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It has been a little more than a decade since this subject, as it is un-

derstood today, came into being with the seminal paper of Hudson and

Parthasarathy [1]. Since then the subject has seen rapid development and

many of these can be found in the monographs of Parthasarathy [2] and

Meyer [3]. Here I want to discuss some of the more recent developments,

many of which took place in Indian Statistial Institute, Delhi.

The first section contains notations and a collection of some basic re-

sults, the proofs of which can be found in the two monographs mentioned

above. The second section deals with quantum stochastic differential equa-

tions (q.s.d.e.) with unbounded operator coefficients and Feller condition.

Section 3 is devoted to quantum martingales and their representations while

in section 4 we discuss stoptimes and the strong Markov property of the Fock

space w.r.t. finite stop times. Finally in section 5 we discuss some applica-

tions.

\dagger This lecture was given when the author was visiting the Research Institute in Mathematical

Sciences, Kyoto University. The author gratefully acknowledges the warm hospitality and

excellent work environment of the Institute.

数理解析研究所講究録
923巻 1995年 206-229 206



1 Notations and Preliminaries

We shall work exclusively in the bosonic (symmetric) Fock space and shall

give a few background results, referring the reader to [2] and [3] for the details.

Let $h$ be a complex separable Hilbert space, $\Gamma(h)$ be the symmetric Fock

space over $h$ , spanned by the total set of ‘exponential vectors’

$e(f)=1 \oplus f\oplus\cdots\oplus\frac{f^{(n)}}{\sqrt{n!}}\oplus\cdots$ , (1)

where $f\in h$ and $f^{(n)}$ is the $n$-fold tensor product of $f$ . In most of our

discussions, $h$ will be $L^{2}(R_{+}, \mathcal{K})$ with $\mathcal{K}$ another separable Hilbert space,

the dimension of which will signify the noise degree of freedom. Let $\mathcal{H}_{0}$

(a separable Hilbert space) be the initial space or the system space. The

$\mathcal{H}=\mathcal{H}_{0}\otimes\Gamma(h)$ is the Hilbert space in which we shall work.

Let $\{e_{n}\}_{n}^{N\mathrm{d}\mathrm{i}\mathcal{K}}=\equiv 1\mathrm{m}$ denote a complete orthonormal system of $\mathcal{K}$ . Then the

basic quantum processes in $\mathcal{H}$ are

$\Lambda_{j}^{k}(t)e(f)$ $=$ $-i \frac{d}{d\epsilon}e(e^{i_{\mathcal{E}}\chi\otimes}[0,t]|e\rangle\langle e_{k}|f\mathrm{J})|_{\epsilon=0},$ $(1\leq j, k\leq N)\sim$

$A_{j}(t)e(f)$ $=$ $\int_{0}^{t}d_{S}fj(s)e(f)\equiv\int_{0}^{t}d_{S}\langle ej, f(S)\rangle e(f)$ ,

$A_{j}^{+}(t)e(f)$ $=$ $\frac{d}{d\epsilon}e(f+\epsilon\chi[0,t]ej)|_{\Xi=}0$ ,

(2)

$r$

where $\chi_{[0,t]}$ is looked upon in the first expression as the multiplication oper-

ator (projection) by the indicator function of $[0, t]$ while in the last it is the

indicator function itself. If we set

$Q_{j}(t)=A_{j}(t)+A_{j}^{+}(t)$ and $P_{j}(t)=-i[A_{j}(t)-A_{j(t)}^{+}]$ ,

then these define two sets of independent countable families of Brownian

motions, but $[P_{j}(t), Qk(S)]=-2i$ ( $t$ A s). Thus there are two sets of non-

commuting Brownian motions in Fock space. Similarly, the selfadjoint oper-

ators: $\Lambda_{j}^{j}(t)+\sqrt{p}Q_{j}(t)+\ell t$ define a family of quantum Poisson processes.
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Let us write $h_{[a,b]}=L^{2}([a, b], \mathcal{K}),$ $h_{t]}=h_{[0,t]}$ and $h_{[t}=h_{[t,\infty)}$ and note

that the natural continuous tensor product structure of $\Gamma(h),$ $\mathrm{v}\mathrm{i}\mathrm{z}$ . $\Gamma(h)=$

$\Gamma(h_{t]})\otimes\Gamma(h_{[t})$ allows one to define an operator family $\{L(t)\}$ to be adapted if

$L(t)$ is of the form $L_{0}(t)\otimes I[t$ for every $t\geq 0$ , where $L_{0}(t)$ is a linear operator in

$\mathcal{H}_{t]}\equiv \mathcal{H}_{0}\otimes\Gamma(h_{t]})$ and $I_{[t}$ is the idenitty on $\Gamma(h_{[t})$ . The quantum $Ito$ formulae
are glven as :

$dA_{j}dA_{k}^{+}$ $=$ $\delta_{jk}dt,$ $dA_{j}dA_{k}=dA_{j}^{+}dA_{k}^{+}=0$,

$d\Lambda_{j}^{k}dA_{l}^{+}$ $=$ $\delta_{\ell k}dA^{+}j’ dA_{l}d\Lambda_{k}j=\delta_{\ell k}dA_{j}$ ,

$d\Lambda_{j}^{k}d\Lambda_{m}^{l}$ $=$ $\delta_{km}d\Lambda_{j}\ell,$ $d\Lambda_{j}kdA_{\ell}=dA_{l}^{+}d\Lambda_{k}^{j}=0$ .

(3)

$r$

An adapted process $\{L(t)\}$ is integrable w.r.t. the basic quantum pro-

cesses if it is square-integrable $(D, \mathcal{E}(M))$ i.e. if $\int_{0}^{t}||L(S)ue(f)||2ds<\infty$ for

every $t\geq 0,$ $u\in D$ , a suitable dense subset of $\mathcal{H}_{0}$ and $f\in M$ , a dense subset

of $h$ such that $D\otimes \mathcal{E}(M)\subseteq \mathrm{D}\mathrm{o}\mathrm{m}(L\mathrm{o}(t))$ . Here by $\mathcal{E}(M)$ we mean the linear

span of $e(f),$ $f\in M$ . One has the estimates,

$|| \int_{0}^{t}L(S)dA_{j}(S)ue(f)||$ $\leq$ $\int_{0}^{t}|f_{j}(S)|||L(S)ue(f)||ds$

$|| \int_{0}^{t}L(S)dA^{+}j(s)ue(f)||\sim$

and

$|| \int_{0}^{t}L(S)d\Lambda^{k}j(s)ue(f)||$

,

$\leq$ $C(f, t)[ \int^{t}0||L(S)ue(f)||2dS]1/2$ . (4)

$r$

The above estimates, in fact show that the integral w.r.t. $A_{j}(t)$ -process

is defined whenever the $\mathrm{R}.\mathrm{H}$ .S. of the estimate in (4) is finite and that can

happen in circumstances more general than the square integrability require-

ment.

