s : t, L_{1}\backslash L, L_{2}, L3\backslash L\rangle$

and creates the node
$\langle_{S:u}, L\mathrm{n}L_{1}, \emptyset, L\mathrm{n}L_{3}\rangle$.

To make this inference really effective, we naturally require that $L\cup(L_{1}\cap L_{3})\neq\emptyset$.
If $t\triangleright l$ holds and $L\cap L_{2}$ is not empty, we could combine more. In this case, every process

$P_{i},\dot{i}\in L\cap L_{2}$, contains $larrow r$ and $tarrow s$ in R . Application of COLLAPSE would result in the
removal of $tarrow s$ and the creation of $urightarrow s$. This could be simulated by the modification of the
node (2) to

$\langle s : t, L_{1}, L_{2}\backslash L, L3\rangle$

and the creation of the node
$\langle s : u, \emptyset, \emptyset, L\cap L_{2}\rangle$.

It follows that the combination of COMPOSE, SIMPLIFY, and COLLAPSE could be simulated by
REWRITE-2. Note that if labels are implemented as bit vectors (in which the $\dot{i}\mathrm{t}\mathrm{h}$ bit is 1 if and
only if \dot{i} belongs to the label), then their union, intersection, and difference can be computed
very quickly. This scheme requires three bits for each index i in order to distinguish $\dot{i}\in L_{1}$,
$\dot{i}\in L_{2},\dot{i}\in L_{3}$, and $i\not\in L_{1}\cup L_{2}\cup L_{3}$. Since exactly one of the four cases can occur, one could
also encode this information in two bits at the cost of some extra computation time.

We refer to the nodes $\langle s : t, L_{1}, \ldots\rangle,$ $\langle s : t, L_{1}\backslash L, \ldots\rangle$, and $\langle s : u, L\cap L_{1}, \ldots\rangle$ in these inference
rules as original, updated, and created nodes, respectively. In actual implementation, we could
directly modify the labels of an original node in order to put the updated node on the same
memory location as is occupied by the original node.

$\mathrm{O}\mathrm{R}\mathrm{l}\mathrm{E}\mathrm{N}\mathrm{T}$ orients an equation $srightarrow t$ to $sarrow t$ in processes P_{i} with $s\succ_{i}t$. This is achieved
by suitable modification of labels of the node. In practice we let L to be the maximal subset
of the third label of the node such that $s\succ_{i}t$ for all $\dot{i}\in L$. The maximal label may be
trivially obtained by scanning the indices in the third label one by one to see if $s\succ_{i}t$, but for
some classes of reduction orderings this may be obtained more quickly by other means. For
example, if O is a set of recursive path orderings and the equation is $f(x)arrow g(x)$, then L is the
intersection of the third label and the set of indices corresponding to $\mathit{0}$rderings containing the
precedence $f\succ g$. A practically most effective case is when O is a set of simplification orderings
and the right-hand side of the rule is homeomorphically embedded in the left-hand side; then L

is identical with the third label, because then the left-hand side is greater than the right-hand
side in every simplification ordering.

DEDUCE creates a node for equational consequences derived from two rules. Of course, only
critical pairs need to be considered. Every process $P_{i},\dot{i}\in L\cap L’$, contains rules $larrow r$ and
$l’arrow r’$ in R . Therefore, the critical pair $srightarrow t$ (if it exists) can be deduced in all these processes.
The node $\langle s:t, \ldots\rangle$ created here is called a critical node.

38

Note that we have assumed that we never distinguish a node $\langle s : t, L_{1}, L_{2}, L_{3}\rangle$ from $\langle t$:
$s,$ $L_{2},$ $L_{1},$ $L_{3}\rangle$. This implies that some inference rules implicitly specify the symmetric cases. For
example, ORIENT rule implicitly specify the following case:

$\mathrm{o}_{\mathrm{R}\mathrm{l}\mathrm{E}\mathrm{N}}\mathrm{T}:$

;
$N\cup\{\langle s:t, L_{1}, L_{2}, L_{3}\cup L\rangle\}\vdash N\cup\{\langle S:t, L1, L_{2}\cup L, L_{3}\rangle\}$

if $L\neq\emptyset$ and $t\succ_{i}S$ for all $i\in L$.

