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Split Z-forms of irreducible prehomogeneous vector spaces

AKIHIKO GYOJA

Introduction.

Let G be a connected reductive group over C, p : G — GL,(C) a rational
representation, and V := C™. Such a triple (G,p,V) is called a prehomogeneous
vector space if G has a Zariski dense orbit in V. If (G, p, V) is an irreducible, (G, p, V)
is said to be irreducible. Now assume that (G, p, V) is an irreducible prehomogeneous
vector space such that there exist a non-trivial rational character ¢ € Hom(G,C>)
and an irreducible polynomial function f € C[V] on V such that f(gv) = ¢(g)f(v)
for all g € G and v € V. Put

Aut(V, ) = {(9, &) € GL(V) x € | f(gv) = ¢, f(v) for all v € V'},

and Aut®(V, f) be the identity component of Aut(V, f). If the image of Aut®(V, f)
by the first projection coincides with p(G), then (G, p, V) is said to be saturated.
The purpose of this note is to classify and to describe the split Z-forms of the
saturated, irreducible prehomogeneous vector spaces. (See [G] for “split Z-form”.)
For this purpose, we need to describe a Chevalley system explicitly for each complex
simple Lie algebra. Such a description is given in §1, which would be useful in a
different context, and so we have included some information which is not used in the
present note. (For example, all information concerning Fg is not necessary here.)
Notation. For a ring A (3 1), Myn(A) denotes the totality of n x n-matrices.

The group of units in A is denoted by A*. An element of A* is identified with the
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the n X n-matrix whose (%, j)-component is 1 and the other components are 0. We
sometimes write E; for E;;. We denote by diag(t;,- - - ,t,) the diagonal matrix whose

diagonal components are ¢, - - ,t,. For a set X, its cardinality is denoted by #X.

§1. Chevalley system.

Let g be a simple Lie algebra over C, h a Cartan subalgebra, g = § &
> rer 8(r) the root space decomposition, 0 # X(r) € g(r), and H(r) (€ b) the
coroot vector which corresponds to a root r. A system (X(r)),¢p is called a Chevalley
system, if

[X(r),X(-r)]=H(r) (r€R)

and, for r,s,r + s € R,

[X(r), X(s)] = £pX(r +s),

where p is the smallest positive integer such that s + (p+ 1)r ¢ R.
The purpose of this section is to describe explicitly a Chevalley system for

each complex simple Lie algebra.

1.1. Type A,_;.

We may assume that
8 ={X € M,(C) | tr(z) = 0}

and

b = {diag(t1,...,ta) | t; € C’Zti =0}

Then
R={¢—¢|i#7j},



where

The coroots are given by

H(e; —€5) = E; — E;.

A Chevalley system is given by

X (e — €) = Ejj.

We may take as a root basis
o = € — €41 (1<i<n-1).

Then the Dynkin diagram'ié given by

ay a2 An—1

1.2. Type B,.

Let us define an element J of Ma,+1(C) by

n
J = (Einti + Entii) + 2E2ns12n41.

1=1

We may assume that

g={X € Map1(C) | XJ +JX =0}

and

b = {diag(t1,. .., tn,—t1,-- -, —1x,0)}.
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Then
R={xete¢ (i#7) e},
where

Ez(diag(tl, LY ,tn, _t]_, ceey _tn,o)) = ti.

The coroots are given by

H(e; — ) = (Ei — Ej) — (Enti — Eny;) (2 # J)
H(ei + ) = (Ei + Ej) — (En4i + Eny;) (2 <)
H(—¢€ — €) = (—Ei — Ej) = (=Enti — Enyg) (i <J)
H(ei) = 2(E; — Enq.)

H(—€) = =2(E; — En4).

A Chevalley system is given by
X(e&i —€) = Eij — Enqjngi (2 #7)
X (€ +¢€) = Eintj — Ejn+ti (2 <J)
X(—€i — ¢) = Entji — Entiy (2 <J)
X (&) = Eion+1 — 2Eon41,n+i

X(—¢€) =2Em+41,i — Entignt1-

We may take as a root basis of R
o = € — €41 (1 <i<n), Qp = €g.

Then the Dynkin diagram is given by

¢} ¢} 0 — 0.

ay a2 qn—1 Oy
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1.3. Type C,.