The simplest q.s.d.e. that one can solve is the following

$X(t)=X_{0}+ \int_{0}^{t}X(s)[F_{k}jd\Lambda^{k}(js)+E_{j}dA_{j}^{+}(S)+G_{j}dA_{j(S)}+Nds]$ , (5)
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where $X_{0,kj}F^{\dot{J}},$$E,$ $G_{j(}1\leq j,$ $k\leq\dim \mathcal{K}$) and $N$ are constant bounded opera-

tors in $\mathcal{H}_{0}$ , and we have used the summation convention. In the case when

$\dim \mathcal{K}=\infty$ , one needs a further condition, $\mathrm{v}\mathrm{i}\mathrm{z}$ . $\sum_{J}|’|F_{k}^{j}u||^{2},$ $\sum_{j}||E_{j}u||2\leq$

$C_{k}||u||^{2}\forall u\in \mathcal{H}_{0}$ with some family of positive constants $C_{k}$ . These issues

were studied in [4]. In usual quantum mechanics one is interested in the

unitarity of the evolution group and similarly here a natural question would

be: under what conditions on the coefficient operators is the solution $X$ of

(5) unitary and what are its properties. The answer is that the solution $U_{t}$

of (5) with the initial value $X_{0}=I$ is unitary iff its coefficients satisfy:

$F_{k}^{j}$ $=$ $W_{k}^{j}-\delta jk$ where $W\equiv((W_{k}^{j}))$ is unitary on $\mathcal{H}_{0}\otimes \mathcal{K}$ ,

$G_{j}$ $=$ $-E_{k}^{*}W_{j}^{k}$ ,

$N$ $=$ $- \frac{1}{2}E_{k}^{*}E_{k}+iH$ where His bounded selfadjoint operator in $\mathcal{H}_{0}$ .

$\}$

(6)

It is useful to replace (5) by a closely related one:

$U(s, t)=I+ \int_{\theta}^{t}U(s, \tau)[Fjd\Lambda_{j}^{k}(k)\tau+\cdots+Nd\tau]$ . (5)

Then one finds that (i) $U(s, t)$ for $s\leq t$ is unitary iff the coefficients satisfy

(6) as in the case of (5), (ii) $\{U(s, t)\}$ is an evolution, i.e. $U(r, s)U(s, t)=$

$U(r, t)$ , $r\leq s\leq t$ ; $U(s, s)=I.$ (iii) $U(0, t)=U_{t},$ $(\mathrm{i}\mathrm{v})U(s, t)$ is time-

homogeneous, i.e. depends only on $(t-S)$ , iff all the coefficients except $N$

are zero, and (v) the expectation operator $P(s, t)$ defined as $\langle u, P(s, t)v\rangle\equiv$

$\langle ue(0), U(S, t)ve(0)\rangle$ is time-homogeneous, in fact $P(s, t)\equiv P_{t-S}=e^{N(t)}-s$ .

Thus $\{P_{t}\}_{t\geq 0}$ forms a norm-continuous semigroup on $\mathcal{H}$ with bounded gener-

ator $N$ . Obviously the situation becomes more complicated if the coefficients

still formally satisfy (6) but are unbounded. We shall discuss this in the next

section.

A quantum stochastic process in Fock space $\mathcal{H}$ is a family of maps $\{j_{t}\}_{t\geq 0}$ :

$Aarrow B(\mathcal{H})$ , where $A$ is a $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}*$-subalgebra of $B(\mathcal{H}_{0})$ , satisfying :
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(i) $\{j_{t}(x)\}_{t}\geq 0$ is an adapted family V $x\in A$ ,

(ii) $j_{t}$ is $\mathrm{a}*$-homomorphi$s\mathrm{m}$ from $A$ into $B(\mathcal{H})$ , i.e. $j_{t}(x^{*})=j_{t}(x)^{*},$ $j_{t}(xy)=$

$j_{t}(x)jt(y)\forall x,$ $y\in A,$ $t\geq 0$ .

It is said to be conservative if $j_{t}(I)=I\forall t$ and a quantum stochastic flow
(q.s.f.) if it satisfies furthermore the q.s.d.e.

$j_{t}(x)=x+ \int_{0}[j_{s}(\theta^{j}(kX))d\Lambda_{j}k(S)+j_{s}(\theta_{j}^{0}(X))dA_{j}+(S)+j_{s}(\theta^{j}(0)X)dAj+jSt(\theta_{0}0(x))ds]$

(7)

where the structure maps $\theta_{\beta}^{\alpha}(0\leq\alpha, \beta\leq\dim \mathcal{K})$ are linear operators on $A$

satisfying for $x,$ $y\in A$

$\theta_{\beta}^{\alpha}(x^{*})=\theta_{\alpha}\beta(_{X})^{*},$ $\theta_{\beta}^{\alpha}(xy)=x\theta_{\beta}\alpha(y)+\theta_{\beta}\alpha(X)y+\theta^{\alpha}(kx)\theta^{k}\beta(y)$ . (8)

It is $s$hown in [2] and [5] that for $\dim \mathcal{K}<\infty$ if $\theta_{\beta}^{\alpha}’ \mathrm{s}$ are norm-bounded

and satisfy (8), then equation (7) has a unique solution $j_{t}(x)$ which defines a

q.s.f. such that it is contractive: $||j_{t}(x)||\leq||x||$ and $R_{+}\cross A\ni(s, x)arrow j_{s}(x)$

is strongly jointly continuous on $\mathcal{H}$ w.r.t. the strong operator topology on

$A\subseteq B(\mathcal{H}_{0})$ . Furthermore, it is conservative iff $\theta_{\beta}^{\alpha}(I)=0$ for all $\alpha,$
$\beta$ . Most

of these results were extended in [4] to the case $\dim \mathcal{K}=\infty$ subject to an

additional $s$ummability condition on $\theta_{\beta}^{\alpha}$ ’s. As in the preceding paragraph

one can pose the question: what happens if $\theta_{\beta}^{\alpha}$ ’s are not norm-bounded on

$A$ . Not much is known in this area, but some results can be found in $[6, 14]$ .

I shall end this section by giving some applications, $\mathrm{v}\mathrm{i}\mathrm{z}$ . the description

of classical Markov chains as q.s.f. in Fock space with the degree of freedom

equaling the cardinality of the state space. In this context, the following

lemma is instructive ([2]).

Lemma 1 (for simplicity $\dim \mathcal{K}<\infty$ ) : Let $j_{t}$ be a q.s.f. satisfying (7)

with bounded structure maps $\theta_{\beta}^{\alpha}$ obeying (8). Assume furthermore that $A$
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is abelian. Then {$j_{s}(x)|0\leq s\leq\infty,$ $x\in A_{h}$ , the self-adjoint part of $A$ } is a

classical process; in fact $[j_{s}(x),j_{t(y)}]=0\forall s,$ $t\geq 0$ and $x,$ $y\in A$ .