We write $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$ if the latter may be obtained $\mathrm{h}\mathrm{o}\mathrm{m}$ the former by one application of rule
in MKB. An MKB completion procedure is any program that takes as input a finite set E_{0} of
equations and a set O of reduction orderings, and computes a sequence of inferences from the
initial set of nodes, $N_{0}=\{\langle_{S:t}, \emptyset, \emptyset, I\rangle|srightarrow t\in E_{0}\}$, where $I=\{1, \ldots, |O|\}$.

3.2 Soundness and Completeness

Let us see the relationships between MKB and $\mathrm{K}\mathrm{B}$.

DEFINITION 3.1 Let $N=\{\langle s_{j} : t_{j}, L_{1}^{j}, L_{2’ 3}^{j}L^{j}\rangle|1\leq j\leq m\}$ be a set of nodes and $i\in I$ be an
index. The E-projection $E[N,\dot{i}]$ of N onto \dot{i} is a set of equations defined by

$E[N,\dot{i}]=\{s_{j}rightarrow t_{j}|\dot{i}\in L_{3}^{j},1\leq j\leq m\}$.

Similarly, The R -projection $R[N,i]$ of N onto \dot{i} is a set of rules defined by

$R[N,\dot{i}]=\{s_{j}arrow t_{j}|\dot{i}\in L_{1}^{j},1\leq j\leq m\}\cup\{t_{j}arrow s_{j}|i\in L_{2}^{j},1\leq j\leq m\}$.

In the following proposition, $\vdash_{\mathrm{K}\mathrm{B}}^{=}$ denotes the reflexive closure $\mathrm{o}\mathrm{f}\vdash_{\mathrm{K}\mathrm{B}}$. In other words, $\vdash_{\mathrm{K}\mathrm{B}}^{=}$

means $\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\vdash_{\mathrm{K}\mathrm{B}}$ or $=$. Moreover, $\vdash_{\mathrm{K}\mathrm{B}}$ is an abbreviation $\mathrm{f}\mathrm{o}\mathrm{r}\vdash_{\mathrm{K}\mathrm{B}^{\succ_{i}}}$. The proposition formally
states that MKB actually simulates $\mathrm{K}\mathrm{B}$.

PROPOSITION 3.2 (Soundness) If $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$ then for all $\dot{i}\in I$,

$(E[N,\dot{i}];R[N,\dot{i}])\vdash_{\mathrm{K}\mathrm{B}}^{=}(E[N’,\dot{i}];R[N’, i])$,

where the strict part, $\vdash_{\mathrm{K}\mathrm{B}}$, holds for at least one \dot{i} .

Usefulness of MKB comes from the observation that the strict part, $\vdash_{\mathrm{K}\mathrm{B}}$, often holds for many
$\dot{i}’ \mathrm{S}$. The following proposition shows that MKB is as powerful as KB in its ability of inference.

PROPOSITION 3.3 (Completeness) If $(E[N, i];R[N,\dot{i}])\vdash_{\mathrm{K}\mathrm{B}}(E’;R’)$ then there exists a set
$N’$ of nodes such that $E’=E[N’,\dot{i}],$ $R’=R[N’,\dot{i}]$, and $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$.

3.3 Optional Rules

It is possible to add the following optional inference rules to MKB. They do not correspond to
any inference rules of $\mathrm{K}\mathrm{B}$, but can affect efficiency of the completion procedure.

