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Functional Integral Representation of a Model in
QED

Hokkaido Univ. Fumio HIROSHIMA

Abstract

This article presents functional integral representations for the heat semigroups with
the infinitesimal generators given by self-adjoint Hamiltonians describing an interaction
of a non-relativistic charged particle and a quantized radiation field in the Coulomb
gauge without the dipole approximation. Special attention is paid to definition of
the “time-ordered Hilbert space-valued stochastic integrals associated with a family
of isometries from a Hilbert space to another one” and semigroup techniques. Some
inequalities are derived, which are infinite degree versions of those known for finite
dimensional Schrodinger operators with classical vector potentials.

1 INTRODUCTION

The purpose of this paper is to construct a functional integral representation for the heat
semigroup with the infinitesimal generator given by a Hamiltonian which describes an inter-
action of a non-relativistic charged particle in a scalar potential and a quantized radiation
field in the Coulomb gauge. This model plays an important role for interpretations of some
physical phenomena, for example,“Lamb shift”([1,32]).

There are many literatures which deal with models describing interactions of non-relativistic
particles and a quantized field. For example, the Pauli-Fierz model of non-relativistic
QED([1,2,3,6,16,23,32]), the Nelson model([7,20]), and persistent model([10,11]) etc.. For
this kind of models, the problems of the removal of an infrared cut-off ([7,10,11,20}), asymp-
totic behaviors ([1,4,9,16]), resonance ([23]), scattering states ([3]), and dressed one electron
states ([10,11]) have been discussed by many authors. These examples especially play an
important role as interaction models of non-relativistic particles with quantized fields.

The Wiener path integral method has been studied extensively. In particular, with the
help of stochastic integral, path integral representations for the heat semigroup generated
by the Schrodinger Hamiltonian

1 &
Hy= 53 (=D~ A) +V (1. 1)

<=1

with a vector potential A, and a scalar potential V were investigated. These are well known
as the Feynman-Kac-1té (FKI) formulas. The Hamiltonian Hy has been studied extensively
by many authors ([5]), who used the path integral method.
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On the other hand, E.Nelson ([21,22]) introduced the “generalized path space” in con-
nection with the construction of quantum field models from markoff fields (so called the
functional integral method). In [l1]. the authors introduced a natural embedding of the
relativistic Boson Fock space in d space dimensions into a constant time subspace in the [?
space over the “generalized path space” in d + 1 dimensions, by which, the Feynman-Kac-
Nelson (FKN) formula relating the relativistic P(¢),4; theory to the Euclidean P(¢), was
obtained. The “generalized path space” was studied more generally and abstracted by [19].

The classical path integral and the functional integral methods have been applied si-
multaneously to interaction models of non-relativistic particles and quantized fields. In [4],
weak coupling limits for Hamiltonians describing a quantum system of finite number of non-
relativistic particles interacting with a massive or massless bose field was studied, where the
FKN formula and the Wiener path integrals were applied. And in [12,13], analyzing the
Pauli-Fiertz model of non-relativistic QED by using the functional integrals and stochastic
integrals was suggested. Our main problem is to give functional integral representations for
the Pauli-Fiertz model.

The Hamiltonian, H, g+ V © I, of the model which we consider is defined as an operator
acting in the tensor product Mp of two Hilbert spaces L?(R?) and F(W) by

d
LS (D, © T — Ay(p() + 19 dTp(35). (1. 2)

u=1

Hp,B =

]

Here F(W) denotes the Boson Fock space over W = L*(r?) & ... @ LA(R?), A (p(-)) the
d-1

p-th direction time-zero radiation field with an ultraviolet cut-off function p in the Coulomb
gauge, dI'p(wp) is the free Hamiltonian of the quantized radiation field and V is a scalar
potential (see section 3). Comparing (1.1) and (1.2), functional integral representations for
eHe5 seem to rely on the FKN and the FKI formulas heavily. Actually, as it will become
clear later, these formulas are fundamental in this article.

In [1,2,3,6,16], instead of H, g, the Hamiltonian H?,B defined by taking the dipole ap-
proximation for H, p was studied. This approximation implies replacing p(z) in H, g with

p(0);

1 d
z (=D, 51 —1® Au(p(0))* + I © dl'5(Tp).

p,B -

Do l

However, for the original Hamiltonian H, 5, there are few mathematically rigorous results
([23]). It can be thought that mathematical difficulties come from the coupling term of the
derivative D, and A,(p(z)) in the Hamiltonian H, 5.

The main stlategy to achieve our goal will be certain semigroup idea and introduc-
ing the “time-ordered Hilbert space-valued stochastic integrals associated with a family of
isometries”. As in the method used in [14,21,22,26], we construct a unitary operator from
Mp = L3R4 @ F(W) to the tensor product M of L2(]R ) and the L2?-space over generalized
path space. We define H, as an operator acting in M by the unitary transform of H, 5
1est1lcted to some domain.. Supposing some regularity conditions for ultraviolet cut-off func-
tions p’s, we shall show that the contraction semigroup generated by a self-adjoint extension
of Hp,o(see below) can be constructed on M. Applying the FKN, the FKI formulas and the

time ordered stochastic integral, the functional integral representation for <F,e‘fHPG>M,
F,G € M, is obtained.
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The outline of the present paper is as follows. In Section II, following the standard
stochastic integral procedure, we extend stochastic integrals to Hilbert space valued one
and define “time-ordered Hilbert space-valued stochastic integral associated with a family
of isometries from a Hilbert space to another one ” (Theorem 2.5). In Section L I, we
introduce polarization vectors ¢”.r = 1,...,d — 1. Two Hilbert spaces [H_,] and [H—z] are
defined for given polarization vec tms and we construct a unitary operator from Mg to M =

L2 (R © L3 (Q_y,du_q)(Theorem 3.1 ). The Hilbert space L*(Q_y,du_y) is the L2%-space over
the underlying measure space for the Gaussian random process indexed by [77_1]. Moreover,
using a natural embedding of L?(Q_,, du_;) into a constant time subspace in L2(Q_,, du_,),
and the Markoff property for some projection operators on L*(Q_;, du_,), we derive a simple
extension of the FKN formula(Proposition 3.4). The Hilbert space L*(Q_z,du_s) is the L2-

space over the underlying measure espace for the Gaussian random process indexed by }'H_z].
In a formal definition, the Hamiltonian H, shall be given as an operator acting in M((3.4));

Hp = HpO + 1 @ Ho,
H,, = Z (~iD o 1-¢%,).
u 1

Moreover it is shown that H, is the unitary transform of H, g restricted to some domain
(Theorem 3.1). In Section IV, we construct the contraction Cy-semigroup G,(t) on M

such that the infinitesimal generator ITIP,O is a self-adjoint extension of the formally defined
Hamiltonian H,o (Lemmas 4.6,4.7 and 4.8). We give a rigorous definition of H, in terms

of the form sum + of H,o and I & Hy. Applying the Trotter product formula([18]), the
time-ordered stochastic integral, and the FKN formula, a functional integral representation
for the heat semigroup generated by an extended self-adjoint Hamiltonian of H, + I @ V
are derived in Theorem 4.10, where V is a suitable scalar potential. Moreover, they are
extended for a more general class ol potentials in Theorem 4.12. In Section V, we derive
some inequalities which are known in the classical case as a diamagnetic inequality ([5,31])
and an abstract Kato’s inequality ([15,27,29]) through the functional integral representation.
In Section VI, we give some remarks, comparing our model with the classical one ([31]) and
scalar field theory ([26]).

It is a pleasure to thank Prof. A.Arai for raising a problem which led to my consideration
of the functional integral representation of a model in QED.

2 TIME ORDERED STOCHASTIC INTEGRAL

In this section, we extend the standard stochastic integral to a Hilbert space-valued one and
introduce the “time-ordered Hilbert space-valued stochastic integral associated with a family
of isometries”. (A general reference is [31])

For a Hilbert space X over T, we denote the inner product and the associated norm by
< %, >y and || - ||x, respectively. The inner product is linear in - and antilinear in *. The

(lomaln of an operator A is denoted by D(A). The notation C'(Rr?;X') denotes the space of
strongly continuous functions from R? to the Hilbert space X. For n = 1,2, ..., we denote by
C™(r?%; X') the subspace of n-times strongly differentiable functions in C(R?; X) and define

akf(a:)HX < oo} )

sup
[k|<n,zer?

