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§1. Introduction

The study of the Fourier transform F in white noise calculus was initiated and
has been developed to a mature level by H.-H. Kuo [16,17] (also [19]). While, the
Fourier-Mehler transform Fy is a kind of generalization of F [18] (also [11]), which
furnishes the theory of infinite dimensional Fourier transforms in white noise space
with adequately fruitful and profitable ingradients.

In this article we introduce Pseudo-Fourier-Mehler (PFM for short) transform
having quite similar nice properties as the Fourier-Mehler transform possesses. It
was originally defined in [5] and used for application to abstract equations in infinite
dimensional spaces. In connection with other Fourier type transforms in white noise
analysis, we can compute the infinitesimal generator of the PFM transform directly
and show that our Pseudo-Fourier-Mehler transform enjoys intertwining properties.
We shall state the characterization theorem for PFM transforms, which is one of
our main results in this article. The Fock expansion of PFM transform can be
derived as well. Lastly we shall introduce a generalization idea of PFM transform
and investigate some properties that the generalized transform should satisfy.

The Pseudo-Fourier-Mehler transform is a very important and interesting oper-
ator in the standpoint of how to express the solutions for the Fourier-transformed
abstract Cauchy problems ([5,6]; see also [4,8]).

In [1] they have studied the two dimensional complex Lie group G explicitly and
succeeded in describing every one parameter subgroup with infinitesimal generator
(2—"2““—b)AG + bN, where N is the number operator and Ag is the Gross Laplacian.
Furthermore, one can find in [24] another related work, especially on a systematic
study of Lie algebras containing infinite dimensional Laplacians.

We are able to state our results in the general setting (e.g., [23]; see also [7])
of white noise analysis. As a matter of fact, almost all statements in our theory
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remains valid under non-minor change of the basic setting. However, just for sim-
plicity we adopt in this article the so-called original standard setting [11] in white
noise analysis or Hida calculus to state our results related to the PFM transform.

§2. Notation and Preliminaries

Let § = S(R) be the Schwartz class space on R and §* = S’'(R) its dual space.
Then S(R) C L*(R) C S8'(R) is a Gelfand triple. We define the family of norms
given by |¢|, = |APE|, p > 0, £ € S(R), where the operator A = —d?/dt®> +t* + 1
and |-| is the L?(R)-norm. Let S, = Sp(R) be the completion of S(R) with respect
to the norm |- [,,p > 0. We denote its dual space by Sy = S, (R), and we have
Sp(R) € L*(R) C S,(R). Let u be the standard Gaussian measure on S’(R) such
that

‘/S‘; exp(v—1(z, £))u(dz) = eXp<_%|§|2)’

for any ¢ € S(R). (L?) denotes the Hilbert space of complex-valued p-square
integrable functionals with norm || - ||. The Wiener-Ité6 decomposition theorem
gives the unique representation of ¢ in (L?), i.e.,

(1) | | Y= Z In(fn)7 fn € E%}(Rn)a

where I,, denotes the multiple Wiener integral of order n-and LZ(R") the space of
symmetric complex valued L2-functions on R™. The second quantization operator
I'(A) is densely defined on (L?) as follows: for ¢ = > 20 I,(fn) € Dom(I'(4)),

! o0

(2) . T(A)p =Y I(A®"f,).
n=0
For p € N, define ||¢|l, = |[T(4)7¢|| and let (S), = {p € (L*); ll¢|l, < oo} and
the dual space of (S), is denoted by (S);. Let (S) be the projective limit of
{(8)p;p € N}. It is called a space of test white noise functionals. The elements in
the dual space (8)* of (S) are called generalized white noise functionals or Hida
distributions. In fact, (S) C (L?) C (S)* is a Gelfand triple [11]. For convention all
dual pairings (-, ), resp. {(-,-)) mean the canonical bilinear forms on §* x S (resp.
(8)* x (S) ) unless otherwise stated.
The S-transform of ® € (S)* is a function on S defined by

(3) (5@)(&) := ((®,: exp(-,£) ), ¢ € S(R),

where :exp (-, £): = exp (-, £) - exp (—3/£|?). Then note that a mapping : C > z
(5®)(z¢ + n) is entire holomorphic for any §,7 € S. A complex valued function F
on S is called a U-functional if and only if it is ray entire on S and if there exist
constants C1,Cy > 0, and p € NU {0} so that the estimate

[F(6)] < Crexp(Cala2lel,’)

may hold for all z € C,£ € S. We have the following Characterization Theorem
[25]):
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Theorem 1. If & € (S)*, then S® is a U-functional. Conversely, if F is a U-
functional, then there exists a unique element ® in (S)* such that S® = F holds.