REMOVE: $N\cup\{\langle s:t, \emptyset, \emptyset, \emptyset\rangle\}\vdash N$

MERGE: $N\cup\vdash N\cup\{\langle s : t, L_{1}\cup L_{1}’, L_{2}\cup L_{2}’, L_{3}\cup L_{3}’\rangle\}$

39

We will abuse the notation and write $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$ if $N’$ is obtained $\mathrm{h}\mathrm{o}\mathrm{m}N$ by one application
of rule in either the original MKB rules or the two optional rules. REMOVE removes a node if
its projections onto equations and rules are empty for all processes. MERGE merges two nodes
into a single one if they have the same datum s : t . Note that the optional operations make the
size of the current node set smaller, without affecting projections.

PROPOSITION 3.4 If $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$ by applying REMOVE or MERGE, then

$(E[N,\dot{i}];R[N,\dot{i}])=(E[NJ,\dot{i}];R[N’, i])$

for all $\dot{i}\in I$.

This proposition implies that when the optional inference rules are included in MKB, we have
to revise the previous proposition on soundness as follows.

PROPOSITION 3.5 (Soundness) If $N\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N’$ then for all $i\in I$,

$(E[N,\dot{i}];R[N,\dot{i}])\vdash_{\mathrm{K}\mathrm{B}}^{=}(E[N;,\dot{i}];R[N’,\dot{i}])$,

where the strict part, $\vdash_{\mathrm{K}\mathrm{B}}$, holds for at least one i if the employed rule is not optional.

On the other hand, the completeness result need not be revised. The optional rules are helpful
in saving the memory space. Moreover, MERGE operation can make the reasoning process more
efficient, because a single inference on the new node can replace the corresponding two inferences
on the two old nodes. This saving can be significant when the number of nodes with the same
datum increases rapidly. Note, however, that naive implementation of MERGE can make the
program slower, because it requires the search for the same datum in the node database.

3.4 Fairness

Given a completion sequence $N_{0}\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N_{1}\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}\cdots$ in MKB, the set of persisting nodes is
defined by $N_{\infty}= \bigcup_{i>0}\bigcap_{j>i}N_{j}$. For a finite sequence ending with N_{n} , we let $N_{\infty}=N_{n}$. The
sequence is $succeSsfu\overline{l}$ if $\mathrm{t}\overline{\mathrm{h}}\mathrm{e}\mathrm{r}\mathrm{e}$ exists an index $i\in I$ such that $E[N_{\infty},\dot{i}]$ is empty and $R[N_{\infty},\dot{i}]$

is convergent. The sequence is fair for $\dot{i}\in$ I if all persistent critical nodes are generated
$(CN[N \infty’\dot{i}]\subseteq\bigcup_{i\geq 0^{N}}i)$ and no equation persists $(E[N_{\infty}, i]=\emptyset)$ for process i , where $CN[N,\dot{i}]$

denotes the set of all critical nodes between nodes $\langle l : r, L_{1}, L_{2}, L_{3}\rangle\in N$ and $\langle l’ : r’, L’L’, L’1’ 23\rangle\in$

N with $i\in(L_{1}\cup L_{2})\cap(L_{1}’\cup L_{2}’)$. The sequence fails for $\dot{i}\in I$ if no MKB sequence which is
fair for i has it as a prefix. The sequence fails if a prefix of it fails for every $\dot{i}\in I$.

Faimess for \dot{i} only ensures fair creation of (and selection from) critical pairs in process i .
For MKB to be really useful, we need a stronger notion of fairness which ensures that every
non-failing process is fair. Then we would have a greater possibility of success. This motivates
the following definition.

DEFINITION 3.6 A completion sequence in MKB is fair if it satisfies the following conditions:
\bullet It is fair for some $i\in I$.
\bullet If it is infinite, then it is either fair or failing for every $\dot{i}\in I$.