This lemma allows us to embed classical stochastic processes in the quan-

tum receptacle and this we briefly describe for Markov chain [26]. Let $\mathcal{X}$ be

the state space of a countably infinite continuous time Markov porocess and

let $p_{t}(x, y)(x, y\in \mathcal{X})$ be the (stationary) transition probabilities such that

$\ell(x, y)\equiv\frac{d}{dt}p_{t}(x, y)|_{t=}0$ satisfy the Markov conditions:

$\ell(x, y)\geq 0$ for $x\neq y$ and
$\sum_{y\in \mathcal{X}}l(x, y)=0$

. (9)

It is convenient (but not necessary) to put a group structure $G$ on $\mathcal{X},$ $G$ acting

on $\mathcal{X}$ by left translation and let $\mu$ be the counting measure on $\mathcal{X}$ .

Set $m_{x}(y)=\sqrt{l(y,xy)}$ if $x\neq id$ of $G$ and $=0$ otherwise, and write for

$\phi\in L_{\infty}(\mathcal{X}, \mu)\equiv A$:

$\theta_{0}^{x}(\phi)(y)$ $=$ Multiplication operator by $m_{x}(y)[\phi(Xy)-\emptyset(y)]$ ,

$\theta_{x}^{0}(\emptyset)(y)$ $=$ Multiplication operator by $\overline{m_{x}(y)}[\emptyset(Xy)-\emptyset(y)]$ ,

$\theta_{x}^{x},(\phi)(y)$ $=$ Multiplication operator by $[\phi(xy)-\emptyset(y)]\delta_{x}x’$
’

$\theta_{0}^{0}(\phi)(y)$ $=$ Multiplication operator by $\sum_{x\in \mathcal{X}}|m_{x}(y)|2[\phi(xy)-\emptyset(y)]$
.

Then the q.s.d.e. (7) with the above structure maps on the (abelian)
$*$ -algerba $A$ has a $\mathrm{q}.\mathrm{s}.\mathrm{f}$. $j_{t}(\phi)$ as its unique solution if $\sup_{x\in \mathcal{X}}|l(X, x)|<\infty$ . This

is because under this condition, the abovementioned structure maps are norm

bounded and we can apply the theory discussed above ([5], [2]). Furthermore

the expectation semigroup $T_{t}(\phi)\equiv Ej_{t}(\phi)\equiv\langle\cdot\otimes e(\mathrm{O}), j_{t}(\phi)\cdot\otimes e(\mathrm{O})\rangle$ has

the bounded generator $\theta_{0}^{0}$ given by
$\theta_{0}^{0}(\emptyset)(y)=\sum_{\mathcal{X}\ni x\neq id}p(y, xy)[\phi(Xy)-\phi(y)]=$

$\sum_{x\neq y}l(y, x)\phi(x)-\{\sum_{z\neq y}x(y, z)\}\phi(y)=\sum_{x\in \mathcal{X}}p(y, x)\phi(X)$
, the action is exactly the

same as that for the Markov chain.
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2 Q.S.D.E. with unbounded operator coefficients

Most of what I shall describe here is part of the thesis of A. Mohari in the

Indian Statistical Institute, Delhi, and of publications arising from it $[7,8]$ .

For simplicity, we take $\dim \mathcal{K}=1$ and drop the $d\Lambda$ term from $\mathrm{q}.\mathrm{s}$ .d.e.’s :

$V(t)=I+ \int_{0}^{t}V(s)[EdA^{+}(s)-E^{*}dA(s)-\frac{1}{2}E^{*}Ed_{S}]$ . (10)

As can be easily seen, the operator coefficients in (10) satisfy formally the

unitarity condition (6). The major problem, however, is that Dom $(E)\cap$

Dom $(E^{*})$ may be too small, even trivial in which case the equation (10)

has hardly any content (see [9] for counter-example). To proceed further, we

make

Assumption $\mathrm{A}$ : Let $E$ be closed and assume furthermore that there exists

a dense subset $D\subset$ Dom $(E)\cap$ Dom $(E^{*})$ and a sequence of bounded

operators $\{E_{n}\}$ in $\mathcal{H}_{0}$ such that $E_{n},$ $E_{n}^{*}$ and $E_{n}^{*}E_{n}$ converge strongly on $D$ to

$E,$ $E^{*}$ and $E^{*}E$ respectively.

Assumption $\mathrm{B}$ : $D$ is stable under the action of $T_{t}$ , (the expectation semi-

group of $V(t)$ with $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}-\frac{1}{2}E^{*}E$).

The basic result is contained in the next theorem.

Theorem 2 : (i) Assume (A) and (B). Then (10) admits a unique adapted

contractive solution $V$ .

(ii) If furthermore, $E$ satisfies the Feller Condition (F) : For some $\lambda>0$

(and hence for all $\lambda>0$ ) the Feller set

$\beta_{\lambda}\equiv\{x\in B(\mathcal{H}0),$ $0\leq x\leq 1|(v, \theta_{0}^{0}(x)u\rangle\equiv\langle Ev, xEu\rangle$

$- \frac{1}{2}(E^{*}Ev,$ $xu \rangle-\frac{1}{2}\langle_{X^{*}}v, E*Eu\rangle=\lambda\langle v, xu\rangle\forall u,$ $v\in D\}=\{0\}$
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, then $V$ is unitary.

Sketch of proof: Consider the equation

$V_{n}(t)=I+ \int_{0}^{t}V_{n}(s)[EdA+-E_{n}*dA-\frac{1}{2}E_{n}*Ed_{S}]nn$ ’ (11)

which by the results in section 1 admits a unique adapted unitary solution

$V_{n}$ in $\mathcal{H}$ . Let $u\in D,$ $0\leq t_{1}<t_{2}<T<\infty$ , and $f\in C_{0}(0, \infty)\subseteq h$ . Then

$||[V_{n}(t_{2})-Vn(t_{1})]ue(f)||^{2} \leq C\int_{t_{1}}^{t_{2}}\{||E_{n}u||2+|f(S)|2||E^{*}nu||^{2}+\frac{1}{4}||E_{n}*E_{n}u||2\}ds$

and hence by assumption $A$ we have that for every $\psi\in \mathcal{H}\{\langle\psi, V_{n}(t)ue(f)\rangle\}$

is a bounded equicontinuous family. Thus we can extract a subsequence

converging uniformly on $[0, T]$ . Using the separability of $\mathcal{H}$ , a diagonal trick,

the uniform boundedness of $V_{n}(t)$ and the totality of vectors of the form $ue(f)$ ,

one can $s$how that $V_{n}(t)$ converges weakly (by relabelling the subsequence)

to an adapted contraction $V(t)$ uniformly on $[0, T]$ . From the properties (2)

of the basic processes and (11), we have for $u,$ $v\in D$ and $f,$ $g$ as before,

$\langle ve(g), V_{n}(t)ue(f)\rangle=\langle ve(g), ue(f)\rangle$

$+ \int_{0}^{t}\langle ve(g), V_{n}(s)[Enu\overline{g}(s)-E^{*}ufn(S)-\frac{1}{2}E*E_{n}un]e(f)\rangle d_{S}$ . (12)

Choosing an appropriate subsequence, we see that the LHS of (12) con-

verges to $\langle ve(g), V(t)ue(t)\rangle$ whereas by assumption (A), weak convergence

of $V_{n}(s)$ to $V(s)$ uniformly in $[0, T]$ implies that the RHS of (12) converges

to $\int_{0}^{t}\langle ve(g), V(S)[Eu\overline{g}(S)-E*uf(S)-\frac{1}{2}E^{*}Eu]e(f)\rangle ds$ . This prove$s$ that $V(t)$

is a solution of (10).

