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Introduction

The present paper continues the new approach to quantum stochastic processes on Fock
space developed in a series of papers [22], [23], [24], [25]. It is the noticeable feature of
this approach that the quantum white noise, i.e., the time derivative of quantum Brownian
motion, is formulated as a C'°-flow of operators on Fock space. More precisely, the role of
the annihilation process {A;} and the creation process {A;} in the works of Belavkin [1],
Hudson-Parthasarathy [13], Meyer [19] and Parthasarathy [26] is played by their infinites-

imal increments:
d d

a At, af = zd—t‘ At*

It is very common that these operators are understood as operator-valued distributions and
hence are not defined pointwisely. On the other hand, it is also known (though not widely
used in practice) that the creation and annihilation operators are defined pointwisely using
a suitable Gelfand triple, see e.g., [3], [6], [14]. In particular, the special choice of Gelfand
triple of white noise functions

ay =

(E) C L*(E", p) = T'(L*(R)) C (B)*

yields such situation; in fact, a; € L((E),(E)) and a} € L((E)*, (E)*). The above Gelfand
triple is referred to as the Hida—Kubo-Takenaka space [8], [15]. A similar structure called
Fock scale is introduced by Belavkin [1] in order to develop a non-adapted It theory on
Fock space, though the pointwisely defined annihilation and creation operators are not
formulated. A big advantage of the Hida-Kubo—Takenaka space is also found in [20] where
a general theory of operators in L((E),(E)*) is established systematically in terms of
pointwisely defined annihilation and creation -operators, see also [21] for generalization to
~ vector-valued white noise distributions.

There lives a canonical flow {B;}cg called Brownian motion in L*(E*, p) = I'(L*(R)).
Then the conditional expectation FE; relative to the o-field generated by { B, s < t} becomes
one of the most fundamental concepts in both classical and quantum stochastic analyses.
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In fact, the conditional expectation F; is an orthogonal projection acting on L%(E*, i) and
therefore, belongs to L((E), (E)*). In that sense it can be treated fully within our operator
theory; however, in various applications we need to discuss the conditional expectation of
a white noise distribution. Unfortunately, the conditional expectation is not defined on the
whole space (E)* of white noise distributions due to the fact that pointwise multiplication of
distributions is not defined in general. This would be one of the reasons why the conditional
expectation has not been discussed actively along with the Hida—Kubo-Takenaka space.
While, being based on a different framework of white noise distributions Hida [9] introduced
the conditional expectation and suggested possibility of application to prediction theoryl).

In this paper we propose an idea to overcome the above mentioned difficulty. Namely, we
introduce a certain space of test white noise functions, denoted by (.4), which is bigger than
(E) and obtain by duality a space of white noise distributions, denoted by (A)*. There
holds a simple inclusion relation among these spaces:

(E) € (A) C L*(E",u) C (A)" C (B)".

A white noise distribution belonging to (A)* is called admissible. It is shown that the
conditional expectation F; becomes a continuous operator from (.4)* into itself which keeps
(A) invariant. Accordingly, in both classical and quantum cases the notion of an admissible
process is naturally introduced and the conditional expectation of such a process becomes
an interesting subject to study. In this paper we study the Hitsuada—Skorokhod integral of
an admissible process and observe how the conditional expectation acts on it. Moreover,
we derive prototypes of representation of a martingale in terms of stochastic integrals both
in classical and quantum cases. In particular, the result in classical case is thought of as a
variant of the so-called Clark formula [4] which has been discussed with great interests in
various aspects, e.g., in connection with martingale representation, see also [28] for a white
noise approach?.

The paper is organized as follows: Section 1 is devoted to assembling some technical
instruments in the operator theory on white noise distributions. In Section 2 we introduce
admissible white noise distributions and the conditional expectation. In Section 3 we study
the Hitsuda—Skorokhod integral and derive a variant of the Clark formula. In Section 4
we introduce the conditional expectation for operators and the notion of an admissible
quantum stochastic process. In Section 5 we discuss quantum stochastic integrals in terms
of white noise calculus. In particular, we obtain the conditional expectation of a quantum
Hitsuda-Skorokhod integral and discuss representation of a quantum martingale in terms
of stochastic integrals.

1 Preliminaries

In the recent development the basic framework of white noise calculus is constructed from
an arbitrary topological space T keeping in mind applications to quantum and random
fields [15], [20]. This framework is called the standard setup of white noise calculus [11].
The present paper being devoted to a study of a stochastic “process,” we take T' = R

DI thank Professor H.-H. Kuo for the information.
D1 thank Professor H. Watanabe for interesting conversation on this topic.
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and regard it as the time axis. Some of the results obtained below remain valid under the
standard setup after straightforward modification.
1.1 Triplet of white noise functionals

Let H = L*R,dt) be the Hilbert space of R-valued L*-functions on R with norm |- |,
and inner product (-, -), and consider the Gelfand triple:

E =8(R) C H = [*(R,dt) C E* = S'(R). (1.1)
It is known that the topology of F is defined by the norms:
1€, =14%¢],, €€k, peR,
where P

A=1+1 - —.
TV

These norms are linearly ordered in the sense that

|€|pqu|€|p+qa pE]R, QZO) (12)
where .
p = inf Spec (A) = 3

In fact, E is a countable Hilbert nuclear space. The canonical bilinear form on E* x E,
being compatible with the real inner product of H, is denoted also by (-, -).

The Gaussian measure associated with the Gelfand triple (1.1) is the unique probability
measure y on E* satisfying

1 )
exp (—§I£|§> =/ ¢®8u(dz), E€E.
E*
The probability space (E*, i) is called the Gaussian space. Let
(L*) = L*(E*, ;C)

denote the Hilbert space of C-valued L?-functions on the Gaussian space (E*, u). When a
probabilistic aspect is emphasized, we also use the symbol

E(¢) = [ ¢(e)u(de),

which is the mean value (random average) of a random variable ¢ € L1(E*, p).

The canonical bilinear form on (E®")* x E®" is denoted by (-, -) again and its C-bilinear
extension to (E&")* x E@™ is also denoted by the same symbol®). For a non-negative integer
n and £ € E* an element :2®":€ (E®")%  is uniquely defined by

—_ - T aOn ., £®n — 1 E E* 1.3
belw) =3 (2 Sr ) =ew (@0 0 -5 0),  €eBo zeB, (13

3)Throughout the paper we do not use a specific symbol for the hermitian inner product.
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where ¢ is the so-called exponential vector. In particular, ¢ is called the vacuum. Asis
well known, each ¢ € (L?) is expressed in the following form:

d(z) = i <:a:®":, fn> , z€E*, f,€ Hg”, (1.4)

n=0

where each function z — (:2®":, f,) and the convergence of the series are understood in
the L2-sense. Expression (1.4) is called the Wiener-Ité6 ezpansion of ¢. In that case,

1613 = [ 19(e)Puidz) = 3 ntl £ .

n=0

Thus we have a unitary isomorphism between (L?) and I'(Hc), the Boson Fock space over
Hg. This is the celebrated Wiener-It6-Segal isomorphism.
For ¢ € (L?) with Wiener-Itd expansion given as in (1.4) we put

[ee]

r(A)p(z) = (:a®":, A f,).

n=0

Then I'(A) becomes a positive selfadjoint operator on (L?) with Hilbert—Schmidt inverse,
and a complex Gelfand triple® is thereby obtained:

(E) c (L*) = L*(E", 1;,C) = I'(Hc) C (E)". (1.5)

Elements in (E) and (E)* are called a test (white noise) functional and a generalized

(white noise) functional, respectively. We denote by ((-, -)) the canonical bilinear form on
(E)* x (E) and by || ||, the norm induced from I'(A), namely,

o0

161 = I7(Ayrels = 3 nll (4% fn s = Z nlfal},  PER (L6)
where ¢ and (fa);2, are related through the Wiener-Itd expansion (1.4). It is obvious from
(1.6) that ¢ € (L?) belongs to (E) if and only if f, € EE" for all n and 52, n! | fa | < 00
for all p > 0.