40

Let S be a completion sequence $N_{0}\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}N_{1}\vdash_{\mathrm{M}\mathrm{K}\mathrm{B}}\cdots$ in MKB. By projecting each node set
onto equations and rules of process $\dot{i}\in I$, we have a sequence $(E_{0;}R0)\vdash_{\mathrm{K}\mathrm{B}}^{=}(E_{1;}R_{1})\vdash_{\mathrm{K}\mathrm{B}}^{=}\cdots$,
where $E_{j}=E[N_{j},\dot{i}]$ and $R_{j}=R[N_{j}, i]$ for $j=0,1,$ \ldots . By removing all equivalent steps
$(E_{j;}R_{j})=(E_{j+1;R}j+1)$ we have a proper completion sequence $(E_{k00} ; R_{k})\vdash_{\mathrm{K}\mathrm{B}}(E_{k_{1};}R_{k_{1}})\vdash_{\mathrm{K}\mathrm{B}}$

... in $\mathrm{K}\mathrm{B}$, where $0\leq k_{0}<k_{1}<\cdots$. We denote this sequence by $KB[S,\dot{i}]$. Then we can easily
verify the following relationships between $\mathrm{c}\mathrm{o}\mathrm{m}$. pletion sequences in MKB and in $\mathrm{K}\mathrm{B}$.

PROPOSITION 3.7 Let S be a completion sequence in MKB .

(1) If S fails for $\dot{i}\in I$, then $KB[S,\dot{i}]$ fails.
(2) If S fails, then $KB[S_{\dot{i}},]$ fails for all $\dot{i}\in I$.

(3) If S is fair for $i\in I$, then $KB[S_{\dot{i}},]$ is fair.
(4) If S is fair, then $KB[S,\dot{i}]$ is fair for some $\dot{i}\in I.$ Moreover, if S is infinite, then every

$KB[S, i],\dot{i}\in I$, is either fair or failing.

An MKB completion procedure is correct if it generates only fair or failing MKB sequences.
If a correct MKB completion procedure generates a non-failing MKB completion sequence S ,
then there exists an index $\dot{i}\in I$ such that the KB completion sequence $KB[S_{\dot{i}},]$ is fair, thus
the limit rewrite system $R[N_{\infty},\dot{i}]$ is convergent.

4 Completion Procedure

4.1 Completion Procedure

A possible MKB completion procedure, named mkb, is given in Fig. 1. It accepts as input
a set E of equations and a set O of reduction orderings, and return as output a convergent
set of rewrite rules if it successfully halts. The procedure is based on the $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{n}/\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{S}\mathrm{e}\mathrm{d}$ lists
algorithm which is well-known in the literature of search techniques for artificial intelligence;
the sets NE and NR of nodes play a role of the open and closed lists, respectively. Initially,
NR is empty and NE consists of all the initial nodes. The union $NE\cup NR$ of the current set
of nodes defines a set N_{j} of nodes in an MKB completion sequence. Although we have seen the
inference rules as working on a set of nodes, we can naturally see them as working on a single
node or two nodes as well. More precisely, let us call DELETE, ORIENT, and REMOVE the single-
node operations, and REWRITE-I, REWRITE-2, DEDUCE, and MERGE the double-node operations.
Then the former is applied to a single node, while the latter to a pair of nodes. We assert that
in the computation of mkb every node in NR has been fully considered for application of single-
node operations, and that every pair of nodes in NR has been fully considered for double-node
operations. This implies that all we have to do is applying single-node operations to nodes in
NE and double-node operations on pairs of nodes of which at least one is from NE .

The $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{d}\iota \mathrm{l}\mathrm{r}\mathrm{e}success(NE, NR)$ checks if the completion process has succeeded. More pre-
cisely, it is successful if there exists an index $\dot{i}\in I$ such that \dot{i} is not contained in any labels of
NE nodes and any L_{3} labels of NR nodes. Then $E[NE\cup NR,\dot{i}]$ is the empty set of equations
and $R[NR,\dot{i}]$ is a convergent set of rules contained $\mathrm{i}\mathrm{n}\succ_{i}$. We assume that the procedure returns
such an index \dot{i} if it is successful, and returns false otherwise. Actually, we need not scan all the
nodes every time success is invoked; this decision could be made more efficiently, if we introduce
integer variables c_{i} $(i=1, \ldots , |I|)$ for counting the occurrences of the index i in the labels as
above, increasing $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ decreasing them every time the labels are updated.