Let $V’(t)$ be another solution of (10) and set $X(t)=V(t)-V’(t)$ so that

$||X(t)||\leq 2,$ $X(0)=0$ and

$X(t)= \int_{0}^{t}X(S)[EdA^{+}(S)-E*dA(S)-\frac{1}{2}E^{*}Ed_{S]}$ . (13)
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Fix $f,$ $g\in C_{0}(\mathrm{o}, \infty)$ and define a bounded operator $M(t)$ on $\mathcal{H}_{0}$ by $\langle u, M(t)v\rangle=$

$\langle ue(f), X(t)ve(g)\rangle$ for $u,$ $v\in D$ . Then by (13) one has

$\langle u, M(t)v\rangle=\int_{0}^{t}\langle u, M(S)[E\overline{f}(S)-E*g(S)-\frac{1}{2}E*E]v\rangle ds$ . (14)

Replacing $f$ and $g$ by $\alpha f$ and $\beta g(\alpha, \beta\in \mathbb{C})$ respectively, differentiating $m$

times w.r.t. $\alpha$ and $n$ times w.r.t. $\beta$ and equating coefficients of both sides,

we get
$\langle u, M(t;m, n)v\rangle\equiv\langle uf^{\otimes m}, X(t)vg^{\otimes n}\rangle$

$= \int_{0}^{t}\{\langle u, M(S;m-1, n)Ev\rangle\overline{f}(s)-\langle u, M(s;m, n-1)E^{*}v\rangle g(s)$

$- \frac{1}{2}\langle u, M(s;m, n)E^{*}Ev\rangle\}dS$ . (15)

For $m=n=0$, this leads to $\frac{dM(t;0,0)v}{dt}=-\frac{1}{2}M(t;0, \mathrm{o})E*Ev\forall v\in D$ . Thus

using (B), $\frac{d}{ds}M(s;0,0)\tau t-sv=0$ for all $0\leq s\leq T$ . Since $M(\mathrm{O};0,0)=0$ this

implies that $M(t;^{\mathrm{o},\mathrm{o}})=0$ for $0\leq t\leq T$ . Now by induction let $M(t;k, p)=0$

for $k+\ell\leq n$ and consider $k,$ $l$ such that $k+p=n+1$ . Then by (15),

$\frac{M}{dt}(t;k, \ell)v=-\frac{1}{2}M(t;k, \ell)E*Ev$ with $M(\mathrm{O};k, p)=0$ and just as above one

concludes that $M(t;k,$ $p_{)}=0\forall t$ and all $k,$ $p$ which implies $X(t)=0$ or the

uniqueness of the solution of (10).

Let $\mathrm{Y}(t)=I-V(t)*V(t)$ and $Y_{\lambda}= \int_{0}^{\infty}e^{-\lambda}t\mathrm{Y}(t)dt,$ $\lambda>0$ . Then by the

strong continuity of $V(t)$ in $B(\mathcal{H})$ and since $||\mathrm{Y}(t)||\leq 2$ , it is clear that $\mathrm{Y}_{\lambda}$

is well-defined as a strong Riemann integral and that $||\mathrm{Y}_{\lambda}||\leq 2/\lambda$ and since

$Y(t)\geq 0$ , one also has $Y_{\lambda}\geq 0$ . Since $\mathrm{Y}(\mathrm{O})=0$ , by the quantum Ito formula

(3) one arrives at

$\langle ve(g), Y(t)ue(f)\rangle=\int_{0}^{t}\langle ve(g),$ $\{\mathrm{Y}(s)[E\overline{g}(S)-E^{*}f(s)+G]$

$+[E^{*}f(S)-E\overline{g}(S)+G]\mathrm{Y}(s)+E^{*}\mathrm{Y}(s)E\}ue(f)\rangle ds$, (16)
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where we have written $G$ for $- \frac{1}{2}E^{*}E$ . As before, going down to the finite

particle vector$s$ and considering the diagonal terms only, we have

$\langle vg^{\otimes m}, \mathrm{Y}(s)uf\otimes m\rangle=\int_{0}^{t}\langle vg^{\otimes m}, \{\mathrm{Y}(S)G+GY(s)+E^{*}Y(S)E\}uf^{\otimes}m\rangle ds$. (17)

Since $\mathrm{Y}(t)\geq 0$ , there exist $s$ at least one $m$ such that $Y(t)uf\otimes m\neq 0$ for some

$f\in M$ and $u\in D$ . Then for such $m,$ $f,$ $u$ one has by integrating by parts and

using (17),

$\langle v, B_{\lambda}v\rangle\equiv\int_{0}^{\infty}e^{-\lambda t}\langle ug^{\otimes m}, \mathrm{Y}(t)uf^{\otimes m}\rangle dt=-\frac{1}{\lambda}e^{-\lambda t}\langle vg, \mathrm{Y}\otimes m(t)uf\otimes m\rangle|_{t=0}^{\infty}+$

$\lambda^{-1}\int_{0}^{\infty}e^{-\lambda}dt\mathrm{f}\langle vg^{\otimes}, Ym(tt)Guf^{\otimes}m\rangle+\langle Gvg, Y\otimes m(t)uf^{\otimes}m\rangle+\langle Evg^{\otimes}, \mathrm{Y}(mt)Euf^{\otimes m}\rangle\}$

$=\lambda^{-1}\{\langle v, B_{\lambda}Gu\rangle+\langle Gv, B\lambda v)+\langle Ev, B_{\lambda}Eu\rangle\}$ . (18)

Now, if condition (F) is satisfied, i.e. if $\beta_{\lambda}=\{0\}$ then it follows from (18) that

$B_{\lambda}=0$ which by the uniqueness of the Laplace transform implies in particular

that $\langle uf^{\otimes}m, \mathrm{Y}(t)uf\otimes m\rangle=0$ . Since $Y(t)\geq 0$ this means that $\mathrm{Y}(t)uf\otimes m=0$

which is a contradiction. Therefore $V$ is an isometry.

For proving the coisometry of $V(t)$ we use the reflection map $[7,9]$ . On $h$

define a selfadjoint unitary map $\rho_{T}$ (reflection about $T\geq 0$ ) by $(\rho_{T}f)(t)=$

$f(T-t)$ if $t\leq T$ $\mathrm{a}\mathrm{n}\mathrm{d}--f(t)$ if $t>T$ , and let $R_{T}$ be its second quantization

to $\Gamma(h)$ . Set $\tilde{V}_{n}(s, t)\equiv R_{t}V_{n}(t-S)*R_{t}$ and then one can compute the q.s.d.e.