We use a similar (but formal) expression for a generalized white noise functional. For each
non-negative integer n let F, € (E&" )sym be given and assume that 322 n!| F, |
for some p > 0. Then there exists a unique ¢ € (E)* such that

oo

(2, 80 =D nl(Fa, fu), S €(E)

n=0

where ¢ and (f,)%2, are related as in (1.4). In that case @ is written in a formal series:

é(z) = i <:m®“:, Fn>. (1.7)

n=0

“The notation (1.5) is commonly used in the standard setup of white noise calculus, see e.g., [20]. As
the white noise triplet discussed here is constructed from the special Gelfand triple (1.1), it is often denoted
by (S) C (L?) C (S)* instead, see e.g., [10] or I. Déku’s paper in this volume. Note also the remark at the
beginning of this section.
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Conversely, every & € (E)* is obtained in this way. Expression (1.7) is called the Wiener-
Ité expansion of . Note that (1.6) is also true for ¢. Moreover, for f € E¢ we define the
exponential vector ¢y € (E)* through its Wiener-Itd expansion in a similar manner as in

(1.3).
1.2 Brownian motion and white noise
Through the Wiener-It6—Segal isomorphism we define B; € (L?) by
<$, 1[0,t]>1 t > Ua
By(z) =
— <:B, 1[t,0]>, t <0,

where 1; denotes the indicator function of J C R. Note that :2®!:= z by definition. Since
the delta function é; belongs to E* = §’(R), by construction

Wt(x) = <.’B, 5t>7 t e R,
is a white noise distribution, i.e., W; € (E)*. As is easily seen,
By =0, E(B,) =0, E(B,B;) = s At = min{s,t}, s,t>0,

which means that {B;} is a Brownian motion. It is easily verified that the map ¢ +— B; €

L?*(E*, p) is continuous. An important consequence of our approach is illustrated in the
following '

Proposition 1.1 The map t — B, € (E)* is a C®-map® and it holds that

d
EBt:Wt, tER

Hence t — W, € (E)* is also a C*®-map.

Thus the one-parameter family of white noise distributions {W;}, which is justifiably
called the white noise, is a C®°-flow in (E)*.

1.3 Integral kernel operators, symbols and Fock expansion

Throughout the paper £(X,9)), where X and ) are locally convex spaces, denotes the
space of continuous linear maps from X into ). Unless otherwise stated £(%, %)) carries the
topology of uniform convergence on every bounded subset of X (the topology of bounded
convergence).

We sketch briefly the essence of the operator theory on white noise distributions, see
[20] and [21] for the detailed account. For each y € Eg there exists a unique operator
D, € L((E),(F)) such that

Dyde = (y, £) ¢e, € € Ec.

%) Throughout the paper the dual space of a locally convex space carries the strong dual topology.
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This is called the annihilation ope'rator.v In particular,
a; = D6H t e R,

is called the annihilation operator at a point or Hida’s differential operator®. Then a; €
L((E),(E)) and a7 € L((E)*,(E)*). The latter is called the creation operator at a point.
It is emphasized that these operators are not operator-valued distributions but continuous
operators for themselves.

For each & € (ES(H’"))* there exists a unique operator = ,(k) € L((E), (E)*) such that

<<51,Tn(“3)¢7 V) = (K, Ngb) » ¢, € (E),
where
77¢,¢(31> e 7517t1’ o ’tm) = <<CL:1 e a:,atl e a’tmd): "/)>> .

We use a formal (but descriptive) integral expression:
Eim(K) = ‘/me K(81, -+, 81t tm)ay - @y @y -Gy, dsy - dsidty - - dty,,  (1.8)

which is called an integral kernel operator with kernel distribution k. It is known that « is
~ uniquely determined whenever it is taken from the subspace

I4+m)\x I+m)ys
(Eg( * ))sym(l,m) = {K € (Eg( * )) ) slwm(K’) = H}’

where s;,, is the symmetrizing operator with respect to the first [ and the last m variables
independently.
The symbol of = € L((E),(E)*) is a C-valued function on E¢ x E¢ defined by

E(€n) =(Z¢, ¢),  &meE B (1.9)

Since the exponential vectors {¢; £ € Ec} span a dense subspace of (E), the symbol
determines the operator uniquely. :

Theorem 1.2 For a function © : Ec x Ec — C there exists an operator = € L((E), (E)*)
such that = = @ if and only if the following two conditions are satisfied:

(O1) for any &,&1,m,m € Ec, the function (z,w) — O(2& + &1, wn + n1) is entire holo-
morphic in z,w € C;
(O2) there exist constant numbers C > 0, K > 0 and p € R such that

O <CexpK (|62+nl}),  &mneEe

In that case,
1261 prasny < CM(K, 2, ) [6110res 6 € (B),

where M(K,p,q) > 0 is a constant number depending on K > 0, p > 0, ¢ > qo( K, p); and
go(K,p) > 0 is also a constant number depending on K > 0, p > 0.

6)In most literature of white noise calculus the annihilation operator at a point is denoted by 8;. However,
respecting the common notation among a wide audience, we use in this paper a; instead.
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Theorem 1.3 For any = € L((E),(E)*) there exists a unique family of kernel distribu-
tions Kim € (E®(l+m))sym(, my Such that

== Z Z1m(Kim), (1.10)

where the right hand side converges in L((E), (E)*).

Expression (1.10) is called the eazpansion of = in terms of integral kernel operators or
the Fock expansion. It seems that such expression of a Fock space operator in terms of nor-
mal ordered products of annihilation and creation operators is common among theoretical
physicists”). The idea traces certainly back to Haag [7] and has been developed in various
contexts in quantum field theory, see e.g., [2], [3]. It is the strong point of our theory that
a wide class of Fock space operators is determined to be discussed with mathematical rigor
using distribution theory. Thus our contribution here is purely mathematical.

Here are some of parallel results for an operator in L((E),(E)) which is a subspace of

L((E), (E)").

Lemma 1.4 Let k € (ES™™)*. Then 5,,.(k) € L((E), (E)) if and only if k € (EZ) ®
(E&™)*. In particular, Som(k) € L((E),(E)) for any k € (EE™)*.

Theorem 1.5 For a function © : Ec X Ec — C there exists an operator 5 € L((E),(E))
such that £ = © if and only if (O1) in Theorem 1.2 and the next condition are satisfied:

(02') for any p > 0 and € > 0 there exist C > 0 and q > 0 such that

O < Cexpe (|2, +In,),  &ne Ec

In that case,
I Ed)“p 1 S CM(e, Q7r)|¢‘p+q+r+1’ ¢ € (E),

where M(€,q,7) > 0 is a constant number depending on € with 0 < € < (2e36%)71, ¢ > 0,
r > 19(q); and ro(q) > 0 is also a constant number depending on q > 0.

Theorem 1.6 For = € L((E),(E)) let the Fock expansion be given as in (1.10). Then
Kim € (EE) ® (EE™)* for alll,m = 0,1,2,---, and the right hand side of (1.10) converges
in L((E), (E)).

1.4 How to define an operator on white noise functions — An example

The operator symbol provides a useful criterion for checking whether or not an operator
formally defined in Fock space falls into a continuous operator on the white noise functions
(Theorems 1.2 and 1.5). Here is a simple illustration.

Recall first that Ec is closed under the pointwise multiplication; in fact, it yields a
continuous bilinear map from E¢ X E¢ into E¢. Therefore multiplication of £ € F¢ and
[ € E¢, denoted by f¢ = £f € Eg, is defined as

<f§777>:<f7€77>7 UGEC

M1 thank Professor I. Ojima for this comment.
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Proposition 1.7 For any f € E¢ there exists a unique operator = € L((E),(E)*) such
that S¢¢ = ¢5¢, € € Ec.

PROOF. Since the exponential vectors are linearly independent, the correspondence
de — ¢Pge, € € Eg, is extended to a linear operator from the linear space spanned by the
exponential vectors into (E£)*. We put

O(&,m) = (bse, dn) = '™, €€ Ec. (1.11)

It should be checked that © satisfies conditions (O1) and (O2) in Theorem 1.2. Since (O1)
is obvious, we shall prove (O2). We choose p > 0 such that | f|_, < co. Then,

[(F&m =1 EmI <l lénl,-

By the continuity of pointwise multiplication of E¢ we choose ¢ > 0 and C' > 0 such that

1€, SClE gl ey, &€ Ec,

and hence

¢
2

[FE M S CLFlp € g Mg < 5 1 £, (1€14g +1mlhsy)

Thus (1.11) is estimated as

o€l <ep {171, (1€, + 172},

which proves (02). It then follows from Theorem 1.2 that there exists 5 € L((E), (E)")
such that = = ©. In other words,

«‘5¢€, ¢n>> = <(¢f§7 ¢7]>>7 5,7] € ECJ’
namely, Z'¢; = ¢y for any § € Ec. qed

REMARK. (1) The explicit action of = in Proposition 1.7 is obtained easily. For ¢ € (E)
of which Wiener-It6 expansion is given as

(e <]

$(z) =3 (:a®":, fa),  fa€ BE,
n=0
it holds that -
EQS(CE) = Z<Z.’E®n:, f®n'fn>7 (112)

n=0
where f®". f, is pointwise multiplication. In fact, for an exponential vector ¢ = ¢, identity
(1.12) is obvious. On the other hand, it is easy to see that the operator 5’ defined by the
right hand side of (1.12) belongs to L((E), (£)*). Therefore = in Proposition 1.7 coincides
with =’ on the exponential vectors {¢,}, hence on the whole space (£).
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(2) If f € L™(R), then = € L((E),,(L?)) for some ¢ > 0. In fact, in view of (1.12) we
have

12605 =32 ntl £ fuls < o ntll £ 5| fulo-
) n=0 n=0
Choose g > 0 such that p?|| f ||, < 1. Then

=) o0
1E6lls < o ntll flla o™ fuls < Don!fal =N 815
n=0 n=0

Namely, = € L((E)4, (L?)). In particular, if || f ]|, < 1, we see that = € L((L?),(L?)). A
typical example is the conditional expectation discussed below.

