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TRACE FORMULAS IN BOSON FOCK SPACES AND APPLICATIONS

AsSAO ARAI

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

ABsTRACT. Trace formulas for the heat semi-groups of second quantization operators and their

perturbations in the abstract Boson Fock space are given in terms of path (functional) integral

representations. As applications, an inequality of Golden-Thompson type and a classical limit

are derived for the trace of the heat semi-group of a perturbed second quantization operator.
- The abstract results are applied to a model of P(¢)-type in quantum field theory.

1. Introduction

In the previous work [1,2], we introduced (infinite dimensional) Dirac-type operators
acting in the abstract Boson-Fermion Fock space, which, in concrete realizations, describe
supercharges of some models of supersymmetric quantum field theory, and studied their
properties (see also [3]—[9] for further developments and related aspects). In particular, we
derived a formula for their index in terms of a path (functional) integral. From a technical
view-point; however, the conditions assumed in [1,2] to derive the index formula are not
optimal. It is desirable to formulate more optimal conditions in this respect. The present

' paper concerns this problem. ,

In deriving the index formula, trace formulas for the heat semi-groups of second quanti-
zation operators and their perturbations in both the Boson and Fermion Fock spaces play
important roles. Hence, one of the basic tasks to refine the previous result on the index
formula should be to make more elaborate analysis on the trace formulas just mentioned.
A first step of work in this direction has been taken forward in [11], where some techni-
cally improved (possibly most general) results on trace formulas in the abstract Boson Fock
space were obtained. As applications of the trace formulas, one can derive an inequality
of Golden-Thompson type and a classical limit for the trace of the heat semi-group of a
perturbed second quantization operator [11]. We also apply the abstract results to a model
of P(¢)-type in QFT. This kind of results is well known in the case of Schrédinger operators
in finite dimensions (e.g., [24, §9, §10] and references therein ), but, the corresponding re-
sults in the case of Schrodinger-type operators in infinite dimensions, including the case of
perturbed second quantization operators in the abstract Boson Fock space, seems to be lack-
ing in the literature (see, however, [14], a pioneering work in the direction of mathematical
theories of models in quantum field theory (QFT) at finite positive temperatures ).

This work was supported by the Grant-In-Aid 06640188 for science research from the Minisitry of Edu-
cation, Japan.



In this paper, we summarize some results obtained in [11].

I1. Preliminaries

In this section we review some fundamental facts in the abstract Boson Fock space.

2.1. Some definitions

Let H be a real separable Hilbert space with norm || - ||% and {@(f)|f € H} be the
Gaussian random process indexed by H. We denote by (E, B, 1) the underlying probability
space of the process, so that the Borel field B is generated by {¢(f)|f € H} ) and

/ D)y = e IFIBI2 f ey
E

The complex Hilbert space L%(E, dy) is called the Q-space representation of the Boson Fock
space over H [21, §1.3].

Let A be a strictly positive self-adjoint operator acting in H with domain D(A) (i.e., there
exists a constant ¢ > 0 such that [|Af||3, > c||f||3;, f € D(A)). Then, for each s € R, we

can define an inner product (-, -), on D(4°/?) by

(f,9)s = (A°/%f,A°/%g)3, f,g € D(A%/?),

where (-, - )3 denotes the inner product of H (note that, for s < 0, D(4*/?) = H). For
s > 0, D(A®/?) with the inner product (-, -), becomes a Hilbert space. We denote this
Hilbert space by H,. For s < 0, we denote by H, the completion of H in the norm || ||,.
For all s € R, the dual space of H, can be identified with H_, through the bilinear form
—s <>z 0n H—s S Hs such that for all f € H—s ﬂ'H,g € Hs mH, —s < f,g >e= (f’g)'H-
We denote by Z;(H) the ideal of the trace class operators on H. Throughout the present
paper, we assume the following:
Assumption I. For some v9 > 0, A7 s in I; (H).

Let v > v be fixed. Then the embedding mapping of H into H_., is Hilbert-Schmidst.
Hence, by a theorem of Minlos-Sazonov-Gross, we can take

E=H_,
and |

Hf)=-v<¢,f>y, SE€E,feH,.