$s$atisfied by $\tilde{V}_{n}$ w.r.t. $t$ as

$\tilde{V}_{n}(s, t)=I+\int_{l}^{t}\tilde{V}_{n}(s, \tau)[E_{n}^{*}dA(\mathcal{T})-E_{n}dA+(\tau)-\frac{1}{2}E*E_{n}d_{\mathcal{T}]}n$. (19)

We can now proceed as in the first part of this proof and see that $\tilde{V}_{n}(s, t)$ (or

possibly a $s$ubsequence of this) converges weakly to an adapted contraction,

say $\tilde{V}(s, t)$ . As before one can obtain the q.s.d.e. satisfied by $\tilde{V}(t)\equiv\tilde{V}(0, t)$
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as :

$\tilde{V}(t)=I+\int_{0}^{t}\tilde{V}(S)[E^{*}dA(s)-EdA^{\dagger}(s)-\frac{1}{2}E*Eds]$ , (20)

which is very similar to the equation (10) with $E$ replaced $\mathrm{b}\mathrm{y}-E$ . This means

that the Feller set $\tilde{\beta}_{\lambda}$ for the reflected problem is the $s$ame as $\beta_{\lambda}$ , the original

one. This, by the last paragraph, implies the isometry of $\tilde{V}(t)$ . Finally the

definition of $\tilde{V}$ and the unitarity of $R_{t}$ show$s$ that thi $s$ means the coisometry

of $V(t)$ . $\blacksquare$

Remark 3 : (i) Classical birth and death processes can be described in the

framework of theorem 2, see e.g. [10]. More general results can be derived

when the noise is classical [11].

(ii) As can be seen, the Feller set $\beta_{\lambda}$ plays an important role in the anal-

ysis. Many examples are known in which $\beta_{\lambda}$ is not trivial and therefore the

solutions of (10) even when they exist are not unitary [12]. It is clear that if

$\beta_{\lambda}\neq\{0\}$ , then $P_{t}(I)=EV(t)^{*}V(t)\neq I$ . Then an important question arises:

Can one extend the semigroup $P_{t}$ to a conservative one? Some answers to

thi $s$ can be found in [13].

(iii) The difficulty in $s$atisfying hypothesis (A) in general should be clear.

However if $E$ is normal (though unbounded) then (A) can be easily satisfied

by taking $E_{n}=E(E^{*}E+n)^{-1}$ so that $E_{n}^{*}=\overline{(E^{*}E+n)-1}E^{*}=E^{*}(EE^{*}+n)-1$ .

However, in this case we can explicitly solve (10) : $V(t)= \int \mathbb{C}P(d_{Z})\otimes$

$W(z\chi_{[0,t]})$ , where $E= \int \mathbb{C}zP(d_{\mathcal{Z}})$ is the spectral resolution of $E$ and $W$

is the Weyl operator in the Fock space $\Gamma(h)([2])$ .
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3 Martingales and their representation

An adapted process $X$ defined on $D\otimes \mathcal{E}(m)$ is a martingale if for $s\leq t$

$\langle ve(g_{]}s),x(t)ue(fS])\rangle=\langle ve(g_{S}]), X(S)ue(fS])\rangle$ (21)

for $u,$ $v,$ $\in D$ and $F,$ $G\in M\subseteq h$ . If furthermore $X(s)$ is known to be bounded

then (21) extends to whole of $\mathcal{H}_{s]}$ and one has

$\langle v_{s]}\sim, X(t)\tilde{u}_{S}]\rangle=\langle\tilde{v}_{s]}, X(s)\tilde{u}_{S}]\rangle,\tilde{u}\tilde{v}s],s]\in \mathcal{H}_{s]}$ .

It is clear that the $\mathrm{b}\mathrm{a}s$ic quantum processes $A(t),$ $A^{+}(t),$ $\Lambda(t)$ are martingales

though not bounded (for simplicity we take $\dim \mathcal{K}=1$ in this section).

A bounded martingale is said to be regular if there exists a Radon measure

$\mu$ on $[0, \infty)$ such that for all $t\geq a\geq 0,\tilde{u}\in \mathcal{H}_{a]}$

$||[X(t)-X(a)]\tilde{u}||^{2}+||[X(t)*-X(a)*]\tilde{u}||^{2}\leq||\tilde{u}||^{2}\mu[a, t]$ . (22)

If $X$ admit $s$ the representation :

$X(t)=X(0)+ \int_{0}^{t}\mathrm{f}F(s)d\Lambda(S)+E(s)dA^{+}(s)+G(s)dA(s)+N(s)ds\}$ , (23.)

it is a martingale iff $N(s)=0$ . On the other hand, one has a counterexample

([15]) in which $\mathcal{H}_{0}=\mathrm{C},$ $X(t)e(f)=e(\chi_{[}0,{}_{t]}Hx_{[t}\mathrm{o},]f)$ with $H$ the Hilbert

transform. Then $X$ is a bounded martingale, but it does not have an integral

representation as above. This is due to the fact that this $X$ is not a regular

martingale, though it can be shown that $X(t)$ is the strong limit of a sequence

of regular martingales. Next we state without proof two results including the

representation theorem for bounded regular martingales ([16]).

Theorem 4: Let $X$ be a bounded martingale on $\mathcal{H}$ having the representation

(23) with $N=0,$ $\{F, E, G\}$ as well as $\{F^{*}, E^{*}, G^{*}\}$ bounded adapted square-

integrable processes such that both $||E(t)||$ and $||G(t)||$ are locally square inte-

grable. Then $X$ is a regular martingale with $\mu[a, b]=\int_{a}^{b}\{||E(S)||^{2}+||G(S)||2\}ds$ .
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Thoerem 5: Let $X$ be a bounded regular martingale with Radon measure

$\mu$ and let $\mathcal{E}_{b}$ be the dense $s$ubset of $\Gamma(h)$ generated by $\{e(f)|f\in L^{2}(R_{+}),$ $f$

locally bounded}. Then $X$ admits the representation (23) with $N=0$ and

with $(F, E, G)$ - three bounded adapted processes square integrable $\mathrm{w}.\mathrm{r}.\mathrm{t}$ .

$(h0, \mathcal{E}_{b})$ such that $\max\{||E(s)||^{2}, ||G(s)||^{2}\}\leq\mu_{ac}’(S)$ .

Some simple yet interesting examples of bounded regular martingales are

unitary Hilbert-Schmidt and Fermion martingales. A Fermion martingale

with $\mathcal{H}_{0}=\mathbb{C}=\mathcal{K}$ is a family $\{F_{f}(t)\}s$atisfying

(i) CAR: for all $f,$ $q,$ $\in h\{$

$F(f)F(g)+F(g)F(f)$ $=$ $0$

$F(f)F(g)^{*}+F(g)*F(f)$ $=$ $\langle g, f\rangle$ ,

(ii) $F_{f}(t)=F(f\chi[0,t])$ .