2 Conditional expectation for white noise distributions
2.1 Slowly increasing functions

- For a C-valued measurable function f on R we put

2 oo 2 2yr |
£ = [ If@PQ+eya,  reR
Note the obvious inequality:

WAl <0fllns 7€R, 7' >0.
Then A, = {f; || f|l, < oo} becomes a Hilbert space with norm |||, (modulo null-

functions) and forms an increasing chain of Hilbert spaces:
A C A CA =Hc=L*R,dt;C)CA CA,C . (2.1)

Then
A =projlim A, = [ A4,

T—00 >0

becomes a countable Hilbert space, and by general theory we have

A*=indlim A_, = U A_,,

T—00
>0

where A* is equipped with the strong dual topology as we have agreed. We say that A*
consists of slowly increasing functions.

Lemma 2.1 For any r > 0 there exists p > 0 such that the natural injection E, — A, 1is
well defined and continuous. Therefore the natural injection Ec — A 1is continuous and
has a dense image.

PROOF. It is obvious that || - ||, is a continuous norm on Eg¢. Since the defining norms
|- |, is linearly ordered (see (1.2)), given 7 > O there exist p > 0 and C' > 0 such that
Il <Clel,, €€ Ec (2.2)

Hence the natural injection £, — A, is well defined and continuous. Therefore the natural
injection Ec — A is continuous. That E¢ is a dense subspace of A, is proved with a
standard argument. ’ qed
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Lemma 2.2 For any r > 0 there exists p 2 0 such that the natural injection A_, — E_,
is well defined and continuous. In particular, A* — E¢ is a continuous injection.

PROOF. Given 7 > 0 we choose p > 0 and C' > 0 satisfying (2.2). Then for f € A_,
we have

L OT<NFI-NEN, <ChFI-, 1€],-

Therefore f € E_, and
[ fl<Clfll,,  feA.,.

This completes the proof. qed

REMARK. We shall prove that 4 is not a nuclear space. Let {ex} be a complete orthonor-
mal basis of L?(R, dt). Then

Fa(t) = en(t)(l 4 12)~(r+r)/2

forms a complete orthonormal basis of A,,,.. We note that
+o0

L= [ IROR0 = [ e 0+-2)at

—_ — 00

Let T' be the multiplication operator by (1 + ¢2)~"'/2. Then
2
I Fall; = (Ten, Ten) = | Ten |3 .

Thus the natural injection A, — A, is of Hilbert—Schmidt type if and only if so is the
operator T' on L*(R, dt). If so T should be compact. But this never occurs because there
is no non-zero multiplication operator on L*(R, dt) which is compact.

2.2 Cut-off operator

For t € R we put
1 s<t
W) =temats)={ 05!

The multiplication operator induced by ¥; is denoted by the same symbol. Obviously we
have

Lemma 2.3 x; € L(A,, A,) and is an orthogonal projection for anyr € R.
Lemma 2.4 For each r > 0 there exist p >0 and C > 0 such that

I, <ClfI-., |
| (e = x)f |y < Clt =82 N £,

where s,t € R and f € A_,. In particular, t — x, € L(A_,, E_,) is continuous.



PRrOOF. Let f € A_,. Then for £ € Ec we have by the Schwartz inequality

| efs ©1 < af I Hel < DI M€ (2.3)

In view of L.mma 2.1 we take p; > 0 and C; > 0 such that

héll, < Culél,,, €€ Ec

Then (2.3) becomes
| e, O 1 < CLl FI- €L,
and therefore
Ixef | <Gl FI,,  teR, feA. (2.4)
Suppose nex. that s <¢. Since

2

(ou-x)h OF = |[ fwew du

8

/st |F(@)*(1 +u*) " du /: 1€(w)]2(1 + v?) " du,

IA

we have
(i = xo) > 1 < N AU, (8= 9)Y? max [¢(u)|(1 + Wy?, feA,, {€kEc

Note that £ — maxyer |£(w)](1 + u?)"/? is a continuous norm on Ec, one may find ps > 0
and Cs > 0 such that

max |¢(w)|(1 + Bt < O, €€ Ec

Then we see that
(e = x6) > €)1 < Calt = )2 FI 1€,

and therefore

| (e = X)F |y S Calt =) 2N FI,,  s<t, fEAL (2.5)

Finally we take p = max{py,p} and C = max{C, C;}. Then in view of (2.4) we have

36 1y = 16 F |y S P77 1 30F Ly <P PG FLL, < CUFI

which proves the first inequality. The second one follows similarly from (2.5). qed

Lemma 2.5 For eachr > 0 there exist p > 0 and C > 0 such .that

Ixi€ll, < ClEl,,
I G — XNl < Ot — s3] €1,

where s,t € R and £ € E,. In particular, t — Xt € L(E,, A,) is continuous.

164
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ProoOF. This is the dual result of Lemma 2.4. qed

REMARK. It follows from Lemma 2.3 and the chain (2.1) that x; € £(A,4,, A,) for any
r € Rand ' > 0. But t — x; € L(Ar4+,.A,) is not continuous whatever r € R and ' > 0.
In fact, suppose that t — x; € L(A,4,.A,) is continuous at t € R for 7 € R and 7' > 0.
We further assume that ¢ > 0; the case of t < 0 is proved in a similar manner. Then we
have

lim  sup ||| (xs = x)f 17 =0. (2.6)
S fll, <

On the other hand, if ¢ < s there exists a measurable function f such that supp f C (t,9)
and .

DA = [ 1F@PO+ ) du =1,

Then
106 = x)F B = [ 1f@)P(+ ) du

= /|f (14« (14 u?) " du

> (147",
Therefore

sup [l (xs = xe)FI2 > (146377,
W5l <1

and hence

liminf sup [ (x: — x)f 2 > (1427 >0.
A B NANES

This contradicts (2.6).

2.3 Admissible white noise distributions

We introduce a new family of norms on white noise functions. For ¢ € (F) with Wiener—
It expansion ‘

= io<:m®":, fn>, fa € Egn
we put —oo
Illzs = ;}nle% "1l rnBeR (2.7)
Suppose » > 0 and B € R are ﬁxed._According to Lemma 2.1 we choose p > 0 and C >0

such that
Iéh, <Clél,, €€ Ec

Then we have

Ifall, <C™ 1 fal,s  fn € EE™ (2:8)
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Combining (2.7) and (2.8), we obtain

oo
hollrs < D nle®mC™|f, 12
n=0
oo
< Z n!e2,8nc2np2qn | fn |i+q
n=0
s | 8 q 2n 2
< Y ol (Ce p) | falpsq-
n=0

Take ¢ > 0 sufficiently large to have Ce®p? < 1. Then
Ielrs < 3 ntlfalog =100,  d€(B)
n=0

Let (A),,5 be the completion of (E) with respect to the norm || - ||, ;. What we have proved
above is summarized in the following

Lemma 2.6 For anyr > 0 and 3 € R there exists p > 0 such that

Ioll.s <llell,, ¢e(E). (2.9)

In particular, the natural injection (E), — (A), 5 is well defined and continuous.

In an obvious manner {(A), 4}, >0 forms a projective system of Hilbert spaces. Then

(A) = projlim(A), s

r,3—00

becomes a countable Hilbert space. On the other hand, {(.A)_, g}, >0 being an inductive
system of Hilbert spaces, we have

(A)* = ind lim(A)_, _s.

7,3—00

In view of Lemma 2.6 we obtain an inclusion relation:
(E) C (A) C (A)oo = (L?) C (A)* C (B)",

where the injections are all continuous. A white noise distribution belonging to (A)* is
called admissible. Suppose @ € (E)* is given with Wiener-Itd expansion

P(z) = ij:o<:m®":, Fn>

Then & is admissible, i.e., & € (A)* if and only if there exist 7 > 0 and 8 > 0 such that
F, € A®? for all n and

1812, 5= nle™? | F, ||, < co.

n=0
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2.4 Conditional expectation on admissible white noise distributions

For an admissible white noise distribution ¢ € (E)* with Wiener-Itd expansion

we put
Ed(z) =Y (", xf" - F.), tER (2.10)

n=0

Lemma 2.7 E, € L((A).g,(A)rp) and is an orthogonal projection for any r,3 € R.

In particular, E; € £((A),(A)) and hence E} € L((A)*, (A)*). On the other hand, E;
being the unique continuous extension of E;, we write E; = F, for simplicity. The operator

E, € L((A)*, (A)*) is called the conditional expectation (on admissible white noise distribu-
tions). Thus the conditional expectation F; belongs to any of the spaces: L((A).g, (A)rg),

L((A), (A)), L((A)",(A)"), L(E), (A)), L((A), (E)"), and L((E), (E)")-
Theorem 2.8 Botht — E, € L((E),(A)) andt — E, € L((A)*,(E)*) are continuous.