41

procedure $mkb(E, \mathit{0})$;
begin

$NE:=\{\langle_{S:t}, \emptyset, \emptyset, I\rangle|srightarrow t\in E\}$ where $I=\{1, \ldots , |O|\}$;
$NR:=\emptyset$;
while success$(NE, NR)=\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}$ do

if $NE=\emptyset$ then return(fail)
else

$n:=ch_{oO}se(NE)$;
$NE:=merge$ ($NE\backslash \{n\},$ delete(rewrite({n}, $NR))$);
if $n\neq\langle. , . , \emptyset, \emptyset, \emptyset\rangle$ then

$n:=or\dot{i}ent(n)$;
if $n\neq\langle\ldots, \emptyset, \emptyset, \ldots\rangle$ then

$NE:=merge(NE, delete(rewr\dot{i}te(NR, \{n\})))$;
$NE:=merge(NE, cp(n, NR))$

end;
$NR:=merge(NR, \{n\})$

end
end

end;
return($R[NR$, success $(NE,$ $NR)]$)

end mkb.

Figure 1: A completion procedure for multiple reduction orderings

The procedure $choOSe(NE)$ selects a node from NE . We assume that this selection is fair in
that every node in NE will be eventually selected if mkb does not fail. It may be a heuristically
good strategy to select a node with the “smallest” datum (in a sense, say, measured by its size).
However, do not forget to meet the fairness requirement.

The procedure merge$(N, N’)$ computes the union of N and $N’$. If the optional MERGE oper-
ation is employed, the operation is applied to a suitable pair of nodes of which at least one is
from $N’$.

The procedure delete(N) applies DELETE and optional REMOVE to N and returns the set
of the remaining nodes. Note that REMOVE is also implemented implicitly by the second if
statement.

The procedure $rewr\dot{i}te(N, N’)$ repeatedly applies REWRITE-I and REWRITE-2 (zero or more
times) to $N\cup N’$, rewriting the data of N by the rules of $N’$, until no more rewriting is possible.
It returns the set of nodes “created” in this process. We assume that this process contains
mutation operations in which the labels of original nodes of N are directly modified in order to
make the updated nodes in the same memory location as the original node. This means that
the procedure implicitly executes the assignment such as

$N:=N\backslash$ { $\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}$ nodes} U {updated nodes}.
The procedure $or\dot{i}ent(n)$ repeatedly applies ORIENT (zero or more times) to the node n until

no more application is possible, and returns the resultant node n which is the original object
but whose labels may have been modified.

42

The procedure $cp(n, N)$ applies DEDUCE to $\{n\}\cup N$, and retums a set of all critical nodes
between n and a node from $\{n\}\cup N$.

Note that the assertion made in the beginning of this section together with the fair selection
by choose ensures the correctness of the procedure.

PROPOSITION 4.1 (Correctness) Mkb is a correct MKB completion procedu$7\mathrm{t}$.

4.2 Example

Let us illustrate the completion procedure by a very simple problem. Consider the equational
system consisting of the two equations $(x+y)+Z=x+(y+z)$ and $f(x)+f(y)=f(x+y)$. Let
\succ_{1} and \succ_{2} be the lexicographic path orderings induced by the $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}+\succ f$ and $f\succ+$,
respectively. It is known [1] that if we use \succ_{1} in the standard completion then the procedure
will loop, generating the infinite canonical system

R_{∞} $=\{$ $(_{X+y})+\mathcal{Z}arrow x+(y+Z)$,
$f(x)+f(y)arrow f(x+y)$ $\}$

$\cup\{ f^{n}(x+y)+zarrow f^{n}(x)+(fn(y)+Z)|n=1,2, \ldots\}$,

while the use $\mathrm{o}\mathrm{f}\succ_{2}$ would lead almost immediately to the finite canonical system

$R_{\infty}=\{(X+y)+zarrow x+(y+z), f(x+y)arrow f(x)+f(y)\}$.