For a probability measure v on (E, B), we denote by : ¢(f1) - ¢(fn) :» the Wick product
of the random variables ¢(f1),---,¢(fn) (f; € H,7 = 1,---,n) with respect to v [21,
§1.1]. For each n > 1, let I',(H) be the closed subspace ( in L?(E,dp) ) generated by
: ¢(f1) - d(fn) :u, and set Ty(H) = C ( the space of constant functions on E). Then one
has the orthogonal decomposition

L*(E,dp) = @ Tu(H).

n=0

(see [21, §1.1, Theorem 1.6].)



As usual, we denote by dI'(A) the second quantization of A [21, §1.4] and set

In the context of QFT, H, describes the Hamiltonian of the free Boson field with one-particle
Hamiltonian A.

2.2. Imaginary time Green functions

Under Assumption I, e A4 is in T, (H) for all B > 0, since e A4 < B7°C A~ for all s > 0
with C = sup_,(z°¢™") < oco. Using the spectral property of dI'(A) (see [17, §VIIL.10]),
one can easily prove that, for all 3 > 0, e #Ho is in T; (L?(E, dy)) with

1
 det(1 — e=BAY’

Za(B) := Tr e PHo =

where Tr denotes trace and det(1+T') with T being a trace class operator is the determinant
of 1+T ( [19, §XIII.17], [23, Chapt.3]). In the context of QFT, Z4(f) is called the “partition
function” of the free Hamiltonian Hy with the “inverse temperature” 3.

The following estimates are well known (cf. [2], [18, §X.7]): For all n = 1,2,---,

I}‘ﬁ(f)n‘l,lle(E,dp) < Cf,'n-“(HO + l)n/z\I;“Lz(E,du), f € H"I’ € D(H(;L/ZL (21)

where Cy ,, is a constant depending on f and n. Hence, for all ¢ > 0,n = 1,2,---, and
f € H, ¢(f)"e ~tHo is a bounded linear operator on L%(E,dp), which 1mphes that its
adjoint (#(f)"e tHo)* is also bounded. It follows that e *Hog¢(f)"™ is bounded and its
closure is equal to (¢(f) e *Ho)*. For notational convenience, we denote the closure of
e tHop(f)™ by the same symbol. Thus, for z;,-++ ,2, € Cwith0 < Rez; < Rez, <--- <
Re z, < B, and f; € H,7 = 1,--- ,n, we can define the “complex time Green function”
Gn(z1, f1; 225 f25+** § Zn, fn) at th: inverse temperature S8 by

G, (Zlvfl"" Zn,fn)
B Tr (e~z1H0¢(f1)e—(Z2—Z1)Ho¢(f2) . 6_(7'“ —zn_l)H0¢(fn)e_(ﬂ_zn)Ho)
B Za(B) |

For any set {z1,:-:,2z,} with Re z; € [0,8],57 = 1,--- ,n, we define G, (21, f1;*** ; Zn, fn)
by

n(zl) fl' Tty Zny f'n) =G (Za(1)7fa(1)' ** 5 20(n)y fa‘(n))a
if Re z,(1) < Re z5(2) < -+ < Re 2,(n), where o denotes a permutation of (1,2,---,n).
The two-point function Ga(z, f;w,g) can be explicitly computed [14,2]:

Gz(Z, f,'w,g) — (f,(l _ e-—ﬁA)—l (e-ﬁA—{—e(Re (w—2z))(w—2)A + e——e(Re (z—w))(z—w)A) g)% ,

_ f,gG'H, Re Z7Rew€[0aﬁ]’ (22)
where ¢(t) =1 for £ > 0 and ¢(¢) = —1 for ¢ < 0. Moreover, for all n > 1,
Gan-1(21, f15* s 2201, fan-1) = 0,

GZn(Zlafl"" ZZn,on) = Z G2(zi1>fi1;zj17fj1)"'GZ(ziu’fin;zjuafjn),
pairs (23)



where Epms means the sum over all (2n)!/2"n! ways of choosing n distinct pairs {31,751},
<o y{tnyJn} from {1,--- ,2n} with 43 < i3 < -+ < ipji1 < J1,°** yin < Jn-

Remark : Obviously the right hand side (R.H.S.) of (2.2) is defined for all z,w € C
with symmetricity in {z,f} and {w,g}, provided that f,g € NysoD(e*4) . Hence, if

fi € Na>oD(e®4),j = 1,--- ,n, then G,(z1, f1;-** ;2n, fr) can be extended to a function
on C" in time varibles z;,57 = 1,--- ,n.
In what follows, we are concerned with functions G, (t1, fi;-- ;tn, fn) with t; € [0,8],

called the imaginary time Green fucntions (ITGF’s), and their generalizations. By (2.2) we
have z o .