Then it is clear that it is a bounded (in fact $||F_{f}(t)||^{2}= \int_{0}^{t}|f(s)|^{2}d_{S)}$ , regu-

lar $(||[F_{f()}t-F_{f}(a)]u||^{2}+||[F_{f}(t)^{*}-Ff(a)^{*}]u||^{2}=||u||^{2_{\int_{a}}}t|f(s)|^{2}dS)$ martin-

gale. Thus by theorem 5, $F_{f}$ admits a representation. One can show [16]

that for such a martingale, the coefficients of $d\Lambda$ and $dA^{+}$ (and of course of

$ds)$ all vani $s\mathrm{h}$ . If furthermore one assumes that the $*$ -algebra generated by

$\{F_{f}(t)|t\geq 0, f\in h\}$ act $s$ irreducibly on $\mathcal{H}$ , then one has the known repre-

sentation $\mathrm{v}\mathrm{i}\mathrm{z}$ . $F_{f}(t)= \int_{0}^{t}\theta(S)\overline{f(s)}J(S)dA(S)$ , where $|\theta(s)|=1$ and $J(s)e(f)=$

$e(-f_{s]}+f_{[S})$ .

The more recent development$s$ in this theme can be found in $[17, 18]$ .

Before we describe these results, we need to go back to the definition of

quantum stochastic integrals in section 1 and note that by quantum Ito’s

formula one has that :

$\int_{0}^{t}F(S)d\Lambda(S)$ is well-defined on $ue(f)$ if $\int_{0}^{t}|f(S)|2||F(s)ue(f)||2ds<\infty$ ,
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$\int_{0}^{t}E(s)dA^{+}(s)$ is well-defined on $ue(f)$ if $\int_{0}^{t}||E(S)ue(f)||2ds<\infty$ ,

$\int_{0}^{t}G(S)dA(s)$ is well-defined on $ue(f)$ if $\int_{0}^{t}|f(S)|||G(s)ue(f)||ds<\infty$ ,

and

$\int_{0}^{t}N(S)d_{S}$ is well-defined on $ue(f)$ if $\int_{0}^{t}||N(s)ue(f)||ds<\infty$ , (24)

instead of (2). It is clear that the integrability conditions (2) imply (24).

Also note that the integral representation of regular martingales as given

in theorem 5 is valid on $\mathcal{H}_{0}\otimes \mathcal{E}_{b}$ and this make$s$ multiplication of such martin-

gales impossible in general. To circumvent this, one uses the representation

of a vector process in $\Gamma(h):\Phi_{t}=E(\Phi)+\int_{0}^{t}\hat{\Phi}_{S}dw(s)$ , where the expectation

$E(\Phi)=\langle e(\mathrm{O}), \Phi\rangle$ and $\omega$ is the standard Brownian motion. If $\Phi\in \mathcal{E}_{b}$ and if

$X$ has representation (23) on $\mathcal{H}_{0}\otimes \mathcal{E}_{b}$ , then one has

$X(t) \Phi_{t}=\int_{0}^{t}x(S)\hat{\Phi}Sd\omega(s)+\int_{0}tF(s)\hat{\Phi}_{s}d\omega(s)$

$+ \int_{0}^{t}E_{s}\hat{\Phi}SdS+\int^{t}0c_{S}\Phi_{S}d\omega(s)+\int_{0}N(_{S)}t\Phi_{s}ds,$ (25)

as one would expect if Ito formula has to be valid on this domain. This allows

an extension of the definition of quantum stochastic integral$s$ as follow$s$ .

Thoerem 6 : Let $X$ be an adapted process such that both $\{X(t)\}$ and

{X $(t)^{*}$ } admit integral representations of the type (23) on $\mathcal{H}_{0}\otimes \mathcal{E}_{b}$ . Then both

representation$s$ can be extended to $\mathcal{H}_{0}\otimes D$ with $D\supseteq \mathcal{E}_{b}$ if the corresponding

expressions (25) make$s$ sense for $\Phi\in D$ . In particular, if $X$ is bounded and if

$tarrow||E(t)||,$ $||G(t)||$ are locally square integrable as well as $tarrow||F(t)||,$ $||N(t)||$

are locally bounded then the integral representation (23) can be extended to

whole of $\mathcal{H}$ .
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The conditions appearing in the second part of theorem 6 seems to be

natural in view of (24). The next theorem deals with $\mathrm{t}\mathrm{h}\mathrm{e}*$-algebra property

of semi-martingales.

Thoerem 7: Let $S$ be the set of all bounded semi-martingales $X$ on $\mathcal{H}$ ad-

mitting integral representation (23) with coefficients satisfying the properties

in theorem 6. Then $S$ is $\mathrm{a}*$-algebra.

Sketch of the proof of theorem 7 : Since $|| \int_{0}^{t}N(S)ds||\leq\int_{0}^{t}||N(S)||d_{S}<$

$\infty,$ $\mathrm{Y}(t)\equiv X(t)-\int_{0}^{t}N(s)dS$ is clearly a bounded martingale. By hypothesis

and theorm 6, $Y(t)$ has an integral representation (23) on whole $\mathcal{H}$ and hence,

$|| \mathrm{Y}(S)||=\sup_{\Phi,\Psi}\frac{|\langle\psi_{s]},Y(s)\Phi_{]}\rangle s|}{||\psi_{s]}||||\Phi]|S|}=\sup_{\psi,\Phi}\frac{|\langle\psi_{s]},\mathrm{Y}(t)\Phi_{]}\rangle s|}{||\psi_{s]}||||\Phi]|S|}\leq||\mathrm{Y}(t)||\forall s\leq t$.

Therefore $||\mathrm{Y}(t)||$ is locally bounded. The rest of the proof follow$s$ from

quantum Ito formula (2).

As in [18], an adapted process $X$ of bounded operators in $\mathcal{H}$ is said to be

a regular semi-martingale if there is a dense subset $M$ of the set of bounded

$L^{2}(R_{+})$ functions stable under $uarrow u_{t]}$ for all $t\geq 0$ and if there is a Radon

measure $\mu$ and an absolutely continuous measure $\nu$ on $R_{+}$ such that V $\Phi\in$

$\mathcal{E}(M)$ , and $a<s<t$ .

(i) $||[X(t)-^{x}(S)]\Phi_{a}]||^{2}+||[X(t)-x(S)^{*}]\Phi_{]}|a|^{2}\leq||\Phi_{a]}||^{2}\mu[s, t]$ ,

(ii) $||[ffl_{s}x(t)-x(S)]\Phi_{a]}||\leq||\Phi_{a]}||\nu[s, t]$ ,

where $E_{s}$ is the conditional expectation map defined by $\langle\Phi_{s]}, Ex(st)\psi_{S}]\rangle=$

$\langle\Phi_{s]}\otimes e(\mathrm{o}_{[s}), X(t)\psi_{s}]\otimes e(0_{[s})\rangle,$ $\Phi,$ $\psi\in \mathcal{H}$ . Then one has the following theorem

([18]) which completely characterizes regular semi-martingales.

Theorem 8 : Let $X$ be a bounded adapted process in $\mathcal{H}$ . Then $X\in S$ iff it

is a regular semi-martingale.

The representation theory of martingales has been successfully applied in

[19] to derive $\mathrm{q}.\mathrm{s}.\mathrm{d}.\mathrm{e}$. for a class of unitary cocycles with bounded generator
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of the expectation semigroup and in [20] to obtain a normal $\mathrm{q}.\mathrm{s}.\mathrm{f}$ . again with

a norm-bounded generator of its corresponding expectation semigroup.