Based upon the above characterization we are able to give rigorous definitions
to Fourier type transforms of infinite dimensions. The Kuo type Fourier transform
F [16,17] of a generalized white noise functional ® in (S)* is the generalized white
noise functional, S-transformation of which is given by

(4) S(F2)(§) = {(@,exp(—i(,§)))),  £€S.

Likewise, the Fourier-Mehler transform Fy (6 € R) [18] of a generalized white noise
functional @ in (S)* is the generalized white noise functional, S-transformation of
which is given by

() S(F®)E) = (@ exp{c?(,8) — s costlel? ), £es.

The Fourier-Mehler transform Fy, 8 € R is a generalization of the Kuo type Fourier
transform F. Actually, 7o = Id, and F_; is coincident with the Fourier transform
F. It is easy to see that ¥/, is the inverse Fourier transform F~1. Hence we have

S(Fa)(E) = (Sa)ie)exp(~51617),  £€s.

§3. Pseudo-Fourier-Mehler Transform

We begin with introducing the Pseudo-Fourier-Mehler transform in white noise
analysis.

Definition 1. {Wy,0 € R} is said to be the Pseudo-Fourier-Mehler (PFM) trans-
form [5,6] if Wy is a mapping from (S)* into itself for § € R, whose U-functional is
given by ‘

(6) S(Wy®)(€) = F(&P¢) - exp(z'e“’ sin0|£|2), £es,

or equivalently

7 SWe2)() = (@ 0xp(7(,€) - SIEl)), €€,

for ® € (S)*, where S is the S-transform in white noise analysis and F' denotes the
U-functional of ®.

By virtue of Theorem 1, the right hand sides in Eq.(6) and Eq.(7) are U-
functionals, and ¥y® exists for each ® in (S)*. Therefore the above-mentioned
Pseudo-Fourier-Mehler transform is well-defined. Hence we have

35



36

Proposition 2. The following properties hold:
(i) Yo = Id; ( Id denotes the identity operator.)
(1)) Ug £ F  for any 8 € R\ {0},
(i11) U9 # Fog  for any 6 € R\ {0}.
Proof. As to (i), it is easy to see that S(¥®)(§) = S®(£) = F(&). The char-
acterization theorem allows the equality ¥y = Id. (iii) is obvious from definitions.

Since Fo = Id and F_,;; = F, it follows clearly from (iii) that F never coincides
with ¥y for any 6 € R except § = 0. O

Proposition 3. The invese operator of the Pseudo-Fourier-Mehler transform Wy
is given by (Wp)™! = W_4 for 0 € R.

Proof. It is sufficient to show that W_gW¥y = Wy¥W_4y = Id. As a matter of fact,
for ® € (S)* we get from the definition (6)

(8)  S(-o(Te®))(€) = S(Fe@)(e™%¢) - exp(—ie™* sin 0]¢[?)
= (S®)(e?(e~i0¢)) - exp(iew sin 0|e—i9§|2) : exp(—ie—“’ sin0|§|2)
= (5@)(6) - exp(0) = S(Id- @)(¢), €€,

because we used the relation

S(T_g®)(€) = SB(e™%) - exp(-—ie"w sin 0]5[2)

so as to obtain the second line of Eq.(8). An application of the characterization
theorem to Eq.(8) gives W_gWy = Id. As for the other part of the desired equalities,
it goes almost similarly. O

Next let us consider what the image of the space (S) under @y is like (see Corol-
lary 6 below). The Pseudo-Fourier-Mehler transform ¥ also enjoys some interesting
properties on the product of Gaussian white noise functionals (see Theorem 4 and
Theorem 5).

Theorem 4. Let g. be a Gaussian white noise functional, i.e., g.(-) := N exp(—|-
|2/2¢) with renormalization N and ¢ € C, ¢ # 0,—1. For 6§ € R the following
equalities hold:

(Z) Pd : ge(6) = I‘(ewld)CI), Vo € (8)*,'
(i6) for anyp € R,  |®: guaplly = |8l VO € (S)y;

where : denotes the Wick product (e.g. [11,p.101]) and the parameter c(6) is given
by c(8) = —(271i e csch +1).
Proof. Noting that the U-functional of g. is given by exp(—271 (1 +¢)~* [€]?),
we readily obtain
(9) S(Te® : g(6))(§) = S(¥62)(£) - (S9c(6))(€)
:S<I>(e’9§)5(0,§), £€S,