Let us apply the mkb procedure to this problem with $O=\{\succ_{1}, \succ_{2}\}$ and $I=\{1,2\}$. The
initial sets of nodes are

$NE=\{$
$\langle(X+y)+\mathcal{Z} : x+(y+Z), \emptyset, \emptyset, \{1,2\}\rangle$ (1)
$\langle f(x)+f(y) : f(X+y), \emptyset, \emptyset, \{1,2\}\rangle$ (2)

and $NR=\emptyset$. We assume that the node (1) is selected by choose. Then by orient the node is
modified to

$\langle(x+y)+z : x+(y+z), \{1,2\}, \emptyset, \emptyset\rangle$ (1)

and a critical node

$\langle(w+X)+(y+Z) : (w+(X+y))+z,\emptyset, \emptyset, \{1,2\}\rangle$ (3)

between itself is created. After (1) is moved $\mathrm{h}\mathrm{o}\mathrm{m}$ NE into NR , we have $NE=\{(2),$(3) $\}$ and
$NR=\{(1’)\}$.

Suppose the node (2) is selected then. It is oriented to

$\langle f(X)+f(y) : f(X+y), \{1\}, \{2\}, \emptyset\rangle$. $(2^{})$

Two critical nodes
$\langle f(x+y)+Z : f(X)+(f(y)+z), \mathrm{o}, \emptyset, \{1\}\rangle$ (4)

$\langle$$f(x+(y+Z))$: $f(x+y)+f(_{Z),\emptyset,\emptyset,\{\}\rangle}2$ (5)

are created between $(1’)$ and (2), and (2) is moved into NR . At this point, we have $NE=$
$\{(3),$(4) $,$(5) $\}$ and $NR=\{(1’), (2’)\}$.

By fairness the nodes (3) and (5) will be eventually selected. To make the story short, let
us suppose that they are selected successively from now. Then by rewrite both are reduced

43

to a node with trivial equation and thus DELETEd. All the intermediate nodes (including the
original nodes), which contain only empty labels, are REMOVEd.

Now we have $NE–\{(4)\}$ and $NR=\{(1’), (2’)\}$. Since the third labels of (1) and (2) are
empty and since the index 2 is not contained in any labels of (4), the success procedure reports
the success of completion by returning 2, and the procedure is finished. This means that the
completion has succeeded under the reduction ordering \succ_{2} , yielding the finite canonical set
$R[NR, 2]$ of rules described before.

Although this simple example shows almost nothing but $mkb’ \mathrm{s}$ ability of simulating parallel
execution of $\mathrm{K}\mathrm{B}$, its effect on performance should be clear if we think of the extension of this
example with more equations on a larger set of function symbols. For example, let O be a
larger set of lexicographic path orderings and I the corresponding set of indices. Nevertheless,
by $or\dot{i}ent$ we can expect to have a node

$\langle(x+y)+Z : X+(y+Z), I, \emptyset, \emptyset\rangle$ $(1^{})$

at almost the same cost as before, because $(x+y)+z$ is greater than $x+(y+z)$ in every
ordering in O and an appropriate implementation of orient could determine and exploit this
fact very quickly. Similarly, we would have a node

$\langle f(x)+f(y) : f(_{X}+y), I_{1}, I_{2}, \emptyset\rangle$ $(2^{})$

where I_{1} and I_{2} , both being subsets of I , correspond to the sets of all the orderings (in O)
containing $+\succ f$ and $f\succ+$, respectively. Then by cp we would have the following critical
nodes:

$\langle f(_{X}+y)+z : f(X)+(f(y)+Z), \emptyset, \emptyset, I_{1}\rangle$ (4)

$\langle f(X+(y+Z)) : f(x+y)+f(_{Z)}, \emptyset, \emptyset, I2\rangle$ (5)

This simulates the creation of critical pairs in all processes $P_{i},\dot{i}\in I_{1}\cup I_{2}$, at virtually the same
cost as the simple example.