Let

n

J= Z(Ei,n-i-z’ — Enyii).
i=1

We may assume that

g=1{X € My,(C) | XJ + JX =0}

and
b = {diag(t1,...,tn, —t1,-..,—tn)}.
Then
R=A{teite; (i#j), =*2e},
where

e,‘(diag(tl, R A I —tn)) = {;.

The coroots are given by

H(ei — ) = (Ei — Ej) — (En4i — Eny;) (2 #7)
H(ei + ¢;) = (Ei + Ej) — (Enti + Eny;) (1<)
H(—¢ — ) = —(Ei + Ej) + (Engi + Engy) (i <)
H(2¢;) = E; — Eny;

H(-2¢) = —E; + Eny..

A Chevalley system is given by

X € — ﬁj) z] - En+],n+z (Z # ])

€ +€]) Eintj+ Ejn+i (1<y)

><

><

S

(
(
(—€ — €) = Entji+ Entiy (1<)
(26;) = Einyi

(-

X 251) = n+z 'z
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We may take as a root basis

a; =€ —€q1 (1<i<n), ap=2¢.

Then the Dynkin diagram is given by

(o) o] .0 <& o.

(851 a2 [s 279§ Qan

1.4. Type D,.

Let

n

J = Z(Ei,n+i + Entii).

1=1

We may assume that

g={X € My,(C)|XJ+JX =0}

and ’
h = {diag(tl, P ,tn, -—tl, ey —tn)}.
Then
R={teite¢; (i#7)},
wheré

ei(diag(ts, ..., tn —tn,..., —tn)) = t;.
The coroots are given by
H(ei — ) = (Ei — Ej) — (Enti — Enyj) (z #7)

H(ei + €;) = (Ei + Ej) — (Enyi + Enyj) (¢ <)

H(—€i — ¢j) = —(Ei + Ej) + (Bnti + Entj) (6 <))



A Chevalley system is given by

X(ei — ¢) = Eij — Entjnti (i #7)
X(ei +€) = Eintj — Ejnti (t<7)

X(—€i — €) = Entji — Enyiy (1 <J)-
We may take as a root basis
ai=¢6—€41 (1<51<n), ap=€n1+6n.

Then the Dynkin diagram is given by

QOn

(o]
o] [o] e o} o]
a1 a2 Op—2 Qp—1

Up to now, we have worked with the vector representation of the simple Lie algebra
of type Dy, but we also need to work with the half-spin representation. In the

remainder of this paragraph, we freely use the notations of [SK,pp.110-114], where a

brief account of the theory of the spin representation is given.

The representation space A(E) = A(C") of the spin representation is the
Grassmann algebra of the vector space E = @®_;Ce;. We write e; e, ... ¢, for

ei, Aei, A---Ae;,. Let us consider two kinds of linear operators which are defined as

follows:

ei(€i iy - - - €iy) = €€ €4y .. . €y

fileiei, ... €,) = {

0, otherwise.

(—1)Pte;, ... €, ... €5, if i =1, for some p,
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Here €;, ...€;,...¢ei, means e; ...e;,_ €, ...¢e,. Let g be the linear span of

P

eifj (1 S’La] Sn)a
eie; (1<i<j<n),

fifi  (1<i<j<n).

Then @ is a Lie algebra and an isomorphism between g and § is given as follows:

n
diag(ti, ... tn —t1,-..,—ta) & 3 ti(eifi — fiei).
=1

X(&i —¢) = Eij — Enyjnti < &f; (i #J),
X(ei+€)=Eintj — Ejnti o e (z <J),
X(—€i— €)= Enyji— Entij o fifi (1 <J).

Thus a Chevalley system of § is given by

X(& —€5) = eifj (1 #7),
X(& + €) = eie; (: <),

X(—ea—¢)=fifi (<)

As is easily seen

Aodd — Aodd(E) — Z Ak(E)
k=odd

and

AcvER — Aeven(E) — Z Ak(E)

k=even
are §-stable subspaces of A(E). These §-modules A°¥? and A**™ are known to be
irreducible and are called the odd half-spin representation and the even half-spin

representation, respectively.