37

because we employed Eq.(6) and put

— . . 10 _: 2 1 2
E(9,¢) := eXP<%e osmélﬁl - mlfl )

Then we cannot find any 6 € R such that

(9) = 52(6) = exp (3 1€1?) - ((®,e09))

may hold, which implies that Wp® : g4y # @ for any @ € (8)*. However, when
B(z) = 0, (2%, fo),fn € S—p(R") (the symmetric space S_p(R™) ), then

its U-functional S®(¢) is given by > oo (£®™, f,), so that, we easily get from
definition of the second quantization operator I

oo

rhs.of (9) = 3 () €8™, £,) - E(6,€) = S(D(“Id)®)(€) - (0, ).

n=0

Hence, if 2i(14-c(8))e*® sin § = 1 holds, then clearly Z(, ¢) proves to bel, suggesting
with the characterization theorem that

Tod : go(o) = I'(e*1d)®.
Moreover, it is easyr to see that
%63 : ge(o)llp = IT (e ID) 2|, = || @],

holds for any p € R. O

If we take the assertion obtained in Theorem 4 into account, then the following
questions will arise naturally: whether the PFM transformed ® (i.e. ¥p®) can be
represented by the Wick product of something like a transformed ® and a Gaussian
white noise functional g.; furthermore, if so, what is the parameter ¢ = ¢(6) then?
First of all, on the assumption that ®(z) = Y o, (: z®" :, f,) € (S)*, a simple
computation gives, for £ € S

(10) S(Te®)(£) = SB(e™¢) - exp (iei“’ sin elglz) |
— S(D(eId)®)(¢) - exp (ie“’ sin0|§|2).

We know from Eq.(10) that there is no possibility that ¥4® may coincide with
® : gk(e) even for any K(0),0 € R, because

(11) S(® : gk())(€) = SB(E) - (Sgx(e))(§) = SB(E) - MK (0),¢)
with 1
A(r,€) = EXP{—mKlz}-
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On the other hand, since the S-transform of I'(e®®)® : gk (e) is given by
S(L(e1d)@)(€) - A(K(6),£),
it is true from (10) that
We® = ['(e”Id)® : gx(o)
may possibly hold for ® € (§)*,0 € R as far as
2i(1+ K(0))e?sind +1 =0

is satisfied. Let us next consider the evaluation of the term ¥y ® (® € (S), ) relative
to the (S)p-norm (p € R). We need to determine the parameter A(6), which comes
from the relation between I'(e*?)® : gk (o) and I'(e?)(® : gaee)). By a similar
calculation in (10) we readily obtain

(12)  S(T(e*Id)(® : ga)))(€) = S(® : gace))(e”¢)
= (5@)(e"°€) - A(A(6), ™)
‘ o210
— (59)() - expf ~ 5 le
by making use of Eq.(11). A comparison. of (12) with S(T'(e®)®)(¢) -A(K(8),¢)

provides with . ,
T(e1d)® : gi(g) = T(eId)(® : gacs))

as far as A(f) = 271ie "% csc§ — 1. It therefore follows that
12681l, = T Td)B : oyl
= D 1d)(® : gago))llo = 12 : a0l
for all ® € (S),,p € R, and any § € R. Summing up, we thus obtain

Theorem 5. The following equalities hold for any 6 € R:
(i) if K(0) =27 Yie % cscf — 1, then

Tp® = I'(e’1d)® : gx (), ® e (8)%
(i) if A(8) =27 1ie ¥ csch — 1, then
162, =12 : gago)lly, 2 €(S)y
for all p € R.

Let us think of the image of ¢ € (S) under the Pseudo-Fourier-Mehler transform.
It is easily checked that g.: g4 = 1 holds with ¢+ d = —2. So we have

(13) 9e(0) : 9x(0) = 1.
From (ii) of Theorem 4, immediately, ¢ € (S) if and only if
Ypp : ge(o) € (S)v
so that, it is equivalent to
P : geo) : Ik (6) € (S) : 9K (0)
where (S) : gg(s) denotes the whole space of elements ¢ : gg(g) for ¢ € (S).

Consequently, it is obvious that Wpe € (S) : gk (q), by virtue of Eq.(13). Therefore
we obtain '
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Corollary 6. For § € R,
Im%(S) = (S) : gx(e) = {¥ : 9x(6); ¥ € (S)},
where K(0) = 2~Yie=® cscf — 1. |

Remark 2. The results in Theorem 4 and Theorem 5 are quite similar to those
of the Fourier-Mehler transform. In fact, for p € R, ® € (S),,

1(Fo®) : gerollp = 1@llp and [[Fo@llp = |2 : ger(o)llo
hold with ¢;(8) = —icotd — 2, and c3(0) = icot§ — 2 (e.g. [11,89.H]).