4.3 Experiments

We have implemented the mkb procedure in Lisp and made some experiments on sample prob-
lems taken from Steinbach and K\"uhler [12]. Mkb was compared with a standard completion
procedure kb and also with a procedure (named pkb) that simply simulates parallel execution
of kb . Kb is implemented in a framework proposed by $\mathrm{L}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}[10]$ and pkb is implemented on
the multitasking facility of Lucid Common Lisp. The results show that because of the overhead
for node manipulation mkb is slightly slower than pkb when the number of reduction orderings,
n , is relatively small, but when n is large enough, mkb is significantly faster than pkb .

To show how the efficiency depends on n , we present the results on the following problem
(Example 3. 14 of [12]).

$f(0,y)s(_{S}(X))$ $==$ yx

$f(s(X), y)$ $=$ $s(f(_{X}, y))$

$f(f(g(x, y),$ $0),$ $\mathrm{o})$ $=$ $g(x, y)$

$g(0, y)$ $=$ y

$g(s(X), y)$ $=$ $f(g(x, y),$ $\mathrm{o})$

$h(0)$ $=$ $s(0)$

The problem is to complete a system of these equations. (In [12] the problem is to complete a
system of rewrite rules defined by orienting these equations from left to right.) The completion

44

Table 1: Experimental results

n 1 5 10 20 40 120

kb

pkb

mkb

1

1.1

1.2

8.4

7.1

17

9.2

35

13

72

17

99

18

n 1 5 10 20 40 120

kb

pkb

mkb

1

1

1.4

5.8

4.5

13.6

4.5

24

6.6

38

5.5

102

4.1

(a) Execution time (b) The number of $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{S}/\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}$

Table 2: Experimental results for ten problems $(n=40)$

No. 13 14 19 20 21 22 23 29 30 31

pkb

mkb

38

8.4

72

17

70

16

48

8.7

1.6

1.2

45

30

15

6.1

48

8.8

93

8.5

2

1.8

(a) Execution time

No. 13 14 19 20 21 22 23 29 30 31

pkb

mkb

38

3.8

38

5.5

52

6.5

51

12

8.6

3.4

49

62

24

3.3

47

4.4

65

4.7

24

3.8

(b) The number of $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\mathrm{S}/\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}$

succeeds if we specify as a reduction ordering a recursive path ordering induced by a precedence
satisfying $g\succ f\succ s,$ $g\succ \mathrm{O},$ $h\succ s$. The result is the following canonical system of rewrite rules.

$f(0,y)s(s(X))$ $arrowarrow$
yx

$f(s(X), y)$ $arrow$ $s(f(_{X}, y))$

$g(0, y)$ $arrow$ y

$g(s(X),y)$ $arrow$ $f(g(_{X}, y),$ $0)$

$h(0)$ $arrow$ $s(0)$

$f(f(x, \mathrm{o}),$ $\mathrm{o})$ $arrow$ x

The statistics are given in Table 1. We have considered $5!=120$ recursive path orderings
induced by all total precedences on the set $\{f, g, h, s, 0\}$. From them we have randomly selected
$n(=1,5,10,20,40,120)$ distinct orderings except that the total ordering $g\succ f\succ h\succ s\succ 0$

has been always included to ensure success. The table (a) shows the average execution time.
The table (b) is included for evaluating the consumed memory space. It shows the average
number of equations (or nodes for mkb) required in the computation, i.e., the number of initial
equations (nodes) plus the number of equations (nodes) created in the processes. (For pkb , the
number of initial equations is n times greater than those for $kb.$) In both tables the entries for
kb are normalized to 1. We see that mkb is less efficient than pkb when n is less than about 5,
but when n is greater than 10, it is significantly more efficient.