.f,;“(mzd;.-’cf) = { fecrmrhX)
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H”([Pgd;t = {recr@hxy||joFf() ||, € L2®), [k <n},

Whele k = (ky,kq,...,kg) is a multi-index ,|k| = k; + ko + ... + kg, and the derivative 9% =

951082 ...0% is taken in the strong topology in X. We fix probabilistic notations. Let (Q, Db)
be a probablhty space for d-dimensional Brownian motion b(t) = (b, (1)h1<u<d >0 and dp be

the Wiener measure on R? x ) defined by du = dx ® Db. Let E denote the expectation value
with respect to (2, Db). Following [24, XIII.16], we use the following identification;

55)
LM, dm) O X = Xdm.
LY (M, dm) & & / Yd
M

Let 'H be a Hilbert space over C.
Lemma 2.1 Let f € C}HRYH) and define

Jo(f,b) = %f(b(k;lt» {bﬂ (Zﬁnt) — b, (l”z_nlt)}t >0,p=1,..4d.
k=1 “~

Then the strong limit

— lim J&(f,b) = /Ot f(b(s))db,

n—o0

exists in L*(Q;H). Moreover, for any g € ClH(r¢; H),

([ rotnan [ aanan) =5 ([ U0 o), 21

where b, is Kroneker’s delta.

Proof: In the sa,me.vs}a.y as in the proof of [31,Theorem 14.2], one can see that {J“(f,b)}.>1

is a Cauchy sequence in L?(Q;H). Hence the strong limit of J“( f, b) exists in L2(Q;’H). One
can see that

(D). 3506 g = E (Z L <f (b (’”; lz)) y (b ("‘; H))> ) b
k=1~ H

Since (f(b(s)).g(b(s)))4 is continuous in s a.s.b € Q, we have

Xt k—1 E—1 t
nh—I»l;okgl ﬁ <f (b ( o t)) ) (b ( on t)) >‘H = /O ds <-f(b(3))’g(b(5))>ﬁ :
a.s.b e .
¢ B—1 k-1
—_— b t]].,91b t
Lol (5) < ((5)),

where ¢ = sup,ege||f()[ln and ¢ = sup,ege ||g(2)]|n. Hence the Lebesgue dominated
convergence theorem yields (2.1). O

We call f§ f(b(s))db, the “ H-valued stochastic integral for f”.

Moreover,

< epept,
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Remark 2.2 (1) As in [31,p152], Lemma 2.1 suggests that one can extend the definition of
1E f(b(s))db, from CH(m%H) to arbitrary functions f such that

2

o = E ([ 1700 1Bas)
= [ ([ deterr e F ) do <o

(2) In an obvious way, we can extend f; f(b(s))db, to f7 f(b(s))db,. Then for [t tz) N
(t3,ts) = ¢ and f,g € C}(R*; H)

| </t F(b(s))dby, [ g (b(swb”)mﬂ)

[ ros)as,

= 0. (2. 2)

(3) From (2.1) and (2.2) it follows that [} f(b(s))db, is strongly continuous int in L*(Q;H).

Lemma 2.3 Let f € C2(R%H) and define fort >0, =1,...,d,

s =S (¢ (59) oo 0 () 1 () - (55

Then

s — lim S7(f,b) / f(b(s))db, + 2/(5 F)(b(s))ds (2. 3)

in L2(Q;H), where [§(9,f)(b(s))ds is the Bochner integral of L*(; H)-valued function
8,)(b()) on .

Proof: We divide S%( f,b) in two parts as follows

sur = 3o (o(50) {o (5] -0 (55) )
EaC6) L) G

(2. 4)

Similarly to Lemma 2.1 ([31, p160]), it is not hard to see that the two terms on the right hand

side (r.h.s.) of (2.4) strongly converges to the two terms on the r.h.s.of (2.3) in L*(Q; H)
respectively. -

Remark 2.4 One can easily sec that for f € CH{RYH),

[2"1] L t
3—,}1_11302 f( (knl)) {bu (zﬁ) — by (kznl)} =/0 F(b(s))db,.
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Moreover, for f € CZ(r?;H),

B0 L) )

_/f V)b, + ~ /()‘,f b(s))ds

where [ - ] denotes the Gauss symbol.

Let K be a Hilbert space and {/; }+>¢ be a family of isometries from H to K, so that I} I, = Iy,
where I3 is the identity operator in H. we denote I f by f; for simplicity. For f € C}H{r?; H)
and the isometries I;, we define the K-valued stochastic integral J“( f,b) by

2 3

I, b) = Z .y (b(s))db,.
Theorem 2.5 Let f € CH{®?H) such that for all sufficiently small s > 0,

|y tef () = £(@)||,, < sM(f), (2. 5)

where M(f) is a positive constant independent of x € B? and t > 0. Then

s — llm J“ fib)= / Io_,tf

exists in L*(9;K).

Proof: Fix f € C}(R% H) and put ¢y = sup,ege ||f(z)||n. It is sufficient to show that the

family {J#(f,b )}n>1 is a Cauchy sequence in L*(Q;K). By Lemma 2.1, (2.2), (2.5) and the
fact I71; = IH, we can see that

~ ~ 2
|[3407.6) = Fas(£0)] |
on 2
Z/j* (Fazpe (W) = Fa (B(s))) by
=17 27+l L2(QK)

e (o i
z-:l (/;mf Saicr (b(s)) = fauzz, (b(s)) de)
2
<2 ZE(/;?'L (1 %wat)f(b@))HH||.f(b(s))||ﬁds>
.
<23 ([ )
STt
_ M()ee

2n+1
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Then we have

J I m—1 k
3.0 = 35000 < /M D 3 (%) |

Hence {J*(f, b)}ny1 is Cauchy in L*(Q; K) as required. O

We call f; ]O_atf( b(s))db, the “time-ordered K-valued stochastic integral associated with
{£Li}e0”.

VVe conclude the present sechon with stochastic integrals over the Wiener 1)aths Defining
12 F(b(s))db, as a strong limit in L*(;H), for f € H'(R%H), we can define fj f(w(s))dw,
as a strong limit in L?(R? x Q; H) as follows

s — nll_{roloz f( (%7—1—1—1‘)> {w,, (%t) - wy (kz—n 11‘)} = /: flw(s))dw,. (2. 6)

The existence of this limit can be proven in the same way as in the proof of Lemma 2.1. For

frg9 € HY(R%; H), we have
</ flw dwu,/ (w(S))dwl,> = 6,E (/0* (flw(s)), g(w(s)))y ds)

L2 (R QH) ,
= th [ (f(2), (@) da. (2. 7)

where E denotes the expectation value with respect to (B¢ x Q,du). Eq.(2.7) allows us to
extend the definition of [ f(w(s))dw, to f such that the r.h.s. of (2.7) is finite.

3 PROBABILISTIC DESCRIPTION OF THE TIME-
ZERO RADIATION FIELD WITH THE COULOMB
GAUGE

In this section we define a model which describes a quantum system of a non-relativistic
charged particle interacting with a quantized radiation field with the Coulomb gauge.

For mathematical generality, we consider the situation where the charged particle moves
in B? and the quantized radiation field is over R?. We define polarization vectors e’ (r =
1,...,d — 1) as measurable functions ¢" : R? — R? such that

e (k)-e’(k) = b,,, k-€(k)=0, aeker

In what follows, fix the polarization vectors e”. We introduce two Hilbert spaces [H_;] and
[H_5] as follows. First we define two real Hilbert spaces H_; and H_; by

/'ﬂM<M< }

|f (k)2
L R }

H_1E{f€¢5’

H_p = {f € Si(rHth)
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where S/(R") denotes the set of real tempered distributions on B"(n = d,d + 1)
and " denotes the Fourier transformation (  the inverse Fourier transformation) from &'(B")

to S'(R"):

fiky = 2m% [ fe)etde,

Put

77—1 = H4D..dH_,

g

.

ﬁ_Q - H_z@...®H;2.

IS

We introduce bilinear forms (-,-)_; and (-,+)_, in 77_1 and ﬁ_g by

F (k) (k)

d d,,(k
(fag)—l = ZAd #()

pv=1

k]

dk,

d dyk—AkAUk
(fag)—z = 22 AdH “( )fu( )g( )

=1

|k[?

dk,

respectively, where f, and g, are the u-th components of f and g,

conjugate and

~ denotes the complex

dulk) = S en(k)el(k)
r=1
k, k
S
SR
We denote the associated semi-norms by |- |_; and |- |_; respectively and put

Ny = {f € 7:7—1} |fl-r = 0} 5
j]V_g = {f - ﬁ_zl |fl...2 = 0} .