We define an involutory automorphism ¢ of the Clifford algebra C(Q) (gen-
erated by {e1,...,€en, f1,---,fn}) by (i) = fi and ¢(f;) = €; (1 < ¢ < n). Then ¢
induces an automorphism of Sping,, which we shall denote by the same letter ¢. See

[SK, pp.110-114] for the Clifford algebras and the spin groups.

1.5. Type Gs.

We may assume that g is the totality of the matrixes

/ 0 2d 2 2f 2a 2b 2¢ \
a T11 T12 213 0 f —e
b zo1 =z z23 —f 0 d
C 31 T332 T3 € —d 0
d 0 —¢c b —z11 —TI91 —I31
e ¢ 0 —a —z19 —x99 —I32
\f -b a 0 —z13 —2z23 —.1:33}

with z11 + 22 + a:3;3'= '0,‘ and

'] = {diag(O,tl,tg,tg, —~t1, =12, —t3) | t1+1a+13= 0}
Then
R={ei—¢ (#7j) =&},
where
ei(dia‘g(oa t1,t2,13, —11, — 1o, _t3)) =t
The coroots are given by
H(ei — €¢j) = (Bryi — Bryj) — (Bayi — Eayy) (0 #7),

H(¢&;) = (2E14i — Ertj — Erqx) — (2E44i — Eayj — Egqy),

H(—¢€;) = —(2E14i — E145 — E14k) + (2E44i — Egyj — Egyr),

216
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where {7,7,k} = {1,2,3}. A Chevalley system is given by

X(€i =€) = E14i145 — Egyjavis
X(€&) = E14i1 + 2By 44 + Esyg 145 — Esgjasr,

X(—€) = Egyin +2E114i + Eryjatk — Eiikatjs
where (4, j, k) is an arbitrary even permutation of (1,2,3). In fact,

[X(ei —€), X(ej — ex)] = X (& — €x)

[X (€ =€), X(€5)] = X(e5)

[X (&), X(—¢€5)] = 3X (e —¢5),

[X

(
(
[X(e&i — ), X (=€)l = —X(~¢))
(
(60), X(ej)] = 2X (~ex),
(

[X (=€), X(=€))] = —2X(ex).

In the last two commutation relations, {z,j,k} = {1,2,3}. Let € be the octonion

algebra (=the algebra of Cayley numbers) over C [F,1.1]. Define a basis of € by

Uy = €y, Uy = €7
ug =e +vV—les, ug=-er+vV—les, us=es+V—leg,
ug = —e1 +vV—les, ur=—ez++vV—les, ug = —eq+v—les.

Here we use the notations of [F,1.5]. With respect to this basis, the Lie algebra of the
infinitesimal automorphisms‘of ¢ is identified with the Lie algebra g defined above.

We may take as a root basis

a1 = € — €2, g = —€3.
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Then the Dynkin diagram is given by
a] = as.

1.6. Type Fj.

In this paragraph, we use the notations of [F]. Define a basis of € by

fi=e+V=ler, f5=—eg+V—ler,
(1.6.1) fo=es+vV—ler, fo=—es+V—ley,
fi=es+V-les, fr=—e5+V—ley,
fi=es+vV=Tles, fy=—ez+vV—Tles

The multiplication table is given by

i f f3 fa fs fe 1. fs
Al2h 2f2 2fs 2 0 0 0 0

f2l 00  =2fs 2fr -=2fp 2fi O 0
fs| 0 =2fs 0 =2f¢ —2fs O 2fi O
(1.6.2) fal 0 =2fr 2fe 0 -2fy 0 0 2f
fs| O 0 0 0 =2fs —2fe —2fr —2fs
fe|2fe —2fs 0 0 0 0  2fs -2f3
frll2f 0  =2fs 0 0 =2fy 0 2f
fs| 2fs 0 0 =2fs 0 2fs -=2f O

eg., fifs = 2fs, fsfi = 0. Let us identify a linear endomorphism of € with the

corresponding matrix with respect to the basis {f;}, e.g., Eijf; = fi. Let us describe



the automorphisms A and A2

we have

(1.6.3)

and

(1.6.4)