The Table 2 shows the results for other problems. From [12] we selected ten problems which
contained five or more function symbols and were solved with recursive path orderings with
$1\mathrm{e}\mathrm{f}\mathrm{t}_{-}\mathrm{t}\mathrm{o}$ -right status. (The problem number xx denotes Example 3. $\mathrm{x}\mathrm{x}$ of [12].) The number of

45

reduction orderings to consider was fixed to $n=40$. We see that in most problems (except
problem 22) the nuunber of nodes for mkb was less than that of equations for pkb, and that in
all the problems mkb was faster than pkb on average.

5 Conclusion

We have presented a completion procedure MKB for multiple reduction orderings. Basically,
MKB simulates a parallel execution of KB procedures. Formally, MKB is defined in an abstract
framework as an inference system which works on a set of nodes consisting of a pair s : t of
terms associated with three labels to show which processes contain the rule $sarrow t$ (or $tarrow s$)
and which processes contain the equation $srightarrow t$. This makes it possible to simulate multiple KB
inferences in several processes all in a single operation. We have also discussed the soundness,
completeness, and fairness. We have proposed a possible correct implementation and made
some experiments to show that MKB is significantly more efficient than the naive simulation
of parallel execution of KB procedures, when the number of the reduction orderings is large
enough.

Acknowledgment

This work is partially supported by the $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}_{\mathrm{S}}-\mathrm{i}\mathrm{n}$-Aid for Scientific Research, No.04650298, the
Education Ministry of Japan; and also by the donation from Toshiba Corporation.

References

[1] Avenhaus J. and Madlener, K., Term rewriting and equational reasoning, Banerji, R.B.
ed., Formal Techniques in Artificial Intelligence: A Sourcebook, North-Holland, 1-44, 1990.

[2] Bachmair, L., Dershowitz, N., and Hsiang, J., Orderings for equational proofs, Proc. Symp.
on Logic in Computer Science, 346-357, 1986.

[3] Bachmair, L., Canonical Equational Proofs, Birkh\"auser, 1991.

[4] Dershowitz, N., Completion and its applications, Ait-Kaci, H. and Nivat, M. eds., Resolu-
tion of Equations in Algebraic Structures, Vol.2: Rewriting Techniques, Academic Press,
31-85, 1989.

[5] Dershowitz, N. and Jouannaud, J.-P., Rewrite systems, van Leeuwen, J. ed., Handbook of
Theoretical Computer Science, vol. B, North-Holland, 243-320, 1990.

[6] Huet, G. and Oppen, D. C., Equations and rewrite rules: a survey, Book, R. ed., Formal
Language Theory: Perspectives and Open Problems, Academic Press, 349-405, 1980.

[7] Huet, G., A complete proof of correctness of the Knuth and Bendix completion algorithm,
J. Comput. Syst. Sci. 23, 11-21, 1981.

[8] Klop, J.W., Term rewriting systems, Abramsky, S., et al. eds., Handbook of Logic in Com-
puter Science, vol.II, Oxford Univ. Press, 1-116, 1992.

[9] Knuth, D.E. and Bendix, P.B., Simple word problems in universal algebras, Leech, J. ed.,
Computational Problems in Abstract Algebra, Pargamon Press, 263-297, 1970.

46

[10] Lescanne, P., Completion procedures as transition $\mathrm{m}\mathrm{l}\mathrm{e}\mathrm{s}+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}$, Proc. TAPSOFT (vol.
1), Lect. Notes in Comput. Sci. 351, 28-41, 1989.

[11] Plaisted, D. A., Equational reasoning and term rewriting systems, Gabbay, D. M. et al.
eds., Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1, Oxford
Univ. Press, 274-367, 1993.

[12] Steinbach, J. and K\"uhler, U., Check your ordering: termination proofs and open problems,
SEKI report, SR-90-25 (SFB), 1990.

47