Then we define pre-Hilbert spaces by the quotient spaces

[7'7—1] = ﬁ—l/N—la
[Hoa] = H_y/N_,,

with inner products < -,- >_; and < -,- >_, defined by

<7T_1(f), 7T—l(g)>..1
(m-a(f),m-2(9)) _,

(f?g)—lﬁ
(f19) 2.
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Here 7_;(f) and w_»(f) denote the equivalence classes of f in H_, and H_,, respectively.
We denote the norms associated with the inner products < -,- >_; and < -,- >_,

and || - || -2, respectively. The Hilbert spaces constructed by the completions of [H_,] and
[H_,)] Wlth respect to || - [|-1 and || - [| » are denoted by the same symbols.
Let {¢_1(m_1(f)If € 'H 1} and {é_o(7_5(f))|f € H_3} be the Gaussian random processes

indexed by [7‘(_ ] and [H_,] such tha,t the characteristic functions are given by
/ e gy = o~ HINAIE oy o
;

where (Q_y,dp_1) and (Q_,, dp_y) denote the underlying measure spaces of these processes,
respectively. It is well known that .2(Q;, du;) has the orthogonal decomposition

o0

L¥(Q;,du;) = P Tu([H;])

n=0
with
FO([ﬁj}) =G,
La([H5]) = L{: &5(m;(f1))(mi(f2))-05(mi(fn)) < Sk € Hisk =1,.,m}7, n 21,
where L{...} denotes the linear span of the vectorsin {...} over C, ~ the closure in L*(Q;, dy;)

and : - : the “Wick product” ([4]). We denote the complex1ﬁcat10ns of [H,] by [H;]c. Suppose
that 7" is a contraction operator from [’H] to [H,]c. Corresponding to each such T' we can

define the contraction operator I'(T') : L*(Q;du;) — L*(Q;; dp;) by
o = 0,
D) gu(mi fi))ets(mil fa)) o = 2 @(Tmi(f1) o (T (f2)) i (T (fa)) = -

For a nonnegative self-adjoint operator A : [Hi]e — [Hi]c (i = —1,—2) we define dI'(A) by

dr(A) = 0,
dU'(A) @ ¢i(mi( f1))i(mi( fn)) =

1l

: @i Ami( f1))éi(mi(f2).- abz( mi(fn)) :

+ 1 gi(mi(f1)) ¢2(A7Tz(f2 ¢i(mi(fa)) :
++¢L7Tz(f1))¢z( )) ¢z 7Tz(f ))
mi(fi) € D(A), k = 1 2’

where ; denotes the constant function 1 in L?(Q;, dy;). It is well known that dI'(A) has
unique self-adjoint extension in L*(Q;;dy;). We denote it by the same symbol dI'(A). We

set LQ(Q—ladﬂ——l) = F, LQ(Q—%(’H—Q) =&, ¢_1(7) = o7("), ¢o() = ¢8() and 0_; = Qr

and Q_s = Qg. Put

@Fn ) D {0}

n=0 n>N+1
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and define F°° by

Feo= ) FV
N=0
The standard Boson Fock space ([28,X.7]) over W = L*(P?) & ... & L*(R?) is defined by

d—1

(12.3,16))

FW) =P Fa(W),
n=0
‘7:71(W):(E’:Wa TZ.Z 17 -7.-0:@7

where @7 denotes the n-fold symmetric tensor product. The vacuum vector © in F(W) is

defined by
Q= {1,0,0,....}.

The Boson Fock space F(W) describes a Hilbert space of state vectors for the quantized
radiation field with the Coulomb gauge. Let

N

FXwW) =P F.w) @ {0}

n=0 n>N+1

Then a finite particle subspace is defined by

FXW) = fj FYW).

N=0

the finite particle subspace and leave it invariant with the canonical commutation relations

(CCR): for f,ge W

The annihilation operator a(f) and the creation operator af(f) (f € W) ([25]) act on

[a(f),a'(g)] = <f,g>w,
[d*(f),d"(g)] = O,

where [A, B] = AB — BA, a' denotes either a or af. Furthermore,

<a‘f(f)<1>,\p>ﬂw) = (®,a(f)¥) o, ¥ € F2(W).

Foy'’

For any contraction operator A: W — W, the“second quantization of A”
Is(A): F(W) — F(W) is a bounded operator uniquely determined by

Ia(A)d (f)al(f2)..al(f)Q = al(Af)al(Afy)..al(Af)Q.
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For a nonnegative self-adjoint operator ¢ in W, the “second quantization of ¢”, dl'g(o), is
defined by the infinitesimal generator of the Cp-semigroup {I'z(e™*")};50;

IwB(c—ta') — e-—‘deB(O').

We define the maximal multiplication operatdr wpg in L*(R?) by
(wpf) (k)= h(k)f(k),

where h(k) = |k|. Put &g = wp ¥ ... & wp. Then dI'g(&g) will be the free Hamiltonian of
N e’

d—1
the quantized radiation field. The second quantization of the identity operator Iy on W,
dI'(Iw), is called the number operator. The following inequality is well known

1
N (F)@llrw) < IFllw < 11 (d0(Iw) + DZ @||zw),  ® € F(W). (3. 1)
For f € H_; we define the p-th direction time-zero radiation field A,(f) (=1, ...,d) by

Au(f) = \—15 {a* (e}:a:f;i e:{) +a (@i’;i%) } : (3. 2)

We give connection between F and F(W). Here we introduce the subspace Dy in H_,
by

D= L{f" = (oS € Hoa | = (VRF) " F € CREN0})r = 1 d 1}

where C°(R%\ {0}) denotes the set of infinitely differentiable functions with compact support
on R?\ {0}. Then it can be easily seen that Dy is dense in H_; with respect to the semi-norm
| - |-1, which implies that 7_;(Dy) is dense in [H_,]. Hence

L {: ¢.’F(7T~1(.fl))"'qsf(ﬂ-—l(fn)) : Q}-') Qflf] S DOsj = 1’-"1n1n 2 1}

is dense in F. On the other hand, choosing p" = ((eqx/ﬁﬁ)v,...,(eg\/ﬁﬁ)v) € Dy, it turns
out that

Mg

Alp") = Au
pu=1
1 —1 d:l
= 7 Oq» B p @... 6{90)+a 0@...@\})’/&5...@0
th r—th
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Then we see that
L{: A(f1)..A(f.) : Q. Qlf; € Do, j=1,..0yn,n > 1}

is densein F (W), where : - : denotes the “Wick product” in the Boson Fock space ([25,p226]).
We define the operator w in ‘H_; by

and put @ = w @ ... ® w. Furthermore, [&] : [H_{] — [H_1] is defined by
d

Blra(f) = 7a(@f). D@D = {m-a(f) € [Hllof € Ho}.
Extend [@] : [H_1]¢ — [H-1]c as follows:

@] (r=1(f1), m=1(fe)) = ([@)m-1(f1), [©Blr_1(f2)) s fi. fa € 771-
Then it is easy to see that Ran ([&] £ i) = [H_1]c, which implies that [] is a self-adjoint
operator in [H_i]c.
Theorem 3.1 There exists a unitary operator U from F(W) to F such that
(a) UQ = Qpf,
() UANUT = ¢5(f), e Ho,
(c) UF, (W)= ([ 1)),
(d)  Udl'p(wp)U™" = dI'([]),
( ) U(ﬂB ]w) =drI f}')

where Ir is the identity operator in [H_i].
Proof: For f; € Dy, 7 =1,...,n, we define

U AF) ALY Q= br(roi(fi)edr(moi(fa)) : O,
| uQ = Qf.

One can easily show U can be uniquely extended to a unitary operator from F(W) to F

with (a),(b) and (c¢). We shall show (d). Let

Xn = L{: qb}'("r—l(fl))'“¢f(7r—1(fn)) : Q}_Ifj € D(]*,j = 1""7”}7
Yo = L{: A(fi)-A(L.):Qlf; € Do,j=1,...,n}.

Since, as long as p € CZ(R?\{0}), it follows that exp(— th)p € C&(r?\{0}), one can see that
exp (—tdl'g(wg)) leaves U;"_O Y, invariant. Hence |J52, Y}, is a core of dI'g(@p) ([25,Theorem
X.49]). Moreover, since '

U exp (—tdl'5(5)) U™ = exp (—tUdT p(@p)U ") ,



99

it follows that J;2, X, is a core of Udl' (&g )A~*. Noting that on (22, X,

UAT 5(&p)U™" = dT([3)).

Thus (d) holds. The proof of (e) is similar to that of (d). 0

We set Hy = dI'([©]), N = dI'(/r). Following [26,( ‘hapter [1I], we can give connection
between F and £. For ¢ € B we define the operator j;

st Hoy — H_,,
wf=60f, feH_,

where §; is the one-dimensional delta function with mass at {¢}. In momentum space,

(3eF) (ko) = (2m)7% f(k)em o,
where (Z, ko) € R? x B = R, We put jf =7: P ... ® j: and define
(e = [H-1] — [H_a),
[jt]ﬂ'—l(f) = 77—2(jtf)-

It can be easily seen that [j,] is a linear isometry ([26,Proposition II1.2]). Hence the range
of [7¢] is a closed subspace of [H_,]. We denote the projection onto Ran([7;]) by [e:]. Let

Uy = L{m_a(f) € [Ho] [7_a(f) € Ran((fi]).a <t < b} .