4 Stop-time and Stopped processes

Here we take $\mathcal{H}_{0}=\mathcal{K}=\mathbb{C}$ for simplicity. A stop-time $S$ on $\mathcal{H}=\Gamma(h)$ is

a spectral measure on $[0, \infty)$ such that $\{S[\mathrm{o}, t]\}_{t\geq 0}$ is an adapted process.

It is finite if $S\{\infty\}=0$ and is bounded if $S$ has bounded support. Suppose

{X $(t)$ } is an adapted process of commuting self-adjoint operators in $\mathcal{H}$ so that

$\varphi(X(t))\in B(\mathcal{H}_{t]})\forall t\geq 0$ and every bounded Borel function $\varphi$ on $R$ , then

by the spectral theorem we can construct a Borel space (X, $\mathcal{F}^{\cdot}$), a spectral

measure $P$ on it and a family of real Borel functions $x(t, \cdot)$ on $\mathcal{X}$ such that

$X(t)= \int_{\mathcal{X}}x(t, w)P(dw)$ V $t.$ Let $\overline{F}_{t}$ and $\overline{F}$ be the completions of $\overline{F}_{t}$ and $\mathcal{F}$

w.r.t. $P$ and let $\tau$ be a classical stop-time w.r.t. the filtration $(\mathcal{X}, \overline{\mathcal{F}}_{t},\overline{\mathcal{F}})$

i.e. $\tau$ : $\mathcal{X}arrow\lfloor\lceil 0,$ $\infty$ ) Borel such that $\{w|\tau(w)\leq t\}\in\overline{\mathcal{F}}_{t}\forall t\geq 0$ . Then $P_{\mathit{0}}\mathcal{T}^{-1}$

is a spectral measure in $\mathcal{H}$ on $[0, \infty]$ , $Po\tau^{-1}[0, t]\in B(\mathcal{H}_{t]})$ and hence is a

stop-time. Now Brownian motion and poisson porcesses can be realized as

commuting $s$elf-adjoint operator processes in $\mathcal{H}$ and therefore all the classical

stop times relative to these processes can be interpreted as stop-times in Fock

space. Just as in classical probability, one can define stopped processes, in

particular, stopped Weyl processes. However, one can have right, left- or

both left- and right- stopped processes. The next theorem sums up some of

these results from [21].

Thoerem 9 : (i) Let $W$ be a Weyl process, i.e. $W(s)=W(f_{s]}, e^{i}\cdot \mathrm{J}\phi_{\epsilon})(f\in$

$h,$ $\phi$ bounded on $R_{+}$ ), $S$ a stop-time, $g,$ $h\in h;\xi,$ $\eta$ : $[0, \infty]arrow \mathcal{H}$ Borel, adapted

to the future (i.e., $\xi(t)\in \mathcal{H}_{[t}\forall t\geq 0$ ) satisfying

$\int_{[0,\infty]}e^{-1}1^{\mathrm{S}}|g\vee||2||\xi(s)||^{2}\langle e(g), S(ds)e(g)\rangle+\int[0,\infty])e-||g[\underline{\cdot}||^{2}]||\eta(s)||^{2}\langle e(h), S(dSe(h)\rangle<\infty$.
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Set $x(s)=e(g_{s]})\xi(s),$ $y(s)=e(h_{s}])\eta(s)$ . Then $\int W(S)S(d_{S})x(S)$ is well-defined

as the strong limit of Riemann sums in 7# and

$\langle\int W(s)S(ds)_{X}(S), \int W(\sigma)S(d\sigma)y(\sigma)\rangle$

$=$ $\int e^{-\langle\rangle}\vee\langle g_{\mathrm{r}\mathrm{s}},h\xi(s), \eta(s)\rangle\langle e(g), S(ds)e(h)\rangle$.
$[0,\infty]$

(ii) Define the $s$hift $\theta_{s}$ on $h$ as $\theta_{s}f(t)=f(t-s)$ if $t\geq s$ and $=0$ otherwise

and note that $\theta_{s}$ is an isometry. Let $\Gamma(\theta_{S})$ be its second quantization. Then
$U^{S} \equiv\int S(ds)\mathrm{r}(\theta_{S})$ exists as a contraction in $\mathcal{H}$ and is an isometry if $S\{\infty\}=$

$0$ , i.e. if $S$ is finite.

One can interpret the range $\mathcal{H}_{[S}$ of the isometry $U^{S}$ as the Fock space be-

yond the “random” time $S$ while the Fock space upto time $S,$ $\mathcal{H}_{S]}$ , is expected

to be spanned by vectors of the type $\int S(ds)e(fs])\phi(S)(f\in h,$ $\phi$ bounded on

$R_{+})$ . We end this section by stating without proof [21] a result which can be

called the Strong Markov property for the Fock space.

Theorem 10 : Let $S$ be a finite stoptime in $\mathcal{H};\mathcal{H}_{S]}$ and $\mathcal{H}_{[S}$ be as above.

Then there exi $s\mathrm{t}s$ a unique unitary isomorphism $\mathcal{I}_{S}$ : $\mathcal{H}_{S]}\otimes \mathcal{H}_{[S}arrow \mathcal{H}$ by

$\mathcal{I}_{S}(\int S(ds)e(fS])\phi(S)\otimes U^{S}\psi)=\int S(ds)e(fs])\phi(S)\Gamma(\theta_{s})\psi$ .

5 Applications and Discussion

As is well known, the classical damped harmonic oscillator is described by

the equation of motion :

$\ddot{\mathrm{q}}+2\alpha\dot{\mathrm{q}}+\omega q=02$, $(0<\alpha<\omega)$ (26)

and such a (non-conservative) system cannot be described in terms of a

Hamiltonian i.e. the above second order equation cannot be recast as a

pair of canonical equations of motion.

Nevertheless, we can introduce a pair of “conjugate variables” $q$ and $p$

satisfying a pair of first order differential equations which is equivalent to
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(26). Set $\delta=\sqrt{\omega^{2}-\alpha^{2}}$ and write

$\dot{\mathrm{q}}=p-\alpha q,\acute{\mathrm{p}}=-\delta^{2}q-\alpha p$ ; (27)

and a simple calculation verifies that indeed (27) leads to (26). In fact we

would like to introduce ‘annihilation’ and ‘creation’ variables.

$a=(2\delta)^{-1/}2(p+i\delta q),$ $a^{+}=(2\delta)^{-1/}2(p-i\delta q)$ (28)

and observe that (27) can be further rewritten in a convenient form

$\dot{\mathrm{a}}=(-\alpha+i\delta)a$ . (29)

The equation for $a^{+}$ is just the complex conjugate of (29) and does not

add any new information. The solution of (29) is simply given as $a(t)=$

$a(0)e^{(}-\alpha+is)t,$ $a(+t)=a^{+}(0)^{(}-\alpha-i\mathit{5})t$ or equivalently $p(t)=e^{-\alpha t}(p_{0}\mathrm{c}\mathrm{o}s\delta t-$

$\delta q_{0}\sin\delta t)$ and $q(t)=e^{-\alpha t}(q_{0} \cos\delta t+\frac{p0}{\mathit{5}}\sin\delta t)$ . From this it follows

that even if $(q_{0},p\mathrm{o})$ were a true canonically conjugate pair at $t=0$ , they

cannot remain so for any $t>0$ . This is well known and expected. Of course

quantization does not bring any change to the above observation and leads

to the conclusion that there is $no$ unitary time evolution to give rise to the

equation of motion (29).