GZ(t’ f; s’ g) = <f7 (1 - e_ﬁA)—l(e(_(ﬂ_'t_al)A + e_lt_slA)g)H ?

f?g E H,t7s E [O’IB]' (2°4)

2.3. Path Integral Representations of the ITGF’s

It was proven in [1,2] that the ITGF’s introduced in the last subsection can be represented
in terms of path (functional) integrals. In this subsection we review this aspect.
We first recall a fundamental result. Let 8 > 0 and

Eg = C([0,8]; E)

be the space of E-valued continuous functions on [0,3]. For each ® € Eg, we denote
the value of ® at ¢t € [0,3] by &, € E. Let F be the Borel field on Eg generated by
®.(f),f € Hy,t € [0,8]. The following theorem is a key to deriving the path integral
representations of the ITGF’s. :

Theorem 2.1 [1,2]. There exists a probability measure vg on (Eg,F) such that {®,(f)|f €
H,,t € [0,0]} is a family of jointly Gaussian random variables on (Eg, F,vg) with covariance

/ ®4(f)®s(g)dvp(®) = (fa (1 — e PA) (e~ (B-lt=eD4 | e—lt—SIA)g)

?
Eg H

s,t €10,8],f,9 € Hy. (2.5)

- Remark: (1) The measure vg is an abstract form of a measure introduced in [14] to
describe finite positive temperature states of Boson field models. The measure vg with
B = +oo (“zero-temperature state”) is discussed in [12].

(2) It follows from (2.4) that, for all f € H,,
[ 1800) = #s(DPs(@) =0,

which, together with the separability of H.,, implies that ®, = ®3, a.e. ®. Hence, if we
denote by L([0,8], E) the space of continuous loops of E with parameter space [0,4], then
we have supprg C L([0,], E). Thus vg can be regarded as a probability measure on the
loop space L([0, 3], E).

(3) The random variable ® — ®,(f) (¢ € [0,8], f € H,) can be extended to all f € H as
an element in Np<ooLP(Eg,v3). We denote it by the same symbol.

By Theorem 2.1 and (2.3)—(2.5), we obtain the following:



Theorem 2.2. Let f; € H,t; € [0,8],5 =1,-++ ,n. Then
Gn(tlafl;"' 3 Tn, fn) = /E Qt1(f1) "'q)in(fn)dyﬂ(Q)‘
B

We can also derive more general trace formulas. For this purpose, we introduce a class
of measurable functions on (E, B).

Definition 2.3. Let H be a self-adjoint operator in L?(E,dy) such that, for all ¢ > 0,
exp(—tH) is in Z;(L?(E, dp)). We say that a measurable function F on (E, B) is in the set
Ty if e *H|F|e *H is in T, (L%(E, du)) for all ¢ > 0.

Theorem 2.4 [1]. Let Fy,--- ,F, € Ig, and 0 < t; <t3:-- <t, < B. Then

Tr (e—tlHoFle—(tz —tl)HoFZ e e—(tn ~tn—1)Hane—(ﬂ—‘ln)Ho)
Za(B) |
_ / Fu(®,) -+ Fu(®s, )dvs(®).
Ep

2.4. A circle action
Let 8 > 0. Since cothz > 0 for all z > 0, we can define, via the functional calculus, a

self-adjoint operator ,
1/2
B(B) := (coth %4) ,

on H, which is strictly positive and bounded with

1< B(8) < yeotn 22,

where A; > 0 is the lowest eigenvalue of A.
Lemma 2.5. The operator B(f) — 1 is in Z;(H).

By Lemma 2..5, B(B) — 1 is Hilbert-Schmidt. It follows from Shale’s theorem ([20],
[21, p.41, Theorem 1.23]) that there exists a probability measure up(z) on (E,B) mutually
absolutely continuous to g such that

. . _ )
/ 4 dpp () = [E BB Gu(¢) = e IBOARS ey
E

and dup(g) = Gpdp with Gg € LP(E,dp) for some p > 1 and GEI € LY E,dupg)) for some
qg > 1.