Proor. For ¢ € (F) with Wiener-It6 expansion

Hz) = i <:x®":, fn>, fn € Egn,

n=0

we have by definition

00 2
(B~ B)o Iz = Yo nte®™ [ (" —xP")fuf,,  steR npeR  (211)
n=0

Since
Zx®" k@ (xs — x1) @ XY,

we have
m (x®" ™) fn m < Zm Ok @ (xs — xt) ® X1 fn |||T, fo€ EE.  (2.12)

Take p > 0 and C > 0 exactly as in Lemma 2.5. Then (2.12) becomes
o™ = xemfa || < nCmlt = 52| £,

Inserting this into (2.11), we obtain

I(E—E)olZ, < Y nle®n2C™|s — || fa |2
n=1
© 2n
< Z nin? (Ce?p?) ™" |s — || fully,
< ns—tasupn( )" 1617, -
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Take ¢ > 0 large enough to have CePp? < 1. Then

M =supn (Ceﬂpq)n < 00

n>1

and
N(E - E)oll, s < Mls =t ¢l,,,, @€ (E).

This proves that t — E; € L((E),(A)) is continuous. The second half of the statement
follows immediately by taking the adjoint. qed

2.5 Fock expansion of the conditional expectation

It has been already noted that E; € L((E), (E)*). Here we record the Fock expansion.

Lemma 2.9 The Fock expansion of the conditional expectation E; is given by

0 (.__.1)"' +00 +o0
_ * *
E,=% /t /t af - -at ag-a,,dsy - ds,.

n=0 n

PROOF. By definition (2.10) we have
Eige = dner £ € Ec.
(In fact, the above relation characterizes the conditional expectation.) Then
t
«Et¢§’ ¢n» = <<¢Xt€, ¢n» = exp <Xt€> ) = exp /;oo £(s)n(s) ds.

Hence we have

&) (Byde, b)) = exp (_ /t“+°° £(s)n(s) ds) - {2 (=" ( /t+°° £(s)n(s) ds)n,

|
n=o

which completes the proof. qed

3 Adapted processes and the Hitsuda—Skorokhod integral
3.1 Adapted processes, admissible processes and martingales

The support of a distribution F € (E&™)*, denoted by supp F, is the smallest closed
subset K C R™ such that F' vanishes in R® — K. The next definition is essentially due to
Hida [9)].

Definition 3.1 Let t — &; € (E)* be a continuous map defined on an interval and

o0

Py(z) =) <:m®”:, F,(l’)>

n=0

be the Wiener-Itd expansion. Then {®,} is called an adapted process if supp F C
(—o0,t|™ for all n > 1 and ¢.
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Definition 3.2 A continuous map t — &; € (E)*, is called an admissible process if @ is
admissible for each t, i.e., &; € (A)* for all ¢.

In the above definition we do not require that ¢t — &, € (\A)* is continuous with respect
to the topology of (A)*. Our condition above is weaker than this.

Proposition 3.3 Let {®,} be an admissible process. Then it is adapted if and only if
E®, = &, for allt, hence if and only if E,®, = &; for s > t.

PROOF. The assertion follows immediately from the fact that supp F{*) C (—o0,t]™ if
and only if 2" - F(®) = F(t), ; qed

Definition 3.4 An admissible process {&,} is called a martingale if E,®, = &, for s < t.

By definition a martingale is an adapted admissible process. The next assertion contains
a typical example.

Proposition 3.5 Let ¢ € (A)* be an admissible white noise distribution. Then {E;$}icr
is a martingale.

Proor. It follows from Theorem 2.8 that t — E,$ € (E)* is continuous. Obviously
E® € (A)* for any t, which means that {E,®} is an admissible process. Since E,(F;$) =
E,® for s < t obviously, {E;®} is a martingale. qed

The Brownian motion {B,}o is expressed as B, = E,®, where &(z) = <:z:, 1[0,+Q°)>. In

particular, the Brownian motion is a martingale.
Proposition 3.6 Any martingale {®;} admits an ezpression of the form:
Pi(z) =) <::c®":, X Fn>, (3.1)
n=0

where F, is a C-valued measurable function on R™.

PrROOF. Let

Py(z) = i <:a:®":, F,Et)>

n=0
be the Wiener-It6 expansion of &,, where F(?) is a slowly increasing function on R”. Since
E,®, = &, for s <t by assumption, we have

& . FO = FG), s<t, n>1.

n n

Therefore, we can define a measurable funtion F,, on R™ by

Fo(ug, -, u,) = F,(,t)(ul, e Uy), t> ug, -, Un.
Then F® = x" - F, and we obtain (3.1). qed
REMARK. In Proposition 3.6 one might consider a formal series: |

d(z) = i <:9:®":, Fn>

n=0
However, @ is not necessarily a white noise distribution because there is no guarantee that
F, is slowly increasing. Neverthless, one can write F;@ = @, at a formal level.
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3.2 Hitsuda—-Skorokhod integral
We first introduce the integral of an (F)*-valued function.
Lemma 3.7 [10, Proposition 8.1] Let t — &, € (E)* be a map defined on a (finite or

infinite) interval I. Assume that for any ¢ € (E) the function t — {(®;, ) belongs to
LY(I,dt). Then there exists a unique ¥ € (E)* such that

(@, )= [(@ o) at, e (B).

In that case we write
w:f@@
I

For example, if I is a finite closed interval and ¢t — &; € (E)* is continuous, the above
integral exists.

Again suppose we are given a map t +— &, € (E)*, where ¢ runs over an interval I. Note
that a;®, € (E)* is defined because aj € L((E)*, (E)*). If in addition t — {(a;®;, ¢)) =
(s, a:¢)) belongs to LY(I,dt) for any ¢ € (E), then

= /af@t dt € (E)*
1
is defined according to Lemma 3.7. This is called the Hitsuda—Skorokhod integral of {®,}.

If I is a finite closed interval and t — &, € (E)* is continuous, the Hitsuda—Skorokhod
integral exists. In fact, t — ((a;®;, ¢)) is a continuous function on the interval I for any

¢ € (E).

3.3 Conditional expectation of Hitsuda—Skorokhod integral
Lemma 3.8 Lett — &, € (A)* be a map defined on a closed finite interval [a,b] such that

sup [ 2|,y < oo (32)
a<t<b

for some r,3 > 0. Assume that t v {((a;®;, ¢)) belongs to L*(a,b) for any ¢ € (E) and
that the Hitsuda—Skorokhod integral
b
/ a,d,ds

belongs to (A)*, i.e., is an admissible white noise distribution. Then

tAb
/ a,FE,9; ds, a<t,
a .

E, (/b @, ds> - B (3.3)

0 t<a.
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PROOF. Supposet € Ris fixed throughout. First note that the map s — a*E,®, € (E)*
is well defined. We shall show that s — {(aE;®,, ¢)) belongs to L'(a,b) for any ¢ € (E).
In fact,

| (a3 Ex®s, @) | = | (Ei2s, aad)) | < | Ee@s |, gl astll,p < W @s Ml gl a5t -
In view of Lemma 2.6 we may find p > 0 such that
lastll, s < llasdll,-
On the other hand, by [20, Theorem 4.1.1] there exist ¢ > 0 and C > 0 such that
|] a'3¢ “p S C | 53 I—(p+q) “ ¢ ||p+q .

Thus we obtain
| (a3 @5, o) | S CN Dl 5165 | _(prg) | D llpsg-

Since s — 9§, is continuous, taking ¢ > 0 large enough we see that

sup |6 < 00.
agsgbl tl-pro)

Combining this with (3.2), we see that s — | {(a*E;®;, ¢)) | is bounded on [a, b] and hence
integrable. Then by Lemma 3.7 the Hitsuda—Skorokhod integral exists:

tAb
/ a;E®,ds € (E)*.

For simplicity we put
b
U= / a P, ds.

For the assertion it is sufficient to prove that
tAb
B = / CEd,ds, t>a E¥=0, t<a.
Since both sides in the above identities are white noise distributions, it is sufficient to prove
the
(B, &) = [ (aiBds, gu)ds, t>a, (3.4)
(EP, ¢q)) = 0, t <a, (3.5)

for any n € Ec. We shall prove (3.4) for (3.5) is verified in a similar manner.
Suppose t is fixed as t > a. Note first that

(B, ¢n)) = (¥, Extn)) = (&, bxan)) - (3.6)

We take an approximate sequence 7, € Ec¢ with supp 7, C (—o0,t] such that 5, — x;7 in
A. Since ¥ € (A)* by assumption,

(¥, dxm)) = nh_,nolo (@, én,) - (3.7)
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Now we see that
W 60) = [ (a2, 9n.) ds
= [ (@, agn s
= [ (@0 6 mals) s
= [" (2, ) mals)ds.