Remark 3. The image of (S) under the Fourier-Mehler transform Fy is given by
(S) : gicoto, while that of (S) under the Fourier transform F coincides with the
space ) )

(8):b0={p:b0; ¢ €(S)},
where 50 is the delta function at 0 and
iy 0. =
(e.g. [11, Chapter 9]).
84. Infinitesimal Generators
First of all, for all § € S we define

1 n n
m( $® :)€® >

NE

pe(x) =

n=0

with £ € §*,£ € S. We call it an exponential vector. Then {Gy,0 € R} is an
operator on (S) defined by

(14) (Gope)(x) := peiog(x) - exp (iew sin 0]5[2)
Let 7 denote the distribution in (S ® §)* given by

(r,6@n) =(n), &nES.

Note that it can be expressed as

oo

T:/6t®5tdtzzej®ejE(S@S)*,
R

j=0

where {e,,} denotes a complete orthonormal basis for L?(R). Moreover we have
’T®n=/ 5t1®6t1®"'®6tn®6tndt1"'dtn-

The following is an easy exercise. The next lemma provides with a general expres-
sion for elements of general form in (S).
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Lemma 7. Whenp(z) = 3,50 ((: 2" 1, f,) € (S) with f,, € S(R™),(the symmetric
S(R™)), then Goy is given by

(GO‘P)(w) = Z( w@'n :,g'n,>7
n=0
and
— . — (n+2m)' m _i(n+m)l__Qm
gn = gn(p) = mz;o —W(Z sin )™ e F™OrO™ o £y

where for the element fomin In §(R2m+”) the term 7™ xfy,, 1, actually has the
following integral expression

(T®m * f2m+n)(t1> e ,tn)

= f2'm.+n(sl)817 5y Smy Sm7t1’ e atn)dsl o 'd'sm°
R™

On this account, we obtain immediately
Proposition 8. The Pseudo-Fourier-Mehler transform {Wy; 0 € R} is given by the
adjoint operator of {Gg; 8 € R}, i.e.,
Uy = Gy

holds in operator equality sense for all § € R.

The next proposition gives an explicit action of the PFM transform ¥y for the
generalized white noise functionals of general form. It is. due to a direct computa-
tion.

Proposition 9. For & € (S)* given as ®(z) = >.0-, (: z®" .,F,,), it holds that

n=0
Upd(z) = Z< z®" Z a(l,m,9) - Fl®r®m>,
n=0 +2m=n

where the constant a(l,m, 8) is given by

1 .
a(l,m,0) = —'e’(l+m)9(i sin 6)™.
m!

Remark 4. Similar results for Fourier-Mehler transform as the above can be
found in [23]. For the proof of Proposition 9, it is almost the same as those given
in [23].

It follows from Proposition 3 that the Pseudo-Fourier-Mehler transform ¥y is
injective and surjective. Moreover, it is easy to check that ¥y is a strongly contin-
uous operator from (S)* into itself, when we take Lemma 7 and Proposition 8 into
consideration. Thus we have the following theorem.
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Theorem 10 [5]. The Pseudo-Fourier-Mehler transform Wy : (S)* — (8)* is a
bijective and strongly continuous linear operator.

Theorem 11 [5]. The set {Ug;60 € R} forms a one parameter group of strongly
continuous linear operator acting on the space (S)* of Hida distributions.

Proof. For ® € (S)*, £ € S, and any 6,7 € R, from (7) of Definition 1 we have

(15) S (Woan®)(€) = ((®,exp{ @+ () — S16 }))
While, from (6)

(16)
S(2o(y))(€) = STy ®)(7) - exp(ie” sin 0]¢[?)
= F(e"(e"%¢)) - exp (iei’7 sin n[ew.{]z) - eXp (iew sin 9|£|2)

1 ) n 2 g K . .
S 10 o s s

= (@, exp{e (&) — Sl ),

with the U-functional F of ®. By comparing (15) with (16), we get
S(@o1n®)(§) = S(Te¥y@)(¢).
Consequently, the characterization theorem leads to
Poyn® = Vo - ¥, @, ® € (S)",

which completes the proof. [J

We are now in a position to state one of the principal results in this paper. This
is a very important property of the Pseudo-Fourier-Mehler transform, especially on
an applicational basis.