We denote the projection onto the closure Uy, s by [e[a,s]-

Proposition 3.2 ([26, Propositions I11.3 and I11.4])
(a) Gl = led]
(b) o) [js] = eteellel,

(c) Let a < b<c. Then
lea][es][ec] = [ea][ec)-
(d) Let a <b<t<c<d. Then
et silled)leeal = lewn]ler.q)-

Proof: (a) is straightforwardly seen. Since we have

(Gl Garoalf)rale)) | = <7r_2<35f>,7r_2<3tg>>2
_ f k), (k)d
= Z If;

ul/ 1 Rd+1

Yo (Rt
g
(k )y—H—ﬂMI -

dk,

dkdk,

— -

_ Z/—Akgyk v

w1 %]




100

(b) holds. Eq.(c) follows from (a) and (b). For any m_,(f) and 7_5(g), by the definition of
le[a,5)] and [efc g], they can be presented as follows

. N,
{e’[c,d]]n.—'l(f) = nh—l»]:lc Z fnav fna € Ran([et,la])atna € [C‘a d]»

a=1
Mpm
{e[a,b]]ﬂ'—2(g) = 77!1_1}1, Z fm;ga Imys € Ran([etma])stm@ € {(l,b]
3=1
Hence by (c) we have
Nn,Mm
<[e[a,b]][et][e[c,d]]ﬂ-—2(f)77r-2(9)>_2 = . lir—r»loo Z <{et]fnaagmﬁ>_2
’ o,f=1
Nnme
= n}r’lll’_r*loo Z <.fna~,gm!3>_2
o,B=1
= (lepallepalm-(f)72(9)) -
Then (d) follows. ]
We introduce notations;
F([e[a,b]]) = E[a,b]
F([Jt]) = Jta
F([et]) = E‘t- (3. 3)

Proposition 3.3 ([26, Theorem I11.5])

(a) Ji is a linear isometry from F to E.

(6) JJr = E,.

(¢) Jrd, = e lt-sHo,

(d) Let ¥, 5 denote the o-algebra generated by

L{¢s(m_a(f)) |r-2(f) € U}
aﬁd the set of X p-measurable functions in € by E, . Then
Ran (Epy) = &y,
(e) (Markoff property) Let a < b <t <c¢<d. Then
Bl EtEeq) = Epop) Fle,q.
Proof: Egs.(a),(b),(c) and (e) follow from Proposition 3.2. Eq.(d) follows from [26,Theorem

1L8]. 0
As in [26], a FKN formula follows from Proposition 3.3.
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Proposition 3.4 (26, Theorem I11.6], FKN formula) Let fy,..., fn € H_, and Go, ..., G be
bounded measurable functions on B%. Let ty,....t, > 0 be given. Then

(O, GL e oG] e GO )
= (e, G...GE Q)

F

where sq is arbitrary and

S; = 50+i 19
GF = Gy ($r(Tr(f1))s o S (mo1(fa)))
(m_

1
G;j = J!j (¢£ T 2(35;‘]01))7'“7 ¢5(ﬂ-_2(331f”))) ’

O

The Hilbert space of state vectors in the system of a non-relativistic charged particle
interacting with a quantized radiation field is given by Mp = L*(R?) @ F(W). The unitary
operator U given in Theorem 3.1 implements unitary equivalence between Mp and

) &
M= Lz(ﬂad)@)}'%/ Fda.
R

For an H_;-valued function on R?, p(+) : R* — H_,, we put
f

d
Ful) = (0, () s 0)

S~
u—th
Then we define an operator in M by

S, = [ b5 (1 () o

Let D, (4 = 1,...,d) be the generalized L*-derivativein the p-direction. Then the interaction
Hamiltonian of the non-relativistic charged particle with mass 1 and the quantized radiation
field is “formally” given as an operator in M by

d
H,=:3 (-iD,®I- %”)z + 1@ H,. (3. 4)
p=1

Do =

Here “formally” means that we mention nothing about the domain of H,. The precise
definition will be given in the following section. We set

1& . 2
S (~iD.@I-¢5,) .

u=1

H,o=

o |
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We conclude this section with giving a typical example of the H_;-valued function p(-). One
can take

pla) = (f()e)” 3. 5)

where f is a real-valued rapidly decreasing infinitely differentiable function on B™. In this
case, the corresponding standard Boson Fock space element A(p,(x)) is given by ([2,4,23])

U r(pula)U = A(f(a),

_ _l_ 1 d—le:ffe_i.x d—1 ufF”
= ﬁ{a (EE)T___l \/il- )—l—a(@r1 \/ﬁ )}

Then the function f serves as an ultraviolet cut-off function for photon momenta. Moreover,
pu(z) satisfies the Coulomb gauge condition (see (4.17)).

4 FUNCTIONAL INTEGRALS

In this section we construct a self-adjoint extension of H, given formally by (3.4) and derive
a functional integral representation for the heat semigroup associated with it. The main idea
is to apply the FKN formula and the FKI formula ([31,Theorem 15.3]).

For an ‘H_;-valued function p, ¢x (7_; (5.(x))) is a self-adjoint operator for each x € R?
as a multiplication operator in F. Then, for each z,y € %, we can define a unitary operator

on F by
eXp{—l@ (Z +Pp:( ))(Tﬂ—yu))}
u=1

= exp(¢°(x,y)).

Let ps(z) be the heat kernel function

Uy(x,y)

1
ps(x) = (27rs)_%exp (—2—-|$I2) , s>0,zer’
s
Then we define a family of the contractive self-adjoint operators {@,,}s>0 on M by

Qo) () =\/ps WU, F(y)dy, >0,
(QoF)(z) =

where F(-) € M and the integral is the F-valued Bochner integral. Actually one can easily
see that

IN

1QpsFllm < ||l EONPC)l|

[l ae

L2(Rd)

IN
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Let
o H_)) = {p() B = | 7o (5() € CR 5 Hal) o =1, d}
We define a subspace M5® in M as follows. For p € [CH(®Y;H_y)], we say that F' € M C
M if and only if the following (i)-(ii1) hold
(i) F(-) € H}(r% F).
(ii) For each y € B9,
Flyye F*, ,Fly)e F>, p=1,..,d

(iii) (Integration by parts condition) For all G € M, z € R? (see Lemma 4.3),

Jim By,po(e — y) - (F(y), Up(@,9)G(x))5 = O,

Z}LHOLPS(:U —y): 0y, (F(y),Up(z,y)G(2)) =0, p=1,.,d

Lemma 4.1 Let p € [C3HR%H )], GEM, and F € Mzor. Then (Q,:F, G) ,, is differen-
tiable in s > 0 with

.o d
lim —(Q,F,G) = (—H,oF,G),,. (4. 1)

s—0+ dg
a

For the classical cases ([31,Lemma 15.1]), analogue of (4.1) for the Schrédinger Hamilto-
nian with vector potentials is important for constructions of path integral representations.
In the same way as in the classical case, however, (4.1) can not be proven directly. To verify
(4.1), we prepare two fundamental lemmas (Lemmas 4.3 and 4.4) as follows. Notice that for

F,.Ge M,

(@ueF. Gy = [ [ e = 9) Wl ) F(w), Gl dy.
Fubini’s lemma allows one to interchange [ dx and [ dy. Moreover, we have

/H;dX]Rd dxdy

d x?
= /Rd (9_; + gz‘) ps(@)dz|[F[Iml|Gllm < oo,

(—l’(;lgl'ns(l7 -y) (Up(:ri,y)F(y), G(w»}'

so that we can interchange the differential % and the integral [ dazdy. The following propo-
sition is fundamental.

Proposition 4.2 (1) Let f be a Lebesgue measurable bounded function on R? which is con-
tinuous at 0. Then

lim /T_r.gd ps(x)f(z)dz = f(0).

s—0+

(II) For any « > 0

s—0+

lim /I;r|“ps(;r.)dx = 0.
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Proof: Elementary calculations. _ O

We introduce notations and estimates. For p € [CT(R?; H_,)], we set

go(z,y) = (@ y) + 60 (2, y),

d
S0 (z,y) = ;f(\; (A1 (35(9)) + bnomr (B(2)) (x; —yj)),
2 2,y) = -¢,.( 21y (Bu(y) — baamor (Bule))), 0<n <1

Note that ¢2(0)(z,y) = ¢*(z,y). For p € [C](R% H_1)], put

=1

cun(p) = EUPJZHan ()24,

dun(p) = sup ||gm_1(Pu(e))ll-1, 0<n<rl<p<d

In the case n = 0, we use notations ¢, o(p) = co(p) and d, o(p) = do(p). From (3.2) it follows
that for p; € [CT(RGH_)],0 < kb < r1 < p; < dyi =1,...n, and ® € F* such that
Né = NO,

R R A CR R A R N

< V2r/N + 1...\/N +n

@]
Il 1{(1+50k Jeui ki (Pi)le =yl + (ki + 8k 1) ki1 (pi) } - (4. 2)

Lemma 4.3 Let p € [CI(RGH_,)], G € .7-' and F € C™(R%; F) such that 0F(y) € F>,
k=1,..,r=1. Then (U,(x,y)F(y),G) z is r-times differentiable in y. In particular,

Oy (Up(@,1)F(3), G) = Uy, p)et D (2,9)F(9),G) . + (Up(, ) F(4). G
p € [CRYH_)), (4. 3)
(Up(,9)02F(y),G)_+2(U,(w,1)¢5 W (2,9)8,F (y),G)
+ (Ut { (9@0) + 8 e0) ) P0).G)
p € [CHRYH)]. By

92 (U,(z,y)F, G) »

Yu

F

Proof: Suppose that H € F such that NH = NH, and p € [CH(Rr?% H)]. For simplicity we
put ¢*(z,y) = ¢(z,y). Since, by (3.2), F* is the set of the analytic vectors ([25,X.6]) of the
self-adjoint operator ¢(z,y), the following equation follows

oo ) H.G) s = 3 7 (e ) LG (4. 5
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One can easily derive from (4.2) that each term on the r.h.s.of (4.5) is differentiable with
respect to y, with

By (& (2.} H,G) z = n (" (2,4) 85 (2, 9) H.G)_,

from which and (4.2) it follows that

< VN +IVN +2./N+n+1
Z Vo

X (Cu,l(P)llf =yl + 2do(p)) (2co(p)lz — y)" |H |7 |G| 5 (4. 6)

Then the left hand side (l.h.s.)of (4.6) converges uniformly in the wider sense with respect
to y as k — oo. Hence the differentiability of (U,(x,y)H,G), with respect to y, follows.