By Remark (2) after Theorem 2.1, for a.e.® € Eg, we can extend ®; as a function of ¢
to a periodic function on R with period B. It follows that, for each t € R, there exists a
unique linear isometry J, from L?(E,dupg)) into L?(Eg,dvg) such that

J-g]. = 1,

Ji: ¢(f1) - ¢(fr) ‘wB(p) = ¢ ®4(f1) - Pe(fn) s>
. nzl,ijHmJ':L“',n-



It is easy to show that ¢ — J; is strongly continuous and
Jt+ﬂ = Jt, i € R

Moreover, in the same way as in a standard case (e.g., [21, p.34, Theorem 1.17]), we can show
that J; is positivity preserving and extends uniquely to a contraction from L?(E,dupg)) to
L?(Eg,dvg) for each p € [1,00]. By a standard limiting argument, we can show that, for all
F € L*(E,dup)) and t € R,

(J:F)(®) = F(24).

In particular, the mapping ¢t — F(®;) is continuous in L*(Eg, dug).

III. Perturbation of H,

We now consider a perturbation of Hy by the multiplication operator defined by a real-
valued measurable function V on (E,B). For generality, we take the perturbation in the
sense of quadratic forms. We first consider the case where V is bounded from below and
then the case where V is not necessarily bounded from below.

3.1. The case where V 1s bounded from below

In this subsection, we assume the following:
(V.1) V is bounded from below and D(Hy/?*) N D(|V[1/2) is dense in L2(E, dp).

Under this condition, we have the self-adjoint operator
Hy := Hy+V

determined by the quadratic form sum of Hy and V (we denote by B+C the self-adjoint
operator determined by the quadratic form sum g4 p of self-adjoint operators A and B if
qa.p is bounded from below and closed, see, e.g., [17, §VIIL.6]).

Theorem 3.1. Suppose that V satisfies (V.1). Then, for all § > 0, exp(—BHy) is in
T.(L*(E,dp)) and, for all t; € [0,8],0 <ty <ty < --- < t, < B, and F; € Iy, (j =
2,---,n—1),F,F, € L*(E,dp),

Tr (e—hHV Fle—(tz—t1)HV F’2 . e_(tn_tn—l)HV Fne—(ﬁ—tn)Ho)

Z A(B)
- / Fi(®4,) - Fu(®s, )e™ Jo" V@I gy0(8),
Eg

Remark. (1) This theorem is a refinement of [1, Appendix D, Proposition D.3] (see
Theorem 3.5 below). :
(2) Under condition (V.1), we have

|HY*®|| < ||(Hv +¢)'/?9||, ¥ e D(H,*)nD(V[/?),

where c is a constant such that V + ¢ > 0. It follows from this estimate and (2.1) that
&(f) € I, forall f € H.



Theorem 3.1 can be proven by applying the Trotter product formula [16] and limit theo-
rems on trace class operators [13,23] and quadratic forms [15,22].

3.2. The case where V is not necessarily bounded from below

In this case, we introduce a class Sy of self-adjoint operators in L%(E,dp):

Definition 3.2. We say that a self-adjoint operator H is in Sy if the following conditions
(i) and (ii) are satisfied: (i) H is bounded from below ; (ii) there exists a sequence {V,}
of real-valued measurable fucntions on (E, B) satisfying (V.1) such that V,, > V for all n,
Vo, = V a.e. asn — oo and, for all t > 0,

e—tHVn - e—iH

weakly as n — oo.

Remark. (1) It is easy to see that the weak convergence condition on exp(—tHy,) in

Definition 3.2 implies in fact that, for all ¢ > 0, exp(—tHv, ) -> exp(—tH) as n = co.
(2) Let v be the measure vg with 8 = +oco. Assume that V satisfies (V.1). Then, in
the same way as in the proof of Theorem 3.1, we can show that, for all ¢ > 0,

(¥1,e v ¥,) = / Uy (Bo)* Ta(®,)e™ o VEIdy (8), ¥; € L*(E,dp),j=1,2,

oo

which is a standard Feynman-Kac-Nelson (FKN) formula [12,21]. Using this formula, we
can show that, in this case, Gy = {Hv}.