Then in view of (3.6) and (3.7) we obtain

tAb

(B, 6o = lim (#, dn.) = Jim [ (@0 6phmals)ds = [ (@ draalnls) ds.

n~—=>00 a

Therefore, viewing
(@5, Sxun)) (s) = (aSEr@s, ¢n)
we come to (3.4). qed

Proposition 3.9 Let {®,} be an adapted admissible process, where t runs over a closed
finite interval [a,b]. Assume that

sup || &, |_, _5 < oo
a<t<b
for some 7,3 > 0, that t — ((a;®,, ¢)) belongs to L'(a,b) and that the Hitsuda—Skorokhod

integral
b
/ a;d,ds
a

belongs to (A)*, i.e., is an admissible white noise distribution. Then

b
ﬂ(/@@@):

ProoF. By the assumption of adaptedness we have E;®, = &, for t > s. It then follows
from Lemma 3.8 that

b tAb . tAb :
&(/@@@):f @&@M:/ a*®,ds, a<t,

which completes the proof. qed

tAb
/ a,P,ds, a<t,
a

0 t <a.

Theorem 3.10 Let $ € (A)* be an admissible white noise distribution with Wiener-Ité
erpansion
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Assume that every F, is a continuous function. Then there ezists an adapted admissible
process {W;} such that

¢
E® = E(&)do + / W, ds, (3.8)

where E(®) = (@, ¢o)) = Fy is the vacuum expectation of P.
PROOF. Since Ei¢y = ¢y it is sufficient to prove (3.8) under the assumption that

E(®) = 0, i.e., Fy = 0. By assumption there exists r > 0 such that F, € A®? for alln > 1.
Now for n- > 0 we put

ngs)(ub Tty un) = (n + l)FTH-l(S) Uy, )un)XS(ul) e Xs(un)7 S, Uy, ", Uy € R.
Obviously, G*) € A%". We put
Ty(z) =Y <:x®”:, Ggf)>.
Then {¥,} is an adapted admissible process. To prove (3.8) it is sufficient to see that

[ (@, 6)ds = (B, 9), €€ Be

— 00

We first observe that

[ @, syds = [, abehds= [ els) (., o) ds

— o0

Since by definition

@by = (o0, £0)
= Z/W ST G0 ua)e) - E(u) - du
= z_:o<n+1)/_00---[an+l<s,u1,---,un>a<u1>--~e<un>du1~-~dun,
we obtain :
[ (@, o) ds =
:é(n+1)/jw§(s)d3/;sw...[sw Foor(s, 00y )€ (un) - €(un) dty - - i,

On the other hand, by symmetry we have

/ / Fopi(s,u1, - un)é(wy) - - - €(uy) duy - - - du, =
=l [ dun [ dua- /:_1 Bt Foga (5,01, wn)E(1) -+~ E(n).
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Finally we come to

/_too (a3, ¢¢) ds =

= S+ [ &eds [ dwe [T dunFua(s o u)em) € )

Uy —
n=0 —00

= oo t..,tFn UL, U wy) - €(u,) dsduy - - - du,
72/_00 /;oo +1(s,u1 ) E(8)E(uy) - - - €(uy) dsduy "

= {Z <X?(n+1)Fn+1, §®(n+1)>

n=0

= 3 (X" Fn, £°)
n=1
= (E:2, ¢¢) -
This completes the proof. qed

We have shown in Proposition 3.5 that { E;®},cR is a martingale for € (A)*. The above
result is a prototype of representation of a martingale by means of the Hitsuda—Skorokhod
integral.

3.4 Clark formula

Since E; € L((E),(E)*), the composition a}Fia; € L((E),(E)*) is defined. We shall
consider

t
M, = / a,Fa,ds, -0 <t < 4.
In fact, M, is defined in the following

Lemma 3.11 There ezists a unique M; € L((E),(E)*), —oo <t < 400, such that

t
(Mige, @) = [ (@iBeaiy, @) ds, & e Ec. (3.9)
Moreover, M; = M,.

PRrROOF. Note first that

(dSBsaste, n)) = €
= ¢

—~

() (Eud, o)
sn(s)exp [ e(wn(u) du

= Zexp [ Ewn(u)du.

Sla &

§

Therefore

s=t

P
8

=
Q
w ¥
txy
2]

1~
)

-
T

-
=

=
oy
V)
Il

exp /_; E(u)n(u)du

= exp /_too E(w)n(u) du — 1. (3.10)

§=—00
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Consequently,

’f {asEsaspe, ¢q) ds

<exp/ n(u)| du+ 1 < exp(|€lq | nlo) +
Hence

t 1 1
[ atBuade 62) do| < exp (115 + Inf) +1 < 20 (1[5 + 1)

It follows from Theorem 1.2 that the right hand side of (3.9) is the symbol of an operator
in £((E), (E)*), which we denote by M;. That M; = M, is obvious by definition. qed

One may prove by a slightly modified argument that M, € L((E),(E)). Hence M, €
L((E)*,(E)*) and is the unique continuous extension of M.

Lemma 3.12 It holds that

B =E(¢)po + Mip, ¢ € (E). (3.11)

Proor. In (3.10) we have already established

(Mise, ) = exp [ €wm(w)du—1=explum =1, &né Ee
In other words,

(Mo, ¢17>> = ((Pxts ¢n>> — (o, ¢n>> ) §,n € Ec.
Hence : v
Mide = byt — Po = b — (@6, o)) do = Erde — E(d¢)¢o-
Then by continuity we obtain (3.11). qed

The map ¢ — E(¢)¢yo is called the vacuum projection and, obviously, is extended to a
continuous linear operator from (E)* into (E) by putting E(®) = (&, ¢o)). It is known
(§2.4) that E, belongs to £((A)*,(A)*), while from the above consideration so does the
vacuum projection. Therefore from Lemma 3.12 we see that M, is extended to a continuous
operator in £((A)*, (A)*). In that sense we obtain a variant of the Clark formula.

Theorem 3.13 For —oo < t < +o00 it holds that

E® = B($)do + (/t

a*E,a, ds) &, Be (A (3.12)
For t = +00 we have
+o0
& = E(6)do + (f a*BLa, ds) 6, &c(E).

The above result is closely related to representation of a martingale (Theorem 3.10). For
instance we have the following
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Theorem 3.14 Let & € (A)* be an admissible white noise distribution with Wiener—Ito
expansion

[o.e]

d(z) = <:x®“:, Fn>

n=0

Assume that every F, is a continuous function. Then
B = B(®)jo + [ ’oo @B, Bds,  —oo<t< +oo. (3.13)
REMARK. Since F), is a continuous function, a,® is defined by
a,P(z) = io: <:w®":, 8y ®1 Fn>.

n=0

PROOF. It is easily verified that ¥, defined in Theorem 3.10 coincides with E,a,®.
qed

REMARK. Note the difference between (3.12) and (3.13). The latter is a more direct
generalization of the so-called Clark formula, see [28] for a white noise approach.

4 Quantum Stochastic Processes
4.1 Definition and basic processes

Definition 4.1 [24] A one-parameter family of operators {5} C L((E), (E)*) is called a
quantum stochastic process if t — Z; € L((E),(E)*) is continuous, where ¢ runs over an
interval. A continous linear map = : E¢ — L((E),(E)*) is called a generalized quantum
stochastic process. A generalized quantum stochastic process = is called regular if it is
extended to a continuous linear map from Eg into L((E), (E)*).

Since t — 6, € E¢ is continuous, for a regular generalized quantum stochastic process =
one obtains a quantum stochastic process by putting

Et = 5(6,{), t e R

A quantum stochastic process obtained in this way is also called reqular. Note that not
every quantum stochastic process is regular.

Proposition 4.2 The families of annihilation operators {a;}.cr and creation operators
{a} }1er are both regular quantum stochastic processes. Moreover, botht — a, € L((E),(E))
and t — a; € L((E)*, (E)*) are C*®-maps.

Proor. Consider an integral kernel operator:

Soalf) = /R f(ta,dt,  f e EL
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It is proved [20, Theorem 4.1.1 and Proposition 4.3.10] that Zo; : E¢ — L((E),(F)) is
a continuous map. Since the natural injection L((E),(E)) — L((E),(E)*) is continu-
ous, {a; = Z91(6;)} forms a regular quantum stochastic process. It follows by a direct
verification that t — a, is infinitely many times differentiable in L((E), (E)). In fact,

d’lL
— a4, = (=1)"Z61(6{).
e (=1)"Z0,1(6:)
By taking adjoint one may prove the assertion for a} easily. qed

In a similar manner one obtains

Proposition 4.3 Put

A = Soa(1py), Ay = Z10(1p), t>0. (4.1)
Then {A;}i>0 and {A}}i>0 are quantum stochastic processes. Moreover, it holds that
d . d o,
(lt:'(‘i'iAt, at:—cEAt7

with respect to the topologies of L((E),(E)) and L((E)*,(E)*), respectively. In particular,
t— A, € L((E),(E)) and t — A} € L((E)*, (E)*) are C*®-maps.