From the strong differentiability of /' and the fact 0F(y) € F, (4.3) follows. Eq.(4.4) and
the remaining statements can be shown similarly. O

Lemma 4.4 Let p € [C] (R H_y)], G € M, F € M such that F(z) € F>, and
0<kj<rj=1,.,n. Then

lim <(,, (2 = X)) (2,2 = X).dl @,z — X) Pz — X),G(x)) do

X0 Un—

-/ W (2) g r)(@AﬂmedI
Proof: One can easily see that for all = € R?
5 — _;\ljin,gl‘/f’(x’ r—X)=1Ir
in F. Let K € M be such that NK(2) = NK(z) for all z € R%. Then

/n; da [{ (6002, 2 — X) — ¢4 (2, 2)) K (2).G(x)) |
<

VEFTT
V2

where d,, ;(p) = sup, || Zf . c),a/ﬁ Yrm_1(pu(x))||-1. Hence by (4.2) and by

ki (P) XN K1l |G,

B [|F(-— X) = F()lly =0,

one can directly derive the lemma. |

Now we can prove Lemma 4.1.

Proof of Lemma 4.1.



Note that

d 1

Eps(a' - y) = Iszps(x - U)

Since F' € M:°, one can use the integration by parts formula. Then, by (4.4), we have

d 1
E(Qp,sF7G> = 5

d

Z/ﬂgd _ ddyps(z — )8 (Up(x,y)F(y), Glx)) -
=1 X

1 &
pu=1

< U Unle )8 F(y), G()) , + 2(Up(. )6 (2,9)0,F (), G(x)) |
< D{(Ew0) + )} PG |

1
E /Rdmddrdyps (z —y)(z,y)

_ %i/ X’d\/dr] - X).
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Here, to apply Proposition 4.1, we divide I,(z,y) in two components, I, = I, + I,_, as

follows;

Tus(e,y) = 2(U,(x, um (@, )9k (y), G())

{0 { (606, 0) + 2600 @ 00) + 600} P01 Gl

F

Ii_(z,y) = <Up(;v,y)8ﬂF(y),G(;r)> +2<U (2,9)80 8 (2,9)0,F(y), Glw))

+<Up(:r,y){(¢ﬁ’9)($vy)>2+¢u- (@, )} Flu) & ")>

F

By (4.2), we have

l/}md del, (x, 2 — X)l

N + N4+ 1N +2
< 161100 {25 X1 90l + L

w4 4ot al XTI e+ el Xl

= 61|‘X| + 62IX]27

‘/ del,_(v,z — X)‘
]Rd
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< 161l {nazm ) Y

(LD 4 T, )
- (4. 7)

By Proposition 4.1 (II), we have

/d‘(p9 (X /dr],H_ (v, — X)‘< llm/dX])s )(611

Thus it is enough to analyze the I,(-,- — X)) component. By Lemma 4.4, it follows that

18, (|

hm

X|+e|XP) =

tim [ 1, (a. -X)dszdlu_(w,x)dx. (4. 8)
By (4.7) and (4.8), Proposmon 4.1 (1) yields
lim L FG),, = 1l dl dXps(X) | Li-(z,2 — X)dx
i, 75 (QuaP Gl = sl%# 3 e tX20) [ itz

a

Lemma 4.5 Let p € [CE(REH )] F € MP, and G € M. Then (Q,,F,G) ,, is right side
differentiable at s = 0 with

d o |
% <Qp,sﬁ1 (T>M |s=0+ = - (Hp,OF7 G>M . (4 9)
Proof: We have that
(QpaF,G),, = / pa( X )dX / Uy(z, 7 — X)F(x — X),G(z)) , da
(Q,0F,G),, = A (F(z), G(z)) 5 d.

Hence, similarly to the proof of Lemma 4.1, it follows that (@, ,F, G) ,, is right continuous
im s at s = 0. Thus by the Taylor expansion we can see that

lim (Qpels G = 1 G = lim —d— (Qp NNEW
e—0+ € s—0+ d
= < p,OFv C)M
Hence (4.9) follows. O

Following [8,31], we shall construct a contraction Cy-semigroup from {Q,n}n.>1. For
simplicity we put 2™ = nx.
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Lemma 4.6 Let p € [CE(RYH_,)]. Then, for all t >0, the strong limit
§ — th”t = Gy(t)

n—od

exists. Moreover, G,(t) has the following functional integral representation with I, H ¢ M
_ au / d;t_]6i¢f(zz=l( Jy 7o (Futbla)+)) byt & [ Dum—a(Fulb(o) ) )ds ) )
RIxQ Q-1 -
x F(b(t) + =) H(x).
(4. 10)

Proof: To prove the existence, we show that {Q”* } is a Cauchy sequence in M. We see
ne ) n>1
that

= (F, Q2”;§'F> <F,Qif”%F> —2R(F, Qo Qs F> . (4. 11)

Tmx

HQn* F— Qm* F

4 n*

The last term on the r.h.s.of (4.11) 1s
_/ Qn* Qm*F)( )>f dx

pL(‘T - ‘Tl)'-p-t—("rn*—l - wn*)pL('rn* - yl)--pL(ym*—l - ym*)
R xR*d x|gmed 1+ nk ma m*

X (F(x), Uy(z, 1) Up(@ et T ) Up (T s 1) Up (Yrmsm1s Y ) F (Y )) 5 dd Ed

= /. dr< (b(2t) + "‘f’f(ziﬂ'”—I(Dwmw)’)zr(m)> :

L2(Q;F)

55, (158) +2) 2 (o (o) )
o (50) - ()
<
0

where

Cpnlz) = Y
g{ﬁ b(———k+t> )+ﬁu(b(n%(k—1)+t>+x)}
(o (e ) =n e+

From Lemma 2.3 it follows that for each z € R¢

=

s— lim lim 7_1(0, nn(z))

m—0oo n—oo

2t 1 2t )
= [ mei (Bula + b)) by 4 5 [ B (Bulbls) + 2)) ds
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in L2(€%; [H_1]). One can easily see that the strong convergence of T-1(0,mn(z)) in
L*(Q; [H_1]) implies that for each x € R? and ® € F,

d
s = Jim_lim exp («s (z <Du,m,a<w>>)) o

pn=1

—-exp(zd)}-(Z/th L (Bl + b(s))) db, + = Z/ B,m_1 (Bl + b(s )))d))cp.
(4. 12)

in L*(Q; F). On the other hand we have

ipF ¢ T—1lYu,mn"
<F<b<-zt> b, # (Ehea s “’)F<->>
' L2(Q,F)

< NF(b(2t) + Mlp2@m | |F()|z2ar) € LN (R).

Hence, by the Lebesgue dominated convergence theorem, we have

lim lim <F, QU Qrr k)
N—00 M—+00 Pimy P M

- /R dz (F(b(21) + ),

7 (s ([ 7o Gutotor )bt [ uma (oto)+2))s) ) F(’x)> (4. 13)
L2(QF)

Similarly it can be easily seen that <F QZ"‘* > and <F sz* F> converge to the r.h.s.
M M

Tmae

of (4.13) as n,m — oo, respectively. Then 1’( follows that {Q” }n>0 is a Cauchy. Eq.(4.10)
easily follows from (4.13). O

Lemma 4.7 Let p € [CZ(RY;H_1)]. Then the family {G,(t)}s>0 is a contraction Co-semigroup
on M.