The following proposition shows that, for wide classes of V', &y is not empty.

Proposition 3.3. (i) Suppose that
V, eV € No<p<coa LP(E, dp).

Then H = Hy + V is essentially self-adjoint on C°(Hy) N D(V) and bounded from below
(we denote by H the closure of H). Moreover, Sy = {H}.
(ii) Suppose that, for a constant a > 1, D(H;/z) N D(|V|*/?) is dense in L*(E,dy) and

NH2|)? + | V($)|®()]2Pdu(d) > —c||¥|2, ¥ e D(H;*)n D(|V|*/?),
E

with a constant ¢ > 0. Then &y # 0.

Remark. In Proposition 3.3, we do not need Assumption I for 4 ; as for part (i) (resp.
(ii)), it is sufficient to assume that A is strictly positive (then e™*Ho(¢ > 0) becomes a
hypercontractive semi-group [18, Theorem X.61]) (resp. nonnegative).

In what follows, we assume that Gy # 0. We state the main result of this subsection.
Theorem 3.4. Let H € Gy. Then the following (i) and (ii) hold:
(i) If
/E e~ Jo V(2:)ds 4y, ($) < o0, _ (3.1)



for t > 0, then exp(—tH) is in I;(L*(E,du)) and

T —tH .
Z(t) . /E e” Jo VEIduy(9).

(ii) Let B > 0 be fixed and 0 < § < 3. Suppose that, for all t € [4,0], (3.1) is satisfied.
Then, for all t € [§,0], exp(—tH) is in I;(L*(E,dp)) and

=/ e—ng(é,)dstﬁ(@)_
Eg

Tr e_tHe—(ﬂ_t)HO

ZA(B)

Theorem 3.4 can be generalized as follows.

Theorem 3.5. Let H € Sy and (3.1) holds for all t € (0,8]. Then, for all t € (0,8],
exp(—tH) is in Z;(L*(E,dp)) and, for all t; € [0,8],0 < t; <1, < --- < t, < B, and
Fj € Iu(j =2,---,n—1),F,F, € L>(E,dp),

TI' (e_tlHFl e"(tz—t1)HF2 e e_(tn _‘tn—l)HFne—(ﬂ—tn)Ho)
Za(B)
= / Fl(Q‘tl) e Fn(@t" )6_ ;ﬂ V(‘I’s)dsdyﬂ(é).
Eg

Remark. Theorem 3.5 may be the most general form for trace formulas w.r.t. the heat
semi-group generated by a second quantization operator perturbed by a multiplication op-
erator.

IV. A Golden-Thompson Inequality

By applying Theorem 3.4, we can establish an inequality of Golden-Thompson type for
the partition function Tr e A with H € Gv.

Theorem 4.1. Let 3 >0 and H € Sy. Assume that V satisfies
/ e_'BVd/J.B(ﬁ) < oo. (4.1)
E

Then e PH js in T, (L*(E, dp)) and

Tr e PH
< -BV 4 .
Za(B) ~ /E ° HB®)

Moreover, if
‘/;‘Vld/.tB(ﬂ) < oo

in addition to (4.1), then
Tr e~ PH

ZA(B)

As a Corollary of Theorem 4.1, we can obtain some information about properties of a
limiting operator given as a limit of operators H N) € &y, .

e PleVirss) <



Corollary 4.2. Let V(N =1,2,---) be a real-valued measurable function on (E,B) with

Cp = sup/ e_ﬂVNdyB(ﬁ) < o0.
N>1JE

Let HN) ¢ Gy, . Suppose that there exists a self-adjoint operator H bounded from be-
low such that exp(—BH™)) — exp(—BH) weakly as N — oo. Then, exp(—BH) is in
T,(L*(E,dp)) and
—BH
Tr e < Cs.

Za(B)

V. Classical Limit
For A > 0, we define V) by

VA(¢) = V(VA$), ¢€E.

Let # > 0 be a parameter, which physically means the Planck constant devided by 27, and
let Hy € Gy, /5. We are interested in the limiting behavior of the scaled partition function
Tr e~ B%Hr 35  — 0, which, in concrete realizations, corresponds to the classical limit of the
quantum system whose Hamiltonian is given by AHj5.