Definition 4.4 The quantum stochastic processes {A;} and {A;} defined in (4.1) are
called the annihilation process and the creation process, respectively.

The correspondence between classical and quantum stochastic processes is stated in the
following ‘

Proposition 4.5 Ift — &, € (E)* is continuous, regarded as multiplication operators
{®.} becomes a quantum stochastic process.

PROOF. Since the pointwise multiplication of white noise functions yields a continuous
bilinear map (E) x (E) — (FE), multiplication of ¢ € (E£) and ¢ € (E)*, denoted by
PP = ¢P, is defined by

(29, ¥) = (2, o¥)), b Ye(E), Pc(E).

It is then easily verified that ¢ — &¢, ¢ € (E), is continuous and linear; namely, each ¢
gives rise to an operator in L((E), (E)*). Moreover, as is easily seen, thus obtained natural
injection (E)* — L((E), (E)*) is continuous. This completes the proof. qed

The quantum Brownian motion and the quantum white noise are quantum stochastic
processes respectively corresponding to the classical Brownian motion {B;} and the classical
white noise {W,}, for the definitions see §1.2, in such a way as described in Proposition
4.5. The quantum Brownian motion, again denoted by B, is decomposed into the sum of
the annihilation and creation processes:

B, = A, + A7, t>0.
Similarly, for the quantum white noise we have
Wi = a; + a}, teR.

It is also noteworthy that the conditional expectations {F;}:cg form a quantum stochastic
process (see Theorem 2.8).
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4.2 Conditional expectation for admissible operators

Definition 4.6 An operator = € L((E), (E)*) is called admissible if there exists a continu-
ous operator in £((.A), (A)*) of which restriction to (E) coincides with =. For an admissible
operator 5 € L((A), (A)*) the conditional expectation is defined as E;ZE, € L((A), (A)*).

Lemma 4.7 Let k be a slowly increasing function on R*™, i.e., a C-valued measurable
function with || k| _, < oo for some r > 0. Then for any 3 > 0

I Zim(r)e s < Clel_ N 6l5, ¢ €(A),

where

C =sup

n>0

In particular, 51.,(k) € L((A), (A)*).

{(l +n)! (m + n)! }1/2 o~ Cntmti)s (4.2)

n! n!

PROOF. The action of an integral kernel operator = ,,(x) is given explicitly as follows:
Let ¢ € (E) be given with Wiener-It6 expansion

() = 3 (:2°":, fa)-

Then - ‘
Enimele) = 3 O (ot kg ).

n=0

By deﬁnition

. aptms { (m A n)!
IEm(m)12, 5 = (1 +n)e m{T 15 @m fin I,

l+n N (m + n)!
n!

e

_2(1+n)ﬂ(m + )| & @m frmin "|2—'r :

o

n=—

Using the inequality
6 ©m fmin I SWEN_ N findl,, 720, (4.3)
which is verified easily with the Schwartz inequality, we come to

1Em(mel?, , < 3 Gmtm+n)

n=0

s (RS OL T i A e

<3 228 (4 ) || & I||2_T Il fram |||12~
n=0

< CUsIZ ¢l

where C is defined as in (4.2). qed
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Moreover, we can give a sufficient condition for an integral kernel operator to belong to
L((A), (A)). For a measurable function x on R*™ we put

m K "llz,m;r,s = /Rl+m |I$(S1, RN I STREE ’tm)|2(1 + s%)?‘ ce (1 + sl2)r %
(L4 82)° - (L+1t2)dsy - - dsydty - - dbm

Obviously, || &l ;v = Il 1l

Lemma 4.8 Let k be a C-valued measurable function on RT™. If there exists 1o > 0 such
that || & ||, .., < 00 for all T > 1o, then for any B> 0 and € > 0 we have

I Zim(®)e s < CUElimr o I Slpscs @ €(A),

where

1/2
C = sup {(l +n)! (m +n)! } -

n>0 'n! n!

In particular, Z1.(K) € L((A), (A)).
ProOF. We need only to modify the proof of Lemma 4.7 using

m K ®m fm+n ”|r S "| K ml,m;r,vr I" fm+n HI'P’ r Z O’
instead of (4.3). qed

REMARK. The converse assertions of Lemma 4.7 and 4.8 are not true. In fact, there exists
an admissible integral kernel operator of which kernel distribution is not slowly increasing;
see e.g., Proposition 4.12. On the other hand, we have a partial result for characterizing
an admissible operator in terms of Fock expansion. Let 5 € L£((A),(A)*) be given with
the Fock expansion \

o0

—_ -

= =1, KZ] m
m:

By general theory of countable Hilbert spaces (see e.g., [5], [20]) there exist r >0, 5 >0
and C > 0 such that

IZol_, s <Clél. 5. @€ (A).
Then

e?’ 2 2
| (506 6D | < Cllde gl dnll, 5 = Cexp ([ €N, + N nl2),

and hence

(Bde, D) e €] < Cexp oL 12 + 10 1D).

Then, applying the Cauchy estimate to

[oe]

« ¢€7 ¢ >> —6m = Z <Kfl,m7 77®I ®€®m>7

l,m=0
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we obtain
|(ktm, 1% ® £5™)| < C{e(e® + 1)} w2 L €T (4.4)

where the calculation is modelled after [20, Lemma 4.4.8]. However, it does not follow from
(4.4) that i, is slowly increasing. This is a typical difference between L((A),(A)*) and
L((E),(E)*); the former is based on A which is not nuclear, while the latter is based on
the nuclear space F¢.

Lemma 4.9 Let &;,, € A%Hm), r > 0. Then

+oo o)
/ ds,/ dt - - / dt/ / du, X

ﬂz,m(sl,- y ST,y tm) Ay ey @ Gy Gy G Gy, Oy

EE1m(k,

"

ProoF. By a direct computation modelled after Lemma 2.9. qed

4.3 Admissible processes

Definition 4.10 A quantum stochastic process {Z;} C L((E),(E)*) is called admissible
if 5y € L((A), (A)*) for each t.

Here are typical examples.

Proposition 4.11 The annihilation process {A:} and the creation process {A;} are both
admissible. Moreover, A; € L((A),(A)) and A} € L((A)*, (A)*)

PROOF. It is proved in Proposition 4.3 that {4, = Z1(1j0,4) }+>0 is a quantum stochas-
tic process. Since

loals,, = [a+s)as<o, 120,

the assertion follows immediately from Lemma 4.8. qed

The number process (gauge process) is defined as
t
A= / atagds,  t>0. (4.5)
0

Proposition 4.12 The number process is admissible. Moreover, A, € L((A), (A)).

PrROOF. For ¢ € (E) with Wiener-It6 expansion

o0

() =3 (:a®", fu),

n=0
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we put

= i <::z:®":, gn>.

n=0

Then by a direct computation we obtain

g'n(u17 tte 7u’n) = nfn('ll/1, e 7u‘n)1[0,t](u1)'

Hence for an arbitrary € > 0 we have

o0

I Al = Z nle®® || ga II;

(o)
< Yonlen? | fu ]
[o0)

n=0

= Y nle Pl £ ]

n=0

- 2
< (supne ) 16 8sec

which proves that A; € L((A), (A)). qed

REMARK. Asis stated in Proposition 4.5, any continuous map t — &, € (E)* gives rise to
a quantum stochastic process by multiplication. It can be proved with a similar argument
as in [20, §3.5] that the pointwise multiplication yields a continuous bilinear map from
(A) x (A) into (A). Therefore a (classical) admissible process is always considered as an
admissible quantum stochastic process by multiplication.

5 Qunatum stochastic integrals
5.1 Integrals of quantum stochastic processes

Let {L;} C L((E),(E)*) be a quantum stochastic process defined on an interval I and
fix a € I as a time origin. Then by general theory of topological vector spaces there exists
a unique operator =; € L((E), (E)*) such that

(2690 = [ (Lo, 9hds,  pwe(B), tel

Moreover, it is proved that {=}} is again a quantum stochastic process. We write

t
5:/@@

and call it an integral of {L,} against time. It is also proved that {Z.} is differentiable
with respect to the topology of L((F), (E)*) and

d

Sz =1, 5.1
R | 6.1)
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If {L;} C L((E),(E)*)is a regular quantum stochastic process, by definition there exists
a continuous linear map L : Eg — L((E),(E)*) such that L, = L(6;). It then holds that

t
L(ljag) = / L, ds.

In particular, it holds that

t t
Atz/ a, ds, AI:/ a;ds, t>0.
0 0

Again we obtain
d d

_At = Gy,

= A =dl, (5.2)

with respect to the topologies of L((E),(E)) and L((E)*, (E)*), respectively.
REMARK. Let {L;} be a regular quantum stochastic process. Then we have

lim L(1jy) = L(1(=coy)

a——00

in L((E),(E)*), since lim 1jay = l(—oy in E¢. Hence

a——00

t t
/ L,ds = lim Lyds = L(1(—c )

a——00

is well defined.