Proof: By the definition of G,(t) and the proof of Lemma.4.6, it holds that
G,(1)G,(s) = G,(t + s). (4. 14)

We show the strong right continuity at ¢ = 0. Because of (4.14), the weak continuity implies
the strong continuity. Hence it is enough to show that

Sim (G (OF, H) = (Go(0)F, H) , F € M,HE M.
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From (4.10), we have |
(F,G,(t)H) \, — (F,G,(0)H) ,,
= [ dr (R + o) = P,

e»z'qsf (ZLI (fo' 71 (Pulb(s)+) )dbu+3 [ Buﬂ_l(;u(b(s)-}-x))ds)) H(-r)>
L2(Q;F)

+ [ dx (F(x),
K4

(65¢F<ZZ=1 (fot "~1(;u(b(5)+r))dbﬂ+%fotaﬂr—l(;M(b('9)+l')ds))) _ ]) H(.l)>
L2(Q;F)
(4. 15)

The first summand on the r.h.s.of (4.15) can be evaluated as follows

» dx (F(b(t) + x) — F(x),

s (ZLI (fo‘ m1(Pulb(s)+2) Jdbut 5 Bum -1 ( ;u(b(s)"‘l’))ds))

H(a‘)>
L2(Q;F)
< e ([ 1P + ) = FO)llaadn) "
Since
1]};% [|F(b(t) + ) = F()llm =0, asbeQ,

the first summand on the r.h.s.of (4.15) converges to 0. On the second summand on the
r.h.s. of (4.15), one can see that by Remark 2.2 (3)

s —lim (/Ot 71 (Fu(b(s) + 7)) db + %/; 1 (u(bls) + ;1.:))ds) —0

t—0

in L2(Q;[H_1]). As in the case of (4.12). we see that for ® € F

d t 1 rt
s~ limexp (msf (Z (f 7= (3t + b+ 5 [ 0,m (bLs) + m))ds))) =0
u=1
in L*(; F).
Hence, by the Lebesgue dominated convergence theorem, we can derive that the second

summand converges to 0 as ¢ — 0. The strong continuity in the case ¢ > 0 is proven similarly.
a

By Lemma 4.7 and Hille-Yoshida’s theorem, for each p € [CZ(R%; H_,)], there exists a
unique positive self-adjoint operator H, o in M such that

G(t) = e~Hoo,
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Lemma 4.8 Lel p € [CH(RYH_1)]. Then the self-adjoint operator H,q is a self-adjoint
extension of Hp’0|Mgo.

Proof: Let F € D(H,4) and G € M2, Then we have
<l (e—fﬁpvo - 1) G, F> = lim < (@~ 1)G F>
t M N—0C M
) nx—1 1 Nk ; n*-L

= Jm X (T QgD eQEr)
. . n* o ¢ ylnxs)
= tm [ (5 (Quy - 1) QLR ds

Since, by Lemma 4.5,

Tk

w — hm — (Q L — I) G =-H,,G,
the norm ||22(Q « — I)G|| ¢ is uniformly bounded in n. By Remark 2.4, we can see that

s — lim Q"1 = G, (ts).

n—oo - Py

Then we have

] o 1 : ~
<£ (e—th,o _ ]) G, F> — / ds <"‘Hp,OG«, 6_t5Hp’0F> )
t M 0 M

As t — 0 on the both sides, we get

(G H,oF) = (H, (G, F),,

which implies that G € D(H,0) and

H,,G = H,,G.

Thus the proof is complete. a

We denote the extension H, o by the same symbol H,o. We give a rigorous definition of
H, in terms of the form sum + of H, and I @ Hy;

H, = H,,+1 ® H.

Next we study functional integral representations concerning e"*He, We introduce a multi-
plication operator in L%(R%; E) by

¢, = /:S Pe (F—2(ﬂﬁu($))) dz.
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We define an operator acting in L*(Rr%; &) b

pYOS =

zdj( iD,@I-¢20) . s>0.

=1

BN | —

Since for p € [CE(RYH_1)], T—2(JoBu(-)) € CE(RY[H —2]), wesee that J,5,(- ) € [C3(r%;H e)]
Then one can define a se]f—adjom’r operator H, o, in the same way as H,g. hen t

following equation holds for F\, H € L%*(r%; )
(F,e oo i)
£
- / dp / dp_ze” (s (5 w2 Geintetorta)) bt } [ dum-a(dutsio)+21as) )
RExQ Q-2
xF(b(t) + z)H(z).
Lemma 4.9 Let p € [CZ(R%H_,)]. Then the following equation holds on L2(R%; E)
Jye oo Jx = ElemtHoos g
where J, and E, are defined in (3.3).

Proof: Note that for any A € H_,, Jseitr(A) Jx = Eaei‘ﬁf(ﬁA)ES, and (JYF) (z) = JX (F(z)).
From (4.10) it follows that for F, H € L*(r%; £),

<F, Jye oo J2H >L’2(1Rd;5)

:/mdxﬂdu((J;‘F)(b(t)er),
o7 (2, (fy w1 (P42 )bt 2 [ s (Futbts")+)42')) ) (J H )(;r:)>

F

= [, du(F(b(t) + )

i ¢ T [ (Pu(b(s")+2) )bk [F B, m_ (Fu(b(s")+2)ds’
Ese 5(2#—1‘7 (fo 1(p“ a:) ® 2f0 " 1(”“ )))ESH($)>

= (F, B,e™Heos B, H)

E
L2 (R%E)

Since F, H € L}(R% £) are arbitrary, the proof is complete. i

Now we are ready to state the main theorem in this section.
Theorem 4.10 Let F,G € M, V € Cy(B%) and p € [CHR?Y; H_y)] such that
sup [|[@}7-1(pu())l|_y = sup [Gpu(w)-1 <00, p=1,....d, (4. 16)
z€RI z€R

=0, (the Coulomb gauge). (4. 17)

-1
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Then
<F, e—t(Hp+V)G>M = ,/H;dxﬂ du A dp_pexp (— /: V(b(s) + m)ds)
d .
X exp (i¢g (Z/O ot]m—1 (Bu(b(s) + a:))dbu)) JeF(b(t) + 2) JoG(z), (4. 18)
u=1
where

[ il (ub(s) + <) b,

is the time-ordered [H_,]-valued stochastic integral associated with the family of isometries

[7:] from [H_1] to [H_o).

Proof: By the strong Trotter product formula [18] and Proposition 4.3 (c), we see that

<F, e"t(H""'V)G>
M
- i (P (7)),

= lim <F, Jy (Jte"v:* ”"] )e neV (Jt_ e "“J* )e_#v ......

........ JoemmeBeo 1% ) emmiV I G

( ne 6 ] ) e 0 ]>M !

from which and Lemma 4.9 it follows that

= nlinr,;lo <}77']t (Ete e POtE>€ n-V<Et__t_‘€ nHPOt_7uEt _) e—.rT;V

n*

Tk

R ¢
eV (E t € “arH ok B ) e~ JOG>
nx M

= lim S,..
n—oo

Let ﬁ = s. From the definition of H,» and Lemma 4.6 it follows that
Snx = kh_{ﬁlo <F’ Jg ( 'CtQ’;:kﬁ,tE) v (Et sQ Eis ) eV ..
—sV 7 ()k* —sV v
..€ (Est,f;,s s) € JOG>M

= kllrnolo Sn*,k*a

where @, ;4 is defined by operators on L*(R% £) such that
Qe F)(x) = /Rd pilx — ), (2, y)F(y)dy, t>0,
(QoopF)(z) = F(x),

and

Upe(z,9) = exp {§¢ (Zw 1 (u(s) + Bulw) (= yn) }

pu=1
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One can see that

X n* k*
Spsx = 2) P Ve S i V(&)
s ko o mdhe s s pike Py(21)... Ps(Z )e j i

n*

X <}‘1() J* (E (/pf("a)Ft) (Et__ l[pf 5( )F-{ 3)

(Bl (45) Ba) JoGa3,)) (1.19)
where
PS(‘f}) = Ds (‘If*l )ps( ; - J/j) pS(mﬁ"*_l - ;Iff*),
U,oTj) = pa(x] 1 ) U, (2] ,w?)...Upa(x'?*‘l,xf*),
= ¢€Xp {;“ﬁf (Z ]a Z T—1 (ﬁu it + ﬁu(x;)) (‘r;,—ul - ‘r;,u)) } ’
=1
r?-—x;‘*l, ré*_z J=1,,n*.