Theorem 12 [5]. The infinitesimal generator of {¥y; 0 € R} is given by i( N+ Ag),
where N is the number operator and Ay, is the adjoint of the Gross Laplacian Ag.

Remark 5. Tt is well known that the infinitesimal generator of the Fourier-Mehler
transforms {Fp; 0 € R} is iN + £ A%, while the adjoint operator of {Fp; 6§ € R} has
iN +%AG as its infinitesimal generator (e.g. see [11]). The proof of Theorem 12 is
almost similsr to the above ones.

Proof of Theorem 12. First of all we set

Fo(€) = S(Wp®)(§)  and  Fo(€) := S(3)(€)

for ® € (S)*, ¢ € S, paying attention to (i) of Proposition 2. From (6) we have
Fy(€) = Fo(e') - exp [ie sin 0|¢|?]. Since Fy is Fréchet differentiable, the functional



Fy(€) is differentiable in 6 as well, and it is easy to check that

a7 lim Z{F€) - Fo(©))
= (F}(e%¢),1e%) - exp(iei6 sin 0|§l2) '
+ Fo(e¢) - % exp(ieie sin 0]£|2) \
= i(F'(€),€) + il¢l* - F(&).

6=0

6=0

While, we can easily check that the U-functional 67! - {Fg(¢) —Fo(€)}, 0 € R
satisfies the uniform bounded criterion: 3Cy > 0 so that

sup | 5{Folx6) ~ Fo(=6)}] < Coexpler R Ie)
|z|=R

holds for all R > 0, all £ € S with ¢; > 0,ca > 0, where F, denotes an entire
analytic extension of F. Hence, the strong convergence criterion theorem [25] (see
also [11, Chapter 4]) allows convergence of

57 (GUF) ~ Fo()}) () = 5{208(c) - B(2))

'in (S )v* as 8 tends to zero. We need the following two lemmas.

Lemma 13. (cf [11,Theorem 6.11,p.196]) Let F(§) = S®(£),£ € S for & € (S)*.
Then

(i) F is Fréchet differentiable;

(ii) the S-transform of N®(x) is given by (F'(£),€), £ € S;

where N is the number operator. :

Lemma 14. (cf. [11,Theorem 6.20,p.206]) For any ® in (S)*, the S-transform of
AL®(z) is given by |€|> SB(£), £ € S.

We may deduce at once that

(18) S(N® + A5)(€) = (F'(€),€) + |€°F(¢), €€,

with simple applications of Lemma 13 and Lemma 14. Moreover, it is easily verified
from (17) and (18) together with the above-mentioned convergence result that

lim (2~ 1d)8(z) = lim 57 (5{Fa() = Fo()} ) @)

= STL(i(F(£), &) +il¢* - F(€))
=i(N 4+ AL)®(z),  in (S)",

which completes the proof. [
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§5. Application of PFM Transform

The purpose of this section is to show a typical example of application of the
Pseudo-Fourier-Mehler transform ¥, to the Cauchy problem.

Ezample 6. (A simple application of the PFM transform) Let us consider the
following abstract Cauchy problem on the white noise space:

ou(t,z) . _
5 iNu(t,z) + ¢(z),

w(0,-) = f(-) € (5),

(19)

with ¢ > 0, where IV denotes the number operator. One of the most remarkable
benefits of white noise analysis consists in its application to differential equation
theory and how to solve the problem (cf. [1], [2,3], [4,8]). Especially in [4,8], by
resorting to the analogy in the finite dimensional cases we have applied the infinite
dimensional Kuo type Fourier transform to the Cauchy problem for heat equation
type with Gross Laplacian, and have succeeded in derivation of the general solution
and also in direct verification for existence and uniqueness of the solution. On this
account, we think of using the Fourier transform to the aforementioned problem.
Recall the formula:

(20) | F(N®) = N(F@) + AG(F®),  forall @€ (5)".