[ 0
T21
T3]
T41
0
212

213

(X)) =

\ 214

A(X) =

z12
0

Z32

T42

—Z12

223

224

—Z34
224

—Zz23

—Z12

—T13

\—:1,‘14

—Y21
Y31
—Yau
0
Y43

—Y42

\ Y32

of D4 [F,2.2.4] in the matrix form.

z13
Z23
0
Z43
—213

—Zz23

234

—Y43

r32
T42
12
0
Y4

—Y31

—Z12

Z32
T42
—Ya3
0
—T41

I31

T14 0
T4  —Y21
34  —Y3
0 —yu
—Z14 0 v
—Z4 —T12
—2Z34 —T13
0 —z14
Y42  —Y32
T3 T
0 T34
T43 0
13  T14
—Ya1 Y31
0 —yn
Y21 0
—Z213  —Z14
23 T4
0 T34
T43 0
Y42 —Y32
T4 —T31
0 z21
—T91 0

Y21
0
—Y32
—Y42

—Z21

—Z23

—T24

T21
T31

T41

Y43
—Y42

Y32

—234
224

—223

212
213

214

Y31
Y32
0
—Y43
—T31

—Z32

—T34

—T21

—Z14
213

234

—Tr23

—T24

234

T14
—Z13

Y21

—I23

—T24

For

Y41 \
Y42

Y43

—T41
—T42

—T43

—z31 —1841\
14 —213
0 212
’—ziz 0
—294 233
—T32 —T42
0 —=43
—z34 0 }
—224 223 \
—Z14  T13
0 —I19
12 0
Y31 Y4
—T3y —T42
0 —T43
—x34 0 )

219
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#0) t {0+ -1 1 1 1y gt

£ ty el I S R s R R

Ol I A T2l 1 ||

1) ta £+ 1 -1 -1 1/ \&Y
Then, for

X = dia'g(tlatZa t3a t47 —tla _t21 ""t37 —t4)7

we have
(1.6.5) N (X) = diag(t?, 1), 49 #0409 49 4y,

As in [F,4.5.9], J denotes the exceptional simple Jordan algebra. We may assume
that

g = {infinitesimal automorphisms of J}.

Let us identify an element § of D4 with the element § of g defined by

&L z3 T2 0 bsz3 bam2
6l T3 & i | =623 0 bz |,
Ty T1 &3 dozy 0121 0

where §; = /\i_1(6). We may assume that
h = {dia‘g(tlat27 t31 t41 —'tla ""t2) '—t37 _t4)}7

where we identify h (C D4) with a subalgebra of g via the above defined identification.
Then

. 1
R={te ¢ (1 #7), xei, E(iel +e e tes)l,
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where

Ei(diag(tl, ta,t3,t4, —t1, —1t2, —t3,—t4)) = t;.
The coroots are given by

H(si€i + sj€j) = si(Ei — Eqyi) + sj(Ej — Eayj) (1 # )

H(Siei) = .3,'(2E,' — 2E4+,')

(1.6.6) .
H(l( + sp€2 + = si(Ei—E
5ls1€1 1+ 5262 1 S3€3 + s4€4)) 1 si( a+i),
1=
where s; = +1. For a € €, let
0 0 0 0 0 —a 0 a 0
(@i=]0 0 al|,(@2=]|0 0 0 |,(as=|—-a 0 0
0 —a 0 a 0 0 0 0 0

For X € M), define a linear endomorphism X of J by
~ 1
X(Y) = §(XY +Y*X"),
where X* is the transposed conjugate of X [F,4.1]. A Chevalley system is given by

X(ei - ) = Bij - Barjari (i #7)
X(ei +¢) = Eigyj — Ejari (i <J)
X(—€i =€) = Eqqji — Bagij (1<)

(1.6.7) X(ei) = (fi)r X(—€) = (faga)?
X(e&ioX) = (fi)7 X(—€o)) = (fapi)?
X(e02) = (fi)y

X(—e0X?) = (fats)3"
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Note that
€10 -1 1 1 1 €1
€0\ 1] -1 1 -1 -1 €2
€30\ 2 -1 -1 1 -1 €3
€4 0 A -1 -1 -1 1 €4
and
€1 0 A2 -1 -1 -1 -1 €1
€9 0 A2 1 1 -1 -1 €

1
€3 0 A2 2 1 -1 1 -1 €3
€4 0 A2 1 -1 =1 1/ \e/
Let us give explicitly the commutation relations. Let § be an element of g, of the
form X (4e¢; +¢;) (i # 7). Then 61,682,063 are of the form £X (+e; = ¢;) by (1.6.3) and
(1.6.4). Here §; f; are of the form *f;. By [F,4.9.4],

(1.6.8) 6, ()71 = (8;f)7 = £(fx)j or 0.