5.2 Quantum stochastic integrals

It is known [24] that if {L;} C L((E),(E)*) is a quantum stochastic process, so are
{L:a;} and {a;L,}. Then one may define quantum stochastic processes by

t t
/ Lsa,ds, / aiL,ds, (5.3)
as in the previous section. The number process (4.5) is understood in this sense as well.

Definition 5.1 The former in (5.3) is called the gquantum stochastic integral against the
annihilation process, and the latter the quantum stochastic integral against the creation
process or the quantum Hitsuda-Skorokhod integral.

These generalize “quantum stochastic integrals” so far discussed by many authors in
- various contexts. For example, in view of (5.2) we may write

t 11
/ Lea,ds = / L,dA,. (5.4)
If o and L, commute®), then

t i i
/ 0Ly ds = / L,atds = / L,dA". (5.5)

8)For the well-definedness of [a}, L,] we need further assumption, e.g., Ls € L((E)*, (E)*). On the other
hand, this condition relates deeply to the formulation of the adaptedness of {Ls}.
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The right hand sides of (5.4) and (5.5) are introduced by Hudson-Parthasarathy [13] using
Riemann-Stieltjes integral of Itd type. To develop a non-adapted quantum stochastic
integration a quantum Hitsuda—Skorokhod integral has been discussed in a different context
by Belavkin [1], Lindsay {18], and others.

If {L;} is a quantum stochastic process, so is {L;}. It is then easily verified that

1 * 1
(/ Lsasds) :f a*L* ds. (5.6)

Thus in many cases it is sufficient to discuss only quantum Hitsuda-Skorokhod integrals.

We shall observe how the above quantum Hitsuda—Skorokhod integral generalizes a clas-
sical one (§3.2). Let t — &, € (E)* be a continuous map defined on an interval I. Fix
a € I and consider the (classical) Hitsuda—Skorokhod integral:

13
g,t:/' @&, ds € (E)".

On the other hand, by multiplication {®;} becomes a quantum stochastic process which
we denote by {®;} for clarity. Then we have the quantum Hitsuda—Skorokhod integral:

5, :/at '8, ds € L((E),(E)).
Proposition 5.2 Notations and assumptions being as above, it holds that
Yy = Z3o, t2a,
where ¢q is the vacuum.

_ The proof is straightforward. Note that = is no longer a multiplication operator. Let
¥, denote the multiplication operator by ¥, i.e., {¥;} is the quantum stochastic process
corresponding to {¥;}. Then we have

- t o
7, :/(a:gﬁs—i—ésas)ds. (5.7)

In classical case, in addition to the Hitsuda—Skorokhod integral another approach to a
stochastic Itd integral with non-adapted integrand has been discussed by Kuo—Russek [17],
see also Kuo [16]. Our observation (5.7) would be a key to study a quantum analogue of
their results.

5.3 Generalized integral kernel operators

It is possible to replace the kernel distribution  in an integral kernel operator (1.8)
with an operator-valued distribution, for generalities for such distributions see [21]. With
each L € E(Eg(l+m), L((E),(E)*)) we may associate an operator = € L((E),(E)*) by the
formula:

(265, 6) = (L(n® @ €2™)de, dn)), €€ Ec. (5.8)
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That = is well defined is due to the characterization theorem of symbols (see Theorem
1.2). It is reasonable to write

—~ *

E= [ an et Loty tn)as o ay,dsy - dsidty - di, (5.9)

In fact, if L is a scalar-operator-valued distribution (5.9) is reduced to an integral kernel
operator as in (1.8).

We observe that quantum stochastic integrals (5.3) are special cases of (5.9). Let {L,}
be a quantum stochastic process and consider

t
L) = Lt;n) = [ n(s)L.ds,  me Ec,

where a is fixed. It is then easily verified that L, € L(Ec, L((E),(E)*)). Hence by the
above consideration we can define

: Etzf;ga:flt(s)ds

as a generalized integral kernel operator, the symbol of which is

(Zedes dal) = (Lulm)des o) = [ (5) (Luse, 60) ds = [ (aiLude, o) ds.

Therefore .
/ﬂ% a*Ly(s)ds = / a;L,ds.
In other words, the Hitsuda—Skorokhod integral of a quantum stochastic process is a special

case of a generalized integral kernel operator. The situation for a quantum stochastic
integral against the annihilation process is similar.

5.4 Adapted processes

Consider the annihilation and creation operators associated with n € E¢:

Dy =Eou(n) = [ nthacdt,  Dj=Zio(n) = [ n(t)adt.

It follows from general theory [20] that Dy € L((E),(E)) and D,, is continuously extended
to an operator from (E)* into itself, ie., D, € L((E)*, (E)*). Thus for £ € L((E),(E)*)

the commutators [D,, £] and [Dj, =] are meaningful.

Definition 5.3 A generalized quantum stochastic process = € L(Ec,L((E),(E)*)) is
called adapted if

for any choice of t € R, £, 1 € E¢ such that supp £ C (—o0,t) and supp 7 € (¢, +0).
Lemma 5.4 [24] Assume that a generalized quantum stochastic process = is regular. Then

it is adapted if and only if [Dy, 5] = [D}, 5] = 0 for anyt € R and n € Ec with
supp 7 C (t, +00).
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Definition 5.5 A quantum stochastic process {Z;} is called adapted if
[DmEt] - [ :,7Et] =0
for any t and n € Ec with supp 7 C (¢, +00).

Adaptedness of a quantum stochastic process was introduced by Hudson—Parthasarathy
[13] and has been discussed by Huang [12] along with white noise calculus. Thier definitions
are compatible with ours.

By definition, if {Z;} is adapted, so is {Z}}. Moreover, if {5} is adapted and differen-
tiable in L((E), (E)*), then {d=;/dt} is also adapted.

Theorem 5.6 [24] Let {Z;} be a quantum stochastic process and let
t = Z El,m(ﬁl,m(t)) + Ct.[, t e R,

I+m>1

[1]

be the Fock ezpansion. Then {Z,} is adapted if and only if supp kim(t) C (—oo,t]*™ for
anyt € Randl+m > 1.

For example, the annihilation process {4;}, the creation process {A;} and the number
process {A;} are adapted. It is also obvious that {a;}, {a;} and {a;a;} are adapted.

The notion of adaptedness for both classical and quantum stochastic processes (Deﬁm—
tions 3.1 and 5.5) are compatible. :

Proposition 5.7 Let t — &, € (E)* be a continuous map defined on an interval. Then it
is adapted (in the classical sense) if and only if it is an adapted quantum stochastic process
as multiplication operators.

PRrROOF. Let -
= <::v®”:, F,ﬁ”)

n=0

be the Wiener-It6 expansion. Then, as multiplication operator the Fock expansion of &,
is given as
(l + m) ()
ét = IZ;() I'm! l"‘11‘"'(‘F'l—}-'rn)

see [20, Proposition 4.6.4]. Hence, in view of Theorem 5.6 it is adapted (in the quantum
sense) if and only if supp F\ C (—oo,t]” for all ¢ and n > 1, i.e., {®;} C (E)* is adapted.
qed

5.5 Quantum stochastic integrals of an adapted process

Proposition 5.8 Let{L;} C L((E),(E)*) be an adapted quantum stochastic process where
t runs over an interval I. Then both

t t
/ L,a,ds, / a;L;ds, t>a, tel,

are adapted.
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Proor. It is sufficient to prove the assertion for the qunatum Hitsuda—Skorokhod
integral

== [ a.L,ds, t>a, tel

a

For that purpose we shall show that

[D'mEt] = [D;’Et] =0

whenever t > a and n € E¢ with supp 1 C (¢,00). For ¢, ¢ € (E) we have by definition

t
(EDay ¥) = [ (aiLoDyd, ) ds.
Since both {a}} and {L,} are adapted, we have

(asLs Dy, ¥)) = (DnasLs, V) = (asLs¢, Dyy)).
Therefore

(Z:Dad, ¥) = [ (aiLed, Dyp)ds = (546, Dyp) = (DaZid, ¥)

a

which proves [D,, Z;] = 0. Similarly, [D}, Z;] = 0 is proved. qed

5.6 Conditional expectation of a quantum Hitsuda—Skorokhod integral

Lemma 5.9 Let {L;} be an admissible process such that

M = sup sup | Lo |||_T’_ﬂ < 0o
a<t=b | 4], <1

for some r,3 > 0. Assume that the quantum Hitsuda—Skorokhod integral

b
5:/@@@
is admissible, i.e., belongs to L((A), (A)*). Then

tAb

f O ELEds, t>a,
EER,={ ' (5.10)
0, t <a.