5.1. A simpler case
We first consider the case where V obeys the following condition:

(V.2) V is bounded from below and there exists a polynomlal P(z,y) of two real variables
with positive coefficients such that

V(¢) - V(¢ < llo —¢'lleP(ll¢llz, 14'llz), ¢,¢' € E.

Note that (V.2) implies that V is continuous on E and V is polynomially bounded. Using

the fact that
6115 = Z WP, e,

/ 16][Z.du(8) < oo
E

for all 0 < p < oo. Hence, under condition (V.2), it follows that, for all A > 0, D(Ho)ND(Vy)
is dense in L?(E,du); In particular, (V.1) is satisfied with V replaced by Vx/A for all A > 0.
Hence we have

one can show that

.1
Hy = Hy, /5 = H°+i_ivﬁ'

For any constant ¢ > 0, the operator cA~1/? is a continuous bijection from H., to itself.
Hence it extends to a continuous bijection from E to itself. We set

VA(4) =V (V247/%¢), ¢€E.
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Theorem 5.1. Suppose that V satisfies (V.2) and Hy, be as above. Then

Tr e~ ArHx (BA)
. _ _BV
ilil—m Tr e~AhiHo /E © ap- (5-1)

The method of proof of this theorem is similar to that of [10].

5.2. A more general case

We next consider the case where V obeys a more general condition than (V.2). To describe
it, we introduce two bounded operators:

C(Bie) : = \/EB(e), e >0,

oF)= /247

By the functional calculus, we can show that

C(Bse) = C(B)

as € — +0. Since ||C(B;¢) f||n defines a norm equivalent to ||f]||7, there exists a probability
measure fc(g;e) on (E,B) such that

g _ ) fl2 iy/e 7 ’
/Eez¢(f)d#c(ﬁ;e)(¢) = —lIC@fIR /2 [Ee VelB Dy o, f e,y

Similarly there exists a probability measure pc(g) on (E,B) such that

/Eei¢(f)d#0(ﬁ)(¢) _ le® sl _ Lei¢(c(ﬁ)f)d#, fen,

It follows that, for all F € L'(E, dpc(s;)),
[ F/eTBouso(®) = [ Fédcia
and, for all G € L*(FE, duc(g)),

| sc@waus - / G($)dpcys)-
E E

We now consider the case where V satisfies the following condition:

(V.3) There exists a sequence {Vn}n of functions on E obeying condition (V.2) with the
following properties:
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(i) Forallp >0,

Fl(p) = sup / e—pVNdl'l‘C(ﬁ;e) < 0o,
0<e<eq,N>1JE

Fy(p) := sup /E e P duc(g) < oo.

(ii) There exists some g € (1,00) such that -
1\;.1_1)1’100 HVN - VHLq(E’d”’C(ﬁ;E)) =0
uniformly in £ € (0,&o] and

zvlij»noo VN — V”LQ(E,dﬂc(ﬂ)) =0.

We can prove the following theorem.

Theorem 5.2. Suppose that V satisfies (V.3). Then, for allt > 0 and & € (0,¢0/0],
exp(—tHy) is in I, (L*(E, dp)) and (5.1) holds.

VI. Application to a Model in QFT

In this section we apply the results in the preceding sections to a QFT model of P(¢)-type
on a finite volume in the d-dimensional space R¢ (d > 1)(e.g.,[21,14,10]). Let

A= [02/2,0/2] X -+ X [~£a/2,£4/2]

be a rectangle in R? (¢; > 0,5 = 1,--- ,d) and set

. 2w 2w
A" = {p=(P1,--- yPd) = (g—nl,--- ,-f—nd>
1 d

We denote by D! ,;(A) the space of real distributions on A ( regarded as a d-torus ). For
¢ € D! 1(A), we define its Fourier transform é by

nla"'7nd€z}-

é(p) = $(£7)
where

1 4
r) = ——e'P* A:z”f-.

j=1

Let a be a real-valued function on A* such that

a(p) > C(p* + m3)¥?, pe A",
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where C > 0 and my > 0 are constants. Then the set

PP _
2 ) < }

PEA*

H(A) = {¢ € Drcar(A)

becomes a real Hilbert space with the inner product

(6,%)na) = % Z %.