By Proposition 3.3 one can neglect £; in (4.19), so that

Snee = [ da{ F(b(2) + ),
d nx—1 nx
Ji exp ( (Z > Uyslmoa ( uj,k(ﬂ”))) - SZV(bUS) +$)) JoG(x)> )

p#=1 ;=0

where

O, ,k(z) = i‘i {ﬁu, (b (%s +js> > + Py (b<m1; s +JS> + I)}

m=1

m . m—1 ,
x{bﬂ (k—*s+18>~b ( s+»)} S

As in the case of (4.12), by the Coulomb gauge condition (4.17), we see that for each z € R?
and ® € £,

d nx—1
s — kli_d_n;oeXP ( (Z Z ]JS]T 1 ( Opik )))) ¢

#=1 j=0

d nx—1 .(541)s
:eXP( (Z Z /(+ ]157‘" 1(Pulz +b(s )))dbu))q)

u=1 j;=0

in L?(©;€). On the other hand, we have

d nx—1 n*
< F(b(t) + -),exp (2¢s (Z > Uslm- 1( wink()) ) — s V(b(js) + -)) JoG(-)>
J=1 2(Q:E

H=19=0 L2(Q€)

< eXp( sinf V(z ) ) ) IE () + Ml2i@um 1GO) r2@iry € L (RY).
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Hence, by the Lebesgue dominated convergence theorem, we have

Jim S, = /m da;<JtF(b(t) +a),
d nx—1 n*
exp (ngg (Z > EIM-(;I:)) — s> V(b(js)+ ’v)) JOG($)> ,
u=1 j=0 Jj=1 L2(Q;€)

where
(J+1)s

0,;(z) = / Grolmr (Bu(b(s") + 2)) db,

8§

Note that for sufficiently small € > 0

|Geae Gelm s (Bu(2)) = 7@, = |JeFImoa(ul@) — m-a(ul@))]|_,
< ¢ sup |&pu(x)]_y -

Hence by Theorem 2.5 and (4.16), we see that for z € R?

nx—1 nx—1
s= i 3 Ousfe) = 5= fim 32 j " Giclron (5ulbls) + 7)) db,

. n—-o
=0

= '/(:L;o—»t]ﬂ‘—l (u(z + b(s))) dby,

in L2(Q;[H_,]). Then again as in the case of (4.12), for each z € R? and ® € £

d nx—1 N
s—hmexp( (ZZ/ jLﬂ_l(pu b(s) + )db))q)

= exp (¢ (Z [ Godmos (Bl + bs)) dbu)) @ (. 20)

in L%(§; £). Passing to the subsequences for n (hereafter denoted again by n), (4.20) holds
for each x € R? and a.s.b € Q in the strong topology of £. Since V(b(s) + z) is continuous
in s for each z € R? and a.s.b € Q, we have

nx—1 t
lm L Z V( ( >+1) :/ V(b(s) + z)ds, x€R*a.s.bc.
0

n—co pk

Furthermore,

n* d nx—1
exp (* SSV (blis) + o) (ret0+ 000 (i¢a (Z > Du,j(»))'JOG(-))
j=1 =1 j=0 £

< exp (—sinf Vi) I1F(5(2) + =IOl € L (0 x dn).
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Hence, again by the Lebesgue dominated convergence theorem we get (4.18). O

Similarly to the classical case [31,Theorem 15.5], we have an interest in extending

(4.18) to more general potentials. From (4.18) it follows that for V € Cy(R?) and p satisfying
the conditions stated in Theorem 4.10

(PG | < <||F||f,e—t(-%a+v)||(;1|f>[2md). (4. 21)

We define for G € M

: = |G(a)||F # 0,
stgnG)(xz) = [1G(=)l|7*
(rian@ie) {0, Gl = 0.

Lemma 4.11 Let |V| be a multiplication operator which is —%A -form bounded with relative

bound €. Then for p satisfying the condition in Theorem 4.10, |V| is H,-form bounded with
relative bound < e.

Proof: Substituting V = 0 and F = sign (e'tHPG) -1, where ¢ € CZ(R?) and ¢ > 0, in
(4.21), we have

-tH, -t(-1a) g >
<Ib’ le GHI>L2(K") N <¢’ Gl L2(rd)
Hence it follows that
|(ee6) (@), < (- CENGO) 2), aer €

Since

1

H,+E)3G)(z) =T (=) [ P} (eG) (a)dt, aex cRLE >0,
2/ Jo

one can see that

e ot )l < (45

Then we have
LA @i

<[, {lV(w)l% ((—%_AJFE)'E ||G(-)nf) (:c)} dz.

1
2

HG()H;) (z), a.excRr

(05,274 6) 0} o

Thus

1 1 _% M

1 n—= 2 {—3 v G’ .
F(H, + E)72 6|, H|V| (-38+£) TGO L2
G = DI |




117

which implies that the following operator norm estimate holds

o 1 -3
VI3 (1, + 1)78||, < || IvIE (—§A+E) (4. 22)
, L2(R9)
Since
i (VIE(—tas )| =
g [VIF (=5 + ) =
L2(R9)
" the lemma follows. a

For a multiplication operator V, we set V, = maz{0,V} and V_ = maz{0,—V}. Let us
introduce a class P of potentials.

Definition 4.12 A potential V is in the set P if and only if Vo € LY (RY) and V_
——A -form bounded with relative bound < 1.

For V € P, we define a quadratic form ¢ by
HF,F) = (H%F, H}:F> + <VEF, VfF>
M
Q1) = QH,) NQ(V4),

where Q(A) denotes the form domain of a positive self-adjoint operator A, ie. Q(A) =
.D(A%). By Lemma 4.11, t is positive closed form on @Q(¢). We denote the positive self-
adjoint operator associated with ¢ by

HP+V+;V—1

_ <v_%F, V?F> ,

M M

so that Q(H, 4V, V) = Q(1).

Theorem 4.13 Let V € P and p € [CE(R?;H_ )] satisfy the conditions in Theorem 4.10.
Then (4.18) holds with H, + V replaced by H,4+V,—V_.

Proof: As in [31,Theorem 6.2], one can easily see that by an approximation argument, (4.18)
holds for V € L>(R?)(the set of bounded functions). Fix V € P. We set

L) Vil(z), Vi(z) <m, ) V=), Vo(z)<m,
Vin(z) = { n, Vi(z)>n Voml@) = { m, V_(z)>m '

Then we have

: t
(e @vinvnG) = [ duexp (= [ (Vn = Von) (o) +2)ds)
JiA e 0

X <JtF( b(t) + x),exp (ng (Z/ Goot]m—1 (Fu(b(s) + z))d )) 0G(a:)> .
=1 £

(4. 23)
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Define closed quadratic forms by

tn,m(Fsﬁj) - <H§~H}:>

tnoo(Fy F)

Il
P
=
Do
s
RSy
~——
.«
+
N
=
3
=
-
+\<
e
~——
<
|
P
<
©
R
<
!
~
<

R 1 1 1 1
b PV F) = <Hg JVHE) o+ <Vf FV} F> _ <V3 PVe 1?‘> ,
M M
(H,) N Q(V4).
We denote the self-adjoint operator associated with ¢, ., by H, + V,,—V_. We have
tn.m 2 tn.m+1 2 t'n ,m+2 2 2 tn.oo

and t, ,, — %, in the sense of quadratic form on U,,Q(t, ) = Q(H,). Since ¢, ., is closed

on Q(H,), by the monotone convergence theorem for forms ([17,VIII. Theorem 3.11]), the
associated positive self-adjoint operators satisfy :

H,+V,,~V_,, —»H,+V,,~V_
in the strong resolvent sense, which implies that for all ¢ > 0,
exp (~1 (Hy+Vin—V_pn)) — exp (1 (H, 4 Vi VL))
stroingly. Similarly, we have
- tn,oo S tn+1_.oo S tn+2,rx- S S tc(:-,':o

and t, 0o — tx o 10 the sense of quadratic form on

{FenQ..)

Sub Ly ol P, F) < 00} = Q(H,) N Q(V4),

Hence the monotone convergence theorem for forms ([17,V ITI. Theorem 3.13],[30]), we get
exp (——t (Hp{LVM}V_)) — exp (—t (HP+V+¥V_)) , 120,

strongly. On the other hand, the r.h.s.of (4.23) converges to

/mdxﬂ dyexp (_ /Of (Vin — V2) (b(s) + Clﬂv)ds>

><<JtF(b(t)+r exp( (2/ Goild—r (7a(b(s) + ;zr))dbu)).]o(}(w)> :

£
(4. 24)

as m — oo by the monotone convergence theorem for integrals. Also (4.24) converges to the

r.h.s of (4.18) as n — oo by the Lebesgue dominated convergence theorem. Thus the proof
is complete. O
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5 INEQUALITIES

In this section we shall derive some inequalities similar to classical models from the functional
integral representation constructed in Section IV. Let o(A) be the spectrum of A. For
simplicity, we put for V € P

H,4V,~V. = H,+V,

1 . . 1
) S = —— 7
2A+¥+ Vo = 2A+\.

Theorem 5.1 (Diamagnetic inequality)
Let V € P and p € [C3(R?; H_,)] satisfy the conditions in Theorem 4.10. Then

1
infa(—;)—AJrV) <info(H, +V). (5. 1)
Proof: Similarly to (4.21), we can also see that for V € P

(e @6y | < (1P|l e 265 (5. 2)

L2(md)

Fix G € M such that Eyx, v ([Eo, Lo+ ¢))G # 0, for all 0 < ¢ < ¢; with some ¢; > 0, where
Ey v denotes the spectral projection of H, + V and Ey = inf o(H, + V). Then

. 1 7
infe(H,+V) = tliﬂ_m —7 log <G, e"t(H""'”G>M

1 LAY
> tim —Log (IGlr. 24 G115
t=oe. o L2 (m)
: 1 1 ~tinf o(—% 4
> Tllrg_;log (HGHg__e tinf o( 2A+l))
> info (——;—A + V) .
Thus (5.1) follows. |

Theorem 5.2 (Abstract Kato’s inequality)
Let V € P and p € [C3(R?; H_,)] satisfy the conditions in Theorem 4.10.
Suppose that ¢ € D((—3A + V)z), ¢ >0 and G € D((H, + V).