Now we want to change the picture and imagine that the damping in the

motion of the quantum harmonic oscillator is due to the presence of some

environmental friction which we shall model by quantum Brownian motion

as described above. In other words, we consider a q.s.d.e.

$U(t)=I+ \int_{0}^{t}U(S)[\sqrt{2}\alpha(a^{*}dA(s)-adA+(S))+(-\alpha+i\delta)a^{*}ad_{S}]$ . (30)

Here $a$ and $a^{*}$ have the $s$ame expression as for $a$ and $a^{+}$ in (29), but we

assume canonical conjugacy between $p$ and $q$ for all times i.e. $[p, q]=-iI$

or equivalently $[a, a^{*}]=I$ in $\mathcal{H}_{0}=L^{2}(R)$ , the quantum state space for the
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harmonic oscillator. We also note that if $\alpha=0$ i.e. if there is no damping

that $U$ satisfies $\frac{dU}{dt}=i\delta Ua^{*}a$ whose solution is $U(t)=e^{i\delta aat}*$ with $\delta=\omega$

and this is the well known standard quantum harmonic oscillator evolution

group.

That equation (30) has a unique unitary solution was proven in [22] using

a method different from the one we have described in section 2. Nevertheless

we give a sketch of a proof using theorem 2. As has been shown in [12] the

map $Q_{\lambda}(\lambda>0)$ defined on $B(\mathcal{H}_{0})$ as :

$\langle u, Q_{\lambda}(_{X})v\rangle=\int_{0}^{\infty}e^{-}\langle\lambda tEe-GtU_{X},Ee^{-G}v\rangle tdt$ (31)

is a well-defined completely positive contraction and the Feller set $\delta_{\lambda}$ of the

problem is trivial if $Q_{\lambda}^{n}(I)$ converges strongly to $0$ . In the problem at hand,

$E=-(2\alpha)^{1/}2a,$ $G=(- \alpha+i\delta)a^{*}a=-\frac{1}{2}E^{*}E+iH$ (with $H=\delta a^{*}a$ ) $=$

$(-\alpha+i\delta)N$ where $N=a^{*}a$ is the number opeator in $\mathcal{H}_{0}=L^{2}(R)$ . It is easy

to see that the ‘finite particle vectors’ form a total set in $\mathcal{H}_{0}$ and if we choose

the (dense) linear span of these to be $D$ , and $E_{n}=-(2\alpha)^{1/}2na(N+n)^{-1}$

then $E_{n},$ $E_{n}^{*}$ and $G_{n}=- \frac{1}{2}E_{n}^{*}E_{n}+i\delta Nn(N+n)^{-1}$ converge strongly and

to $E,$ $E^{*}$ and $G$ respectively. It is also equally $\mathrm{e}\mathrm{a}s\mathrm{y}$ to prove that $T_{t}=$

$e^{Gt}=e^{(i\delta)Nt}-\alpha+$ leaves $D$ invariant, thus verifying assumptions (A) and (B)

preceeding theorem 2. In order to prove the unitarity of $U(t)$ it $s$ufficies to

$s$how that the Feller set $\delta_{\lambda}=\{0\}$ for some $\lambda>0$ and for this we use the

observations made in the earlier part of thi $s$ paragraph.

We can write $Q_{\lambda}$ for this problem as:

$Q_{\lambda}(x)=2 \alpha\int_{0}^{\infty}e-\lambda te-\overline{\gamma}tNaxae-\gamma tNd*t$

with $\gamma=\alpha-i\delta$ and $\lambda>0$ . Then

$Q_{\lambda}(I)$ $=$ $2 \alpha N\int_{0}^{\infty}e^{-(\lambda 2\alpha}+N)tdt$
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$=$ $2 \alpha N(2\alpha N+\lambda)^{-1}=\frac{N}{N+\lambda^{J}’}$ (32)

where we have set $\lambda’=\lambda(2\alpha)^{-1}$ . A simple calculation shows that

$Q_{\lambda}^{n}(I)= \frac{N}{N+\lambda^{J}}\frac{N-1}{N-1+\lambda’}\ldots\frac{N-n+1}{N-n+1+\lambda’}$. (33)

Thus for any $u\in \mathcal{H}_{0}$ ,

$||Q_{\lambda}^{n}(I)u||^{2}$ $= \sum_{m=0}^{\infty}(.\frac{m}{m+\lambda’},$
$\ldots,$

$\frac{m-n+1}{m-n+t+\lambda’})^{2}||P_{m}u||^{2}$

$\equiv\sum_{m=0}^{\infty}gn(m)||Pum||^{2}$,

where $P_{m}$ is the projection onto the $m$-particle subspace. It is clear that

$g_{n}(m)=0$ if $n\geq m+1$ and $|g_{n}(m)|\leq 1$ for all $n,$ $m$ . Therefore, by the

dominated convergence theorem, it follow$s$ that $Q_{\lambda}^{n}(I)$ converges strongly to

zero and as discussed above we have the unitarity of $U(t)$ .

If we set $a(t)=U(t)*aU(t)$ and $a(t)^{*}=U(t)*aU(t)$ so that $[a(t), a(t)^{*}]=$

$I_{\mathcal{H}}$ for all $t\geq 0$ , in contrast to what we have discus $s\mathrm{e}\mathrm{d}$ earlier. It is clear

that the evolved $q$ and $p$ in the presence of noise retains thi $s$ kind of extended

conjugacy. To get back to the description of the harmonic oscillator, we have

to take expectation or average out the noise degrees of freedom. This leads

to the expectation semigroup $T_{t}$ on the algebra generated by a and $a^{*}$ :

$T_{t}(x)\equiv EU(t)^{*}xU(t)$ with its infinitesmal generator, the Lindbladian,

given formally as

$\mathcal{L}(x)=\frac{\alpha}{2}[2a^{*}xa-\alpha aaX-xaa]**-i\delta[a^{*}a, X]$ .

Thus $\mathcal{L}(a)=(-\alpha+i\delta)a$ or equivalently $T_{t}(a)=e^{(-\alpha+i})ta\delta$ just as we had

observed earlier. By introducing the noise degree of freedom we have gained

back the unitarity of the evolution $U(t)$ though not the group propoerty as

in the case with $\alpha=0(\mathrm{v}\mathrm{i}\mathrm{z}. U(t)=\exp(i\delta taa)*)$.

225



There have been other attempts at various applications, e.g. scattering

theory between a class of Markov cocycles ([23]), measurement theory of

observables with continuous spectra in quantum mechanics ([24]) and input

-output channels in quantum systems ([25]). We also mention that a class of

Hamiltonian theories have been studied in the quantum field theoretic set-up

to show that in the limit when the coupling constant tends to zero, one can

derive an equation similar to (5) if one chooses the scaled macroscopic (or

collective) variable$s$ appropriately ([27]).
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