The signature appeared in (1.6.8) can be easily determined by using (1.6.3), (1.6.4)

and (1.6.7). A direct calculation shows that

[(f)T, (Fi)T] = 2(Eijr — Ejir)
(1.6.9) [(£)35 (£;)3] = 2)\*(Eije — Ejir)

()5, (f5)5] = 2M(Eijr — Ejir),

where

T =

{z‘+4, (1 <4)
!
i—4, (1>4),

and

(1.6.10) (@), ()] = (~5aB)
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for each even permutation (2,7, k) of (1,2,3). Since —%f,_f] is of the form +f}; of 0,
(1.6.8), (1.6.9) and (1.6.10) together with the results of (1.4), give the commutation

relation among the Chevalley system given above. We may take as a root basis

Q] =€ — €3, Q3 = €3 — €4, O3 = &4,
1 .

g = 5(61 —€ — €3 —€4).

Then the Dynkin diagram is given by

o} 0O — O

(s3] a2 (s 2:1 (s 7}

1.7. Type Fs.

In this paragraph, we use the notations of [F]. We may assume that

g = €¢ = {linear endomorphisms of § which (infinitesimally)

preserves det(X,Y, Z)}

[F,8.1]. The Lie algebra §4 of infinitesimal automorphisms of J is contained in g.
Let hy be the Cartan subalgebra of §4 which is given in (1.6). We may assume that
ts ~
bh=bs+{ ts | ts + te + t7 = 0}.

t7

Let

h(tl, ces t7) = diag(tl,t2, t3,t4, —11, —12, —13, —t4) + tg

ty
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and

ei(h(t1,...,t7)) =t;.

Let us define endomorphisms a;; (1 <1,5 < 3) of Dy by

a; =0 (1<i<3),
a =1, azp = A, app = A%,

azy = K, a3 =KX, ag = kN
[F,2.2]. Note that every a;; preserves hy. Let

A; =0 (1<:L3),

\—1 -1 -1 1)
(1

1

Ay = = :

272l 101 4
\1 -1 -1 1/
1.0 0 0
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1 -1 -1 1
and ..
t;] 11
£ s
| = A
) t
3 3
£ t4
Then

aijh(t1, 2, 13,14,0,0,0) = A(tY 45,7 9 .0,0,0).
We identify an element § of D4 with a linear endomorphism of M3 [F,4.1] as follows:
3 3 3
3)y -
803" i;EY) - 3 (bijzii)EY),
1,5=1 1,5=1

where 6;; = a;;(6) [F,4.9]. Let
Rij={teoai; |1 <k <4} (1<i,j<3).

Then

1 o o
R = U(R,‘j + 5(644_,‘ — €445)) U {:i:e,;:l:ej |1<i<j<4}
i#] ‘
1
:{:te,':lz-é(ee—ﬂ) (1<i<4),

1 1

525,6,&:5(65 —€7) (Hs, = —1),
=1 i=1

1 & 1 k

3 Zs,e, + —2-(65 — €6) (H si=1),
=1 1=1



where s; = +1. Define an order by

7
Z si€; > 0,
i=1
if $,0) = = So(k-1) = 0 and S,y > 0 for some 1 < k < 7, where o
1234567 oy
(5 67123 4). Then the positive roots are

1 .

i€i+§(€6 —€7) (1<:<4),

1o 1 k
i528i6i+§(es—67) (H5i= —1),

1=1 =]

1¢ 1 !
i§;8i§i+§(65 — €6) (£11= 1),
s 0 (1<i<j<),

and simple roots are

1 1
ry = —€ + 5(66 —€7) = —€1 033 +§(56 —e7)
Ty = €3 — €4
r3=¢€ — €

T4 = €2 — €3

rs = €3+ €4
1 1 1
re = 5(—61 —e—€e3—€)+ 5(65 —€) =€ 0ay2+ 5(65 — €6).