Then ||G()||x € D <(—%A + V)i) and the following inequality holds

. o 1 A 1 3
R ((signG)d, (H, + V) G) 0 > <(—§A+V) v (=58+V) |1G||f>L2(M). (5. 3)



Proof: The proof is a slight modification of that of {15]. By (4.21), we have

[ — et3a+v) [ — e—tHp+V)
(WPl =) < {RIZSr)
t L2(R?) M

t
Putting

I - 6—t(%A+V)
st(@, 9) = <¢, f¢> . ¢ € L}(r?),
' L2(Rd

one can see that {St}tzo is a family of positive closed quadratic forms such that

St S Sk, 1 S k

Thus the monotone convergence theorem for forms, we see that s..(G, G)
a closed quadratic form on

Re = {F € M|sup(F,F) < oo},
¢

moreover the corresponding positive self-adjoint operators to s; converge to

c to (1A + V) in
the strong resolvent sense. Since, by (5.4), F' € D(H, 4+ V) implies that ||F||r € Rs, we
have ||F||r € D ((—;A + V) 5). By (5.2), we have

R <F, L (et®mevr ) G> < <|
t M
Substituting F' = (signG)¢ into (5.5), we have

§R<(signG) w,% (e—t(Hp'FV) _ 1) G>M <¢, 4 ( —t(-1a+V)

Then, taking t — 0+ we see that

P f’_tl_e—t(—%A+V)||an> - ;{-?R(F, G) g+ (5. 5)

L2(RY)

Glis) .
~1)lGlls)

lim ® <(signG) g, (et @A) _ ) G> — R ((signG), (H, + V) G)
t—0+ t M

M

and

() 1) il
tl—l-g}}- < 1 ( ’ N I HGH}- Lz(Rd)
A

¥,
<( ; +v) %, (—%A+V)%HGII>L2W-

)
Thus (5.3) follows.

= sup, $;(G,G) is

120

(5. 4)
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6 REMARKS

(1) Any concrete core of the Hamiltonian H, defined in Section IV is not known. In [23],
in the case when the coupling cconstant is suﬂimently small, the authors proved essentially
self-adjointness of H,.

(2) In the FKI fmmula the Wiener path measure dy is more useful than the Brownian path
measure Db. For the Schrodmger Hamiltonian

d
Z—ZD AN +V

L\.)I»-—"

the FKI formula is, first, established for a magnetic vector potential A,(-) € CP(R?), u =
1,...,d, and after that it is extended to A,(-) € L2 _(R?) by a limiting argument([31])

In the model which we consider, ¢% , corresponds to the classical magnetic vector poten-
tial A,(-). But we have no strategy of limiting argument used in the classical model. Then
it is necessary to deal with the Hilbert space-valued stochastic integral for ¢% . such that

7_1 (pu()) € CH(®%[H_,]) directly (not using limiting arguments as in the classical case).
Then it can not be assumed that 7_ 1(/)“( )) € H*R% [H_4]) i.e., one can not define (see

(26))
[ o (rs(ulels)) doy.

Therefore we consider the Hilbert space—valued stochastic mtegral not on the Wiener path
but on the Brownian path. .

(3) The FKI formula holds without the Coulomb gauge condition([31]). However, in our
model, if one does not assume the Coulomb gauge condition (4.17), then in the integrand on
the r.h.s.of (4.18), the factor

12" ki d , e
exp (—5 >[5 s 3 O (ﬁu(b(S)))dS) (6. 1)

appears. It is not clear how to show the convergence of (6.1) as n — oo in the strong

topology in L2(€); [H_2]).
(4) In scalar field theory ([21,22,26]), the range of the projection e, ;) (notations follow [26]) -
can be characterized by some support properties([26,Proposition II1.4]), i.e. '

Ran ( fa b]) = {f eEN lsuppf C (a,b) x ]Rd} -
In particular
Ran(e;) {fe ’Vlsuppfc{t}xﬁl'}

However, the corresponding projection [e[, 3], which we introduce in Proposition 3.2, can not
be characterized in such a way. For example

Ran([ed]) # {ma(f) € [Hoal [suppf C @i {t) x B}



122

7 REFERENCES

[1] A. Arai, Rigorous theory of spectra and radiation for a model in quantum electrodynam-
1cs, J. Math. Phys. 24(1983),1896-1910.

[2] A. Arai, A note on scattering theory in non-relativistic quantum electrodynamics,

J. Phys. A:Math. Gen. 16(1983),49-70.

[3] A. Arai, An asymptotic analysis and its application to the nonrelativistic limit of the
Pauli-Fiertz and a spin-boson model, J. Math.Phys. 31(1990),2653-2663.

[4] A. Arai, Scaling limit for quantum systems of nonrelativistic particles interacting with a
bose field, Hokkaido Univ. preprint series in math.59

[5] J. AV1011 I. Herbst, and B. Simon, Schrodinger operators with magnetic fields 1. General
interactions, Duke Math. J. 45(1978),847-883.

[6] P. Blanchard, Discussion mathématique du modéle de Pauli et Fierz relatif d la catastro-
phe intrarouge, Comm. Math. Phys. 15(1969),156-172.

(7] J. T. Cannon, Quantum field theoretic properties of a model of Nelson: domain and
eigenvector stability for perturbed linear operators, J. Funct. Anal. 8(1971),102-152.

8] P. R. Chernoﬁ, “Product Formula, Nonlinear Semigroups and Addition of Unbounded
Operator”, Amer. Math. Soc. Providence,R. L. (1974).

9] E.B. Dav1es Particle-boson interactions and the weak coupling limit, J. Math. Phys.
20(1979), 345-351.

[10] J. Frohlich, On the infrared problem in a model of scalar electrons and massless, scalar
bosons, Ann. Inst. Henri Poincarél16(1973), 1-103.

[11] J. Frohlich, Existence of dressed one electron states in a class of persistent models,
Fortschritte der Physik22(1974), 159-198.

[12] J. Frohlich and Y. M. Park, Correlation inequalities and thermodynamic limit for clas-
sical and quantum continuous systems, Comm. Math. Phys. 47(1974),271-317.

(13] J. Frohlich and Y. M. Park, Correlation inequalities and thermodynamic limit for clas-
sical and quantum continuous systems I1. Bose—Flnstem and Fermi-Dirac statistics,

J. Stat. Phys. 23(1980),701-753.

[14] F.Guerra,L. Rosen,and B. Simon, The P(¢), Euclidean quantum field theory as classical
statistical mechanics, Ann. of Matlh. 101(1975),111-267.

[15] H. Hess,R. Schrader, and D. A. Uhlenbrock, Domination of semigroups and generaliza-
fion of Kato’s inequality, Duke Math. J. 44(1977) 893-904.

[16] F. Hiroshima, Scaling limit of a model in quantum electrodynamics, J. Math. Phys. 34
1993), 4478—4—518.

17] T. Kato, “Perturbation Theory for Linear Operators”, Springer-Verlag, Berlin-Heisenberg-
New York(1966).

[18] T. Kato and K. Masuda, Trotter’s product formula for nonlinear semigroups generated
by the subdifferentiables of convex functionals, J. Math. Soc. Japan 30(1978),169-178.

[19] A. Klein and L. J. Landau, Singular perturbatlons of positivity preserving semigroups
via path space techniques, J. Funct. Anal. 20(1975),44-82.

[20] E. Nelson, Interaction of nonrelativistic particles with a quantized scalar field, J. Math.
Phys. 5 (1964),1190-1197.

[21] E. Nelson, Construction of quantum fields from Markoff fields, J. Funct. Anal. 12. (1973),
97-112.

[22] E. Nelson, The free Markov field,J. Funct. Anal. 12(1973),211-227.

[23] T. Okamoto and K. Yajima, Complex scaling technique in non-relativistic massive QED,
Ann. Inst. Henri Poincaré42(1985),311-327.

[24] M. Reed, B. Simon, “Method of Modern Mathematical Physics IV”, Academic Press,
New York(1975).

[25] M. Reed,B. Simon, “Method of Modern Mathematical Physics II”, Academic Press, New



123

York(1975).

26] B. Simon, “The P(¢), Euclidean Field Theory”, Princeton university press(1974).

27] B. Simon, An abstract Kato’s inequality for generator of positivity preserving semi-
roups, Indians Univ. Math. J. 26(1977),1067-1073.

28] B. Simon, A canonical decomposition for quadratic forms with applications to monotone

convergence theorems, J. Funct. Anal. 9(1978),377-385.

[29] B. Simon, Kato’s inequality and the comparison of semigroups, J. Funct. Anal. 32 (1979),

97-101. '

30] B. Simon, Maximal and Schrédinger forms, J. Operator Theory 1(1979),37-47.

31] B. Simon, “Functional Integral and Quantum Physics”, Academic press(1979).

[32] T. A. Welton, Some observable effects of the quantum-mechanical fluctuations of the

electromagnetic field, Phys. Rev. 74(1948),1157-1167.