PROOF. Note that the composition a*E;L,E, € L((E), (EF)*) is well defined. Moreover,
for ¢,¢ € (E) we have

| {as EsLsEvg, ¥) | < [ (EeLsErd, a's"l/}» | <V ELEDN_, sllasvll,q-

According to Lemma 2.6 we take p > 0 such that

las¥ll, 5 < llastll,-
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Noting also that E; is an orthogonal projection, we obtain
| (asEeLsEvdp, ¥) | < | LaEro gl as¥ |l -
By assumption we have

| (@i EeLoEug, ) | < M| Es |l gllastbll, < M| gl ast ], < M S]], [ ast ], -

As for || asv || p it follows from a similar argument as in the proof of Lemma 3.8 there exist
M' > 0 and ¢ > 0 such that

laspll, < M|l PE(E), a<ls<b
Thus we come to

| (s B LB, ) | < MM'|| ] | ¥ |l,pg, a<s<b ¢9€(E),

and hence the integral
tAb
/ a,E:L,Eyds, t>a,

is well defined in L((E), (E)*).
~ To see (5.10) we compute the operator symbol.

«EtEEtd)E, ¢77>> = <<E¢Xt57 ¢xm»
b
= [ (a3 Letgs b ds

- /  (Labraer taten) ds
- /,;b (Lsbxuer Pxen)) xe(s)n(s) ds.

In fact, we need a suitable argument of approximation which is similar to the proof of
Lemma 3.8. Hence for t < a we have E;Z'E; = 0. Suppose that ¢ > a. Then, the last
integral being taken over the interval [a,t A b], we come to

_ tAb
(BiSEige, 6a) = [ (Lurass denh n(s) ds.
Finally we compute the integrand.

(Latries S n(s) = (LsErde, Betn)) n(s) = (EeLsEide, $n)) 1(s)
= (BiL.Eigg; asbn)) = (0 BiLsEide, ¢n))

which completes the proof. qed
Proposition 5.10 Let {L;} be an admissible process such that

sup sup || L], 5 < oo
a<t<bl |, <1
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for some 7,8 > 0. Assume that the quantum Hitsuda-Skorokhod integral
5, = /‘:a:Lsds, t>a,
is admissible, i.e., belongs to L((A),(A)*). If E,L E; = L, for allt, then we have
E=\E, = =, a<s<t.
PROOF. Suppose a < s <t. It follows from Lemma 5.9 that

B,5,E, = / "B, L.E, du.

a

By assumption we have F,L, F, = E,L,F, = L, for a < u < s. Hence
E,5.E, = / oLy du = ..

ged

5.7 Quantum martingales

Definition 5.11 An adapted process {=,} is called a quantum martingale if it is admissible
and
E,Z\E, = E,5,E,, s <t - (5.11)

This is a straightforward extension of Parthasarathy—Sinha’s one [27]. By definition the
adjoint process of a quantum martingale is again a quantum martingale.

Theorem 5.12 Let {L;} be an adapted admissible process such that

sup sup || L@, 5 < oo
a<t<b| ¢, s<1

for some r,3 > 0. Assume that the quantum Hitsuda—Skorokhod integral
= [ alL,ds, t > a,

is admissible. Then {Z:}i>4 s a quantum martingale.

Proor. That {Z;};>, is adapted follows from Proposition 5.8. Condition (5.11) is
easily verified with Lemma 5.9. : ‘ qed

Proposition 5.13 The annihilation process { A:}, the creation process {A;} and the num-
ber process {A;} are quantum martingales.

ProoOF. It follows from Theroem 5.12 that {4,} is a quantum martingale; hence so is
{A;}. It has been already shown that the number process is an adapted admissble process.
Condition (5.11) is checked easily. qed

Finally we prove a quantum analogue of Proposition 3.6.
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Proposition 5.14 Let {ra;?n} be a one-parameter family of slowly increasing functions. If

Z = :,m(nﬁ,)n) is a quantum martingale, then there exists a C-valued measurable function
on RH™ such that

- _ = !

=t = :1,m(Xt®( ) K/l,m).

PRrROOF. Since {Z;} is adapted we see from Theorem 5.6 that supp li( ) C (=00, t]Hm.
Now, in view of Lemma 4.9 we see that F,=,E, = E,Z,E, for s <t if and only if

+oo +o0
n' / dsy - - / ds,/ dty - - f dt/ / du,, x
0

®

n=

K/l’m.(s]J : 31,t1, ”7t )a‘ul -..a:na:]_ a’ a’tl a‘tma'ul .“aun
o (_1)" s 3 +oo )
=y /_dsl~-./ ds,/ dt, - / dt/ / du,
n—0 T o
n§f;(sl, o sty b, )au1 coeay ay cc-a Oy Gy Qg - Gy
Since the Fock expansion is unique, we obtain
t
"‘.'51)1;(31) : ,sl7t17 e 7tm) = K;jzb(sla T Sl)tla T '~7tm)
for s1,---,81,t1, -, tm < 8. Therefore there exists a C-valued measurable function &, on
R*™ such that 7 o
t I+
557),1 Xt (Hm) * Klm, »
which completes the proof. - - qed

References

[1] V. P. Belavkin: Chaotic states and stochastic integration in quantum systems, Russian
Math. Surveys 47 (1992), 53-116.

[2] F. A. Berezin: “The Method of Second Quantization,” Academic Press, 1966.

[3] N. N. Bogolubov, A. A. Logunov and I. T. Todorov: “Introduction to Axiomatic
Quantum Field Theory,” Benjamin, Massachusetts, 1975.

[4] J. M. C. Clark: The representation of functionals of Brownian motion by stochastic
integrals, Ann. Math. Stat. 41 (1970), 1282-1295.

[5] I. M. Gelfand and N. Ya. Vilenkin: “Generalized Functions, Vol. 4,” Academic Press,
1964.

[6] A. Grossmann: Fields at a point, Commun. Math. Phys. 4 (1967), 203-216.
[7] R. Haag: On quantum field theories, Dan. Mat. Fys. Medd. 29, No. 12 (1955), 1-37.

[8] T. Hida: “Analysis of Brownian Functionals,” Carleton Math. Lect. Notes, No. 13,
Carleton University, Ottawa, 1975.



190

[9] T.Hida: Causal calculus and an application to prediction theory, in “Prediction Theory
and Harmonic Analysis (V. Mandrekar and H. Salehi eds.),” pp. 123-130, North-
Holland, 1983.

[10] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: “White Noise,” Kluwer Academic, 1993.

[11] T. Hida, N. Obata and K. Saitd: Infinite dimensional rotations and Laplacians in
terms of white noise calculus, Nagoya Math. J. 128 (1992), 65-93.

[12] Z. Huang: Quantum white noises — White noise approach to quantum stochastic cal-
culus, Nagoya Math. J. 129 (1993), 23-42.

[13] R. L. Hudson and K. R. Parthasarathy: Quantum Ito’s formula and stochastic evolu-
tions, Commun. Math. Phys. 93 (1984), 301-323.

[14] P. Kristensen, L. Mejlbo and E. Thue Poulsen: Tempered distributions in infinitely
many dimensions, Commun. Math. Phys. 1 (1965), 175-214.

[15] I. Kubo and S. Takenaka: Calculus on Gaussian white noise I-IV, Proc. Japan Acad.
56A (1980), 376-380; 411-416; 57TA (1981), 433-437; 58A (1982), 186-189.

[16] H.-H. Kuo: Lectures on white noise analysis, Soochow J. Math. 18 (1992), 229-300.

[17] H.-H. Kuo and A. Russek: White noise approach to stochastic integration, J. Multi-
variate Anal. 24 (1988), 218-236.

[18] J. M. Lindsay: Quantum and non-causal stochastic calculus, Probab. Theory Relat.
Fields 97 (1993), 65-80.

[19] P. A. Meyer: “Quantum Probablllty for Probabilists,” Lect. Notes in Math. Vol. 1538,
Springer—Verlag, 1993.

[20] N. Obata: “White Noise Calculus and Fock Space,” Lect. Notes in Math. Vol. 1577,
Springer—Verlag, 1994. '

[21] N. Obata: Operator calculus on vector-valued white noise functionals, J. Funct. Anal.
121 (1994), 185-232.

[22] N. Obata: &7 1 » / 4 X X 5 EFHERENT, WEFE 62 (1994), 62-85.

[23] N. Obata: Fock Z2ff] LOEFHERMEE - KT A b/ A XOB R0, FEKFHER
WEFZERT e 5% 887 (1994), 72-96.

[24] N. Obata: Generalized quantum stochastic processes on Fock space, to appear in Publ.
RIMS 31 (1995).

[25] N. Obata: BT &7 1 b/ 4 XOEFHERE, WHERFZE (1995).

[26] K. R. Parthasarathy: “An Introduction to Quantum Stochastic Calculus,” Birkhauser,
1992.

[27] K. R. Parthasarathy and K. B. Sinha: Stochastic integral representation of bounded
quantum martingales in Fock space, J. Funct. Anal. 67 (1986), 126-151.

[28] H. Watanabe: The representation of Brownian functionals by stochastic integrals,
preprint, 1993.