We set v(t,y) = (Fu(t,-))(y) for each t € Ry. We may employ the Fourier trans-
form F for (19) so as to obtain

(21) PD)  ivw(t,y) + iag0(t,) + 60,

~

with  v(0,y) = f(y),

because we made use of the formula (20) and set F = FF. The operator part of the
Fourier transformed problem (21) is exactly equivalent to the infinitesimal generator
of PFM transform with parameter ¢ (see Theorem 12). Hence, the semigroup theory
in functional equation theory allows immediately the following explicit exression of
the solution in question:

(22) vmw:%ﬂw+zwmﬂwm

We can show the existence and uniqueness of the solution by applying Theorem 4
and Theorem 5 to (22) under a certain condition on the initial data ¢, f. In that
case the integral term appearing in (22) should be interpreted as Bochner type one.
So much for the Cauchy problem, because this is not our main topic in this article:
We shall go back to the PFM transform and proceed further in the next section.
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§6. Intertwining Properties

In this section we shall investigate some intertwining properties between the Pseudo-
Fourier-Mehler transform ¥, and other typical operators in white noise analysis,
such as Gateaux differential, the adjoint of Gateaux differential, Hida differential
operator, and Kubo operator (the adjoint of Hida differential), etc. Furthermore,
we shall introduce the characterization theorem for PFM transforms, which is one
of our main results in this paper.

We begin with definition of the Gateaux differential Dy in the direction y € S*.
For y € S* fixed, for the element ¢ in (S) given by p(z) = > o, (: 2®" :, f,), we
put

(23) Dy¢(e) = lim ple + 0? —el@) L est

The limit existence in the right hand side of (23) is always guaranteed and Dyp(x)
is actually given by v

e o)

(24) = Yont et ybif), e s

In fact, D, becomes a continuous linear operator from (S) into itself. Since the
Dirac delta function é; lies in §*, adoption of é; instead of y does make sense in
the above (23) and (24). On the other hand, the Hida differential operator 0; (=
0/0z(t)) is originally proposed by T. Hida [9] and defined by

1 ¢
8t2251m5, 668

(cf. [15]; see also [7]). It is well known that the action of 0; is equivalent to that of
Ds, on the dense domain [11] (or [7],[14]). So we can define

0y = Ds,), te R
The Kubo operator 8] [15] is the adjoint of Hida differential 0;, defined by

((0: @, ¢)) = ((®,0:0)),

for ® € (S)*, ¢ € (S). As a matter of fact, d; (resp. 9;) can be considered as a
continuous linear operator from (S) (resp. (S)*) into itself with respect to the weak
or strong topology. More precisely, the Hida differential proves to be a continuous
mapping from (8)p44 into (S), for ¢ > %, p > 0, while the Kubo operator turns
out to be the one from (S)_p into (§)_(p44) for the same pair p, g as given above.
For £ € S, v € (S), the derivative (D¢p)(x) is defined in the usual manner, and
there exists its extension D : (S)* — (S)*. Even for that, we shall henceforth use
the same notation D; for brevity, as far as there is no confusion in the context. We
set g¢ := (D¢ + Dy), where Dy is the adjoint of Dy.

44



45

Lemma 15. For each § € R, t € R,
| Ty (9:®) = €90 (W, ®)
holds for all ® € (S)*.

Proof. First of all, note that S(9;®)(¢) = &(t) -S(®)(€). So, for the generalized
white noise functional ® € (S)* given in the form ®(z) = Y00 ) (: 2®" 1, f,,), x €
S* we readily get

(e @)

(25) S(Zo(8;®))(€) = € &(t) - Y (fn, e™06®™) - exp (ie” sin ]¢|?).

n=0

While we establish
(26) S(We(8;®))(€) = e S(8; (We®))(€)

by applying (25), because we made use of the relation

S(07 (Zo®))(€) = £(1) - (S@)(e™€) - exp(ie” sin 8]¢|?).

An application of the Potthoff-Streit characterization theorem (Theorem 1) to (26)
leads to the required equality in Hida distribution sense. [

Proposition 16. For each € R, t e R
(i) Wg(0:®) = e700,(¥p®) — 2isin 00} (¥ ®);
(ii) Tp(z(t)®) = e 0z(t)(¥p®);

hold for all ® € (S)*.

Remark 7. The assertion (i) of Proposition 16 follows from a direct computation.

We have only to employ the following two rules: '
S0:() = —=5(), 0 () =SE®)S().

The second assertion (ii) is also due to a ‘simple computation together with the
first assertion (i) and Lemma 15. Moreover, we need to apply the multiplication
operator: z(t)(-) = (8¢ +05) () (e.g. [19]). Those proofs go almost similarly as in
the proof of Lemma 15 and are very easy, hence omitted.

The next proposition indicates some intertwining property between the PFM
transform and Gateaux differential operator.

Proposition 17. For each parameter § € R,t € R
(i) e ®D¢(Wg®) = Wp(De®) + 2isin b - Dy (¥ ®);

——

(ii) De(¥s®) + D (%o®) = €%y ((-,)®);
hold for all generalized white noise functionals in (S)*.