Let hy = £(1,0,0,0,0,0), k2 = £(0,1,0,0,0,0) etc. The coroots are given by

7 4

7
H cie) =Y cihi+2)  cihi,
i=5

1=1 1=1

226
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where 2:=1 ci¢; € R. Especially

H(ry) = —hy + (he — h7),
H(rz) = h3 — hy,
H(rs) = hy — ha,
H(ry) = ho — hs,
H(rs) = hs + hq,

1
H(Ts) = é(_hl — hg — hg — h4) + (hs - hs).

Hence the Dynkin diagram is given by

T r3 T4 s T6
T2
Let
(a)j =aES) (1<i,j<3, a€Q),

M3 = {T € M with real diagonal elements},

T11 T12 T13
X | %21 %22 %23 | =111 + T2 + 33
Z31 T32 X33

T(X)=3TX +XT*) (X €3, Te€My).
Every element of g can be uniquely expressed as

s+ T,
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where 6§ € D4, T € M3 and x(T) = 0 [F,8.1.1]. A Chevalley system is given by

X(ei—¢€j) =FEij — Egyjaqi (i #7)
X(ei+€j) = Eiayj — Ejayi (2 <)
X(—€i — €)= Eayji — Eatij (€ <)
X(eiooap+ ;(f4+k — 1)) = (fiu

1 ~ .
X(—€ioap+ -2-(€4+k —egq1) = (fardn (1<i<4, 1SK IS, k#]).

1.8. Type E7.

In this paragraph, we use the notations of [H]. Let
X ={(z,y) | z,y are alternating 8 x 8 matrices}.
Define linear endomorphisms of X by

P
(1.8.1) (z,y) — (pz + z'p,— by — yp),

where p is an 8 x 8 matrix with trace 0, and

8
(182) ((.’L‘” y,] (E ﬂ']m"ymn Z 'ﬂz]mnxmn)

m,n=1 m,n=1

where ¥ denotes a tensor, antisymmetric in its indices, and upper, lower indices satisfy

the relation

— E :'9.71; 7.74
117 714 4' '1; ;141]11 114
]1’ 1.74



Here Il::;,,?ks denotes the signature of the permutation (k::::s) if {k1,...,ks} =
{1,...,8}, and 0 otherwise. Then, we may assume that g = €7 is the linear span of

these linear endomorphisms, whose Lie algebra structure is given by

[p,p'] = pp' — p'p, where pp’ denotes the matrix multiplication,

,19 — ,01’ where (19’ 1kl _ 19mjklpim +19imklp _m_*_,lgijmlpkm ‘|"l9ijkmplm ’
: J

m
2 1 1 nr
[9,9'] = p, where p;; = 3 > ("™ (9 i — §(Z 9 (") e )6i5)-
l,m,n r

Hereafter, we identify p € Lie(SLg(C)) with the element of g defined by (1.8.1). We

may assume that _
8
b = {diag(ts,...,ts) | Y _ti=0}.
1=1
Let
ei(diag(th cee atS)) =t.

Then

-_R:{ei_ej (1SZaJS811#])7

e&+e+eat+e (1 <i<jyi<k<lIL8)}.
The coroots are given by
H(e; — ¢j) = E; — Ej,

8
1
H(ei+€j+ex+€) =(E,‘+E]'+Ek+E1)—§ZEm.
=1

Let J(ijkl) be the tensor, with (zjkl)-coeflicient = 1, all others zero (but to preserve

the anti-symmetry of 9), e.g., 9(ijkl)*¥ = 1. A Chevalley system is given by

X(ei — €5) = Ejj (i #J)

1
X(q+€j+fk+e,):§ﬂ(zjkl) (e<i<j<k<l<L38).
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In fact

[X (e — €), X (&5 — )] = X(€i — ek)
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[X(ei—ej),X(E]‘ + €k +61+6m)] =X(6i+6k+€l+fm)

(X(ei+et+e+a)X(et+em+en+e)=X(6—¢),

where different letters indicates different numbers. (Note that if 7 indices (¢jklmnr)

are given, then the remaining index, say s, is uniquely determined.) The other com-

mutators are all zero. By these commutation relations, we can show that there exists

a unique involutory automorphism ¢ of €7 such that

p) = ~"p (p € sls(C)),
~ and
(D(ijkl)) = d(mnrs),

where (mnrs) is chosen so that Iilfk‘o’,ﬁgzg =1. Let

Q; = € — €41

ag = €5 + €6 + €7 1 €s.
Then we may take as a root basis
fai [t #1} or {ei|i#T}

In fact, the extended Dynkin diagram is given by

al a2 Q3——04 a5 ag

ag

a7

The involutory automorphism ¢ induces the unique non-trivial automorphism

of the extended Dynkin diagram.



1.9. Type Es.

In this paragraply, we use the notations of [VE]. Let us consider three kinds

of tensors

9
X = (z})1<ij<o  with Zx; =0,

=1

X = (Tijk)1<ij k<95

X* = (29%)1<i j k<o

Here all the tensors are assumed to be antisymmetric in the covariant indices and in

the contravariant indices. We may assume that g is the vector space {X} @ {X,} ®

X*}, which is equipped with a Lie algebra structure by
g

X,Y]= 2,
[X,Y.] = Z,,
X, 7" = 2°,
X", Y. = 2,

[X*,Y* = Z,,

[X*, Y;] - Z*’

A R

zj - .'L']y‘ ij.
1. .

Zijkl = §Iijk$.y---

1

2k — —§If],'kx:y"'

Zijk = -?EI,']‘ ...... xy
» 1 ..
LIS 1
36 Ty

Here we used the notations of the first two sections of [VE]. We may assume that

is the set of the diagonal X’s. Let

9
6,(2 tE) =1t
=1

The root system is given by

R={¢ —¢

(1<4,5 <9, i#7),

:|:(€i+6j+6k) (1Si<j<k‘§9)}.
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The coroot are given by

H(e; — 6]') = FE; — Ej,
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9
H(2(ei + ¢ + ) = £{(Ei + B; + Ex) - % " En}.
m=1

Let X, (ijk) (resp. X*(ijk)) be the tensor of type X, (resp. X*), with (ijk)-coefficient

= 1, all others zero (but to preserve the anti-symmetry of X, (resp. X*)). A Chevalley

system is given by

X(ei—¢) = Eij
X (€ + €5 + ex) = Xi(igk),

_X(—e,- — €5 — €x) = X*(ijk).
Let

o =¢—¢€41 (1<1<8),

g = —€] — €2 — €3.
Then we may take as a root basis
{ai | 7 # 8}.
In fact, the extended Dynkin diagram is given by

a1 a2 a3 a4 as Qg ar

ag



§2. Split Z-forms.

The purpose of this section is to classify and describe the split Z-forms of
saturated, irreducible, prehomogeneous vector spaces (G, p, V) over C. Here we use

the definitions and the results of [G].

According to [G], first, we should choose highest weight vectors vy and vy of

V and VV so that

Vmaz(Z) N C'U() = me(Z) n C’Uo = Zvo,

where, by definition, Vipin(Z) = Uz - vo and Vipez(Z) is the dual lattice of Uz - vy [G].
We shall describe Vinin(Z) and Vipes(Z) explicitly for each case. Our next task is to
classify the graded Uz-modules V(Z) which are Z-lattices of V and

Vinin(Z) C V(Z) C Vinas(2).

Fortunately, it will turn out that our second task is almost nothing. In fact, our
calculation will show that such a V(Z) coincides with Vinin(Z) or Vipes(Z).
In course of our calculation, we need to fix a Chevalley system, a basis of a

root system etc. In such a case, we always use those given in the first section. If a
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non-degenerate bilinear form (, ) is defined on V, we identify the vector space VV with -

the vector space V via the isomorphism I : V'V Z, V defined by (vV,v) = (I(vV),v),
where the left hand side is the natural pairing. (Note that I does not preserve the
Z-structure.) For the sake of a convenience for later calculations, we will give a
non-degenerate bilinear form such that p(G) = p¥(G), if we identify VV with V.

In (2.1)-(2.15), we shall treat reduced prehomogeneous vector spaces.

2.1. Type (1).



The representation space V can be identified with the totality of m x m
matrices My, (C). We may assume that G = GLy X GLp. The action of G is given
by

p(9)X = 1X%2 (X € Mn(