PEA*

In H(A), we define an operator A(A) by

D(A(A)) : = {45 eH(A)| > I—‘ﬂ’&)-(“;()p—)'z < oo}

a(p)d(p), ¢ € D(A(A)).

—

(A(A)g)(p) :

The operator A(A) is self-adjoint and satisfies
A(A) > Cm.

It is easy to see that the spectrum of A(A) is equal to {a(p)lp € A*}. If v > 1, then

Z __}___ < .._:!._ Z ___.___].'__ < 00
ne a(p)v - Cn e (pz +m%)d7/2 .
Hence, for all ¥ > 1, A(A)™7 is in Z;(H(A)).

In what follows, we consider the case where the Hilbert space H and the self-adjoint
operator A in the abstract theory are realized as H(A) and A(A), respectively. We remark
that the case a(p) = (p? + m2)!/? (independently of d) gives the standard framework for a
neutral scalar QFT on the space-time A X R (hence, for d > 2, the present model differs
from the standard one).

We fix a constant v > 1 and set E = H(A)_,. For N =1,2,---, we define

N

dn(z) =Y d(f;)fo(z), z €A, ¢ €E,

p

N
where 300 = D jpi|<2n i/t lpal<2mN/e, - NOte that

[ 6= 61—+ 0

as N — co.
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Let g € LY(A),g > 0 (1 < ¢ < 2). Then we can show that, forallp > 1and y =1,2,---,

N—oo

lim /A : on(2) 1, g(z)dz dzef/l; : d(z) :, g(z)de (6.1)

exists in LP(E,du) [10, Appendix].
Let P be a polynomial of the form P(X) = Z§Z1 ¢;X?, X € R, with ¢z, > 0,¢; ER,j =
1,---,2n — 1, and set

Va(g) = / . P(¢n(2)) 14 9(2)de, (6.2)
V() = /  P(8(2)) 14 g(2)de. (6.3)

Then, by (6.1), we have for all p > 1
VN = Vlltr(B,ap) — 0

as N — co. Moreover, in the same way as in the case of the standard P(4); model [21], we
can show that, for all¢ >0and N > 1,

et eV ¢ LY(E,dp).

(cf. also [10, §III].) Hence, applying a general theorem [18, p.261, Theorem X.58], we see
that
H(VN) = Hy + VN

and

H := H(] + 1%
are essentially self-adjoint on C*°(Hy) N D(Vn) and C*°(Hy) N D(V), respectively, and

bounded from below. Moreover, H(Vy) converges to H in norm-resolvent sense as N — co.
The operator H(Vy) (resp. H) desribes a Hamiltonian with (resp. without) momentum

cutoff.
The potential V given by (6.3) satisfies the assumption of Proposition 3.3(i). Hence we

have the following fact.
Lemma 6.1. Let V be as in (6.3). Then Gy = {H}.

6.1. Bounds for’ the partition function of H
We now apply Theorem 4.1 to obtain bounds for the partition function Tr e PH of H.
Theorem 6.2. For all 8 > 0, e‘ﬂﬁ_ is in Z:(L*(E,dy)) and

Tr e—BH
“BlpgVdupp) « ——° < / -BV4
€ > > € HB .
Z 4(0)(B) E ®)

6.2. Classical limait
As for classical limit of the present model, we first consider the case of the cutoff Hamil-
tonian H(Vn).
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Lemma 6.3. Let Vn be given by (6.2). Then, for all N > 1, Vy satisfies (V.2).

By Lemma 6.3, we can apply Theorem 5.1 to obtain the following result. Let Hy s be
H(Vy) with Vi replaced by (Vn)z/A.

Theorem 6.4. Forall 3 >0and N > 1,

1i Tr e ArHN _ —ﬂVﬁ’““d
im0 Tr e—PiHo Ee H-

Finally we consider the classical limit for Tr e #H,

Theorem 6.5. Let Hy be H with V replaced by Vi/h. Suppose that

Zi<oo.

en. alp)
Then, for all 8 > 0,

]j_m TI' e_’BﬁHh _ _ﬂvﬂA(A)d
0 Tr e—AiHo — [, ¢ H-
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