Proof. It is interesting to note that Gateaux differential D¢ and its adjoint Dy
enjoy the integral kernel operator theoretical expressions in white noise analysis
(see the next section; or [11,12], [23]). Namely,

(27) D¢ := </R§(t)8tdt>~, and Dy := /H;g(t)afdt, V€ e S.



Let A = {tx} be a proper finite partition of the ¢ parameter space, and |A| denotes
the maximum of increment At over 1 < k < m. The assertion (i) yields from (i)
of Proposition 16. In fact, by linearity of the PFM transform we get

(28) kag (tr) - o(0:, @) %(i £(t)0y, Aty - @),

k=1

for V€ € S. Consider the same type finite summation for the other terms in (i) of
Proposition 16. By taking the limit m — co and by continuity of ¥ (Theorem 10),
we can obtain the desired result with consideration of Eq.(27).

As to (ii), note first that we can have the expression

(29) ie=i(e6) = (i [ sewa) |

by virtue of the multiplication operator z(t)(-) (cf. Remark 7). With (ii) of Propo-
sition 16, we may take advantage of continuity of ¥y and (29) to deduce that ’

e~ (D¢ + D})(Tp) = &= ( /R x(t)g(t)dt) (@)
= lim %(Z At(te)z (tk').i)

m—oo )
k=0

= Wo((ic,f) ) @)

-by passage to the limit |A] — 0. O
The following theorem gives the characterization for Pseudo-Fourier-Mehler
transforms {¥p; § € R}, which is one of our main results in this paper.

Theorem 18 [6]. The Pseudo-Fourier-Mehler transform {Wy;0 € R} satisfies the
following conditions:

(P1) ¥y : (S)* — (S)* is a continuous linear operator for foralld € R;

(P2) Wg(D¢®) = 9 De(Wp®) — 25in b - G (T ®);

(P3) Wp(Gc®) = e (¥ ®);

where ® € (8)*, £ € S§. Conversely, if a continuous linear operator Ag : (S)* —
(8)* satisfies the above conditions: (P1) ~ (P3), then Ay is a constant multiple of
.

Proof. (P1) is obvious (Theorem 10). (P2)(resp. (P3)) yields from (i)(resp. (ii))
of Proposition 17. It is due to a simple computation. Conversely, suppose that the
operator Ag be compatible with (P1),(P2) and (P3). We need the following results.

Lemma 19. We assume that Ag be a continuous linear operator from (S)* into
itself, satzsfymg the three conditions (PI) ~ (P3). Then the following relations
(i) (Zg ue)Ds De(¥y '2);

(1) (Fy ~0)95 = q¢(¥; ' Es);

(i) (87 26)D = D (¥;o);

hold for all £ € S, 6 € R.

The proof will be given below. The next theorem is well known (e.g. [12,
Theorem 3.6, p.267] or [23, Prop.5.7.6, p.148]).
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Theorem 20. Let A be a continuous linear operator on (S)*, satisfying

(i) Ade = GeA, for any £ € S;
(i) AD; = DA, for any £ € S.

Then the operator A is a scalar operator.
Thus, by taking (ii),(iii) of Lemma 19 into account, we may apply Theorem 20
for Ag to obtain the assertion: ¥, 1 Ay is a scalar operator. O

Proof of Lemma 19. Basically it is due to a direct computation. Each proof goes
similarly, so we shall show only (iii) below. For the other two we will give just
rough instructions. First of all, note that we have only to consider ¥_g instead of
¥, ! by virtue of Proposition 3. As to (i), it is sufficient to calculate it with (P2)
for both and (P3) for the PFM transform. As for (11) simply (P3) for both Ay and
Wy. As to (iii), for V® € (§)*, V¢ € S

(30) (U5 Ag)D;® = ~i¥y " (Agqe)® — ¥y ' (ApDe)®,
= —e" (W, qc)Ap® — (U, D) Ap®

because we used a relation
(31) : D} = —ige — D

in the first equality and also employed (P2),(P3) in the second one. An application
of (P2),(P3) to the last expression in (30), together with (31) again, gives

(30) = —ige (W,  Ag)® — D (¥, 1 Ap)®
= (—ige — Dg)( ;1 Ag)® = Di (¥, ' Ap)@,

which completes the proof. [J
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§7. Fock Expansion

Let £((S), (S8)*) denote the space of continuous linear operators from (S) into (S)*.
The space S’l"m(]RHm) is a symmtrized space of §'(R*™) with respect to the first [,
and the second m variables independently. By virtue of the symbol characterization
theorem for operators on white noise functionals [21](see also [23]), for the operator
IIlying in £((S), (S)*) there exists uniquely a kernel distribution &; ., in 3{7m(Rl+m)
such that the operator II may have the Fock expansion:

I = Z Hl’m(lil’m).
0

lym=

Moreover, the series Ilp, ¢ € (S) converges in (S)* [21]. Generally, each component
II; m of the Fock expansion has a formal integral expression:

Hl,m(/“") = /Rl+ K'(Sla"' 7sl>t1a"' 7tm)’
8:1 "'3;,8t1 "'atmdsl“'dsldtl"‘dtm-

Remark 8. We call it an integral kernel operator with kernel distribution . The
theory of integral kernel operators and the general expansion theory in white noise
analysis were proposed and have been developed enthusiastically by N. Obata [21-
23] (see also [11]). Those topics are closely related to quantum stochastic calculus,
which has been greatly investigated in chief by Hudson, Meyer, and Parthasarathy.
More details on this topic will be found in, for instance, (i) K.R.Parthasarathy:
An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992; (ii)
P.A Meyer: Quantum Probability for Probabilists, Lecture Notes in Mathematics
Vol.1538, Springer-Verlag, Heidelberg, 1993.

We shall give below two typical examples of the integral kernel operators in white
noise analysis.

Ezample 9. (The number operator N) Let 7 € (S ® S)* be the trace operator
defined by

(r,6@n) =(&m), §&neS.

The number operator N is usually expressed as

/ 0 Oy dt
R

by Kuo’s notation in white noise analysis. By the Obata theory, N has the following
representation as a continuous linear operator from (S) into itself, namely,

N =1 4(7) :/ 7(s,1)0; Ordsdt.

R2

Example 10. (The Gross Laplacian Ag ) By the usual notation in white noise
analysis we have the expression '

Agz/amt
R
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Then the Gross Laplacian Ag can be also expressed by

AG = Hg,g(T) = / ’T(Sl, 52)851632d51d82
R2

as a continuous linear operator from (S) into (S).

Let us consider the general expansion of our Pseudo-Fourier-Mehler transform.
We may take advantage of Obata’s integral kernel operator theory in order to obtain
Fock expansion representations of ¥y and its adjoint G4. That is to say,

Theorem 21. For 8§ € R, the PFM transform Wy and the adjoint operator Gg have
the following Fock expansions:

oo

1 , .
(i) U= Y (i€ sin ) (6 — )™ Harim,m(78' @ Am);

l,m=0

g e ,
() Go= 3 frlic?sind)™ (€~ 1) Tugyom(h © 797

l,m=0
where the kernel A, € (S®2™)* is given by

Am = Z e¢1‘®-~-®ez’m®‘€i1®"'®€im'

© 11,82, 4t =0

§8. Generalization

Let GL((S)) be the group of all linear homeomorphisms from (S) into (S). Then
we have

Proposition 22. {Gy; 0 € R} is a regular one parameter subgroup of GL((S)) with
infinitesimal generator i( N +Ag). '

Let us consider some generalizaﬁon. Suggested by [1], for example we propose
to define the generalized PFM transform X, 6 € R as operator on (S)* whose
U-functional is given by

(32) S(Xa®)() = (@, exp(e*(-, €) ~ £ T(ax 5; OIE[?))),
(cf. Eq. (7) in Definition 1 of PFM transform), for { € S, ® € (S)*. We set

J(a, 3;0) = €**° — 2H(a, 5 6),

with H(a, B;0) = h(a, 8) - (¢ - 1),
where h(a, 3) = 8/2q, for o, § € C, o # 0. Then we denote the adjoint operator
of Xg by Zo.
Claim 23. The set {Zy;0 € R} is a regular one parameter subgroup of GL((S)).



Claim 24. The infinitesimal generator of {Zy;0 € R} is given by the operator aN
+ BAg.

Claim 25. The generalized PFM transform {Xg; 0 € R} is a one parameter sub-
group of GL((S)*).

Claim 26. The infinitesimal generator of {Xp;0 € R} is given by the operator alN
+ BAE.

Remark 11. The above definition (32) of generalized PFM transform Xy can be
alternatively replaced by the following expression:

S(Xo®)(¢) = F(e™*¢) - exp(H(a, B;0) - [¢[*),

where F' denotes the U-functional of @ in (S)*, i.e., S® = F.

Remark 12. Especially when a = § = i(€ C), then the above-defined generalized
PFM transforms Xy are, of course, attributed to the simple PFM transforms ¥y
given by (6), (7) in the section 3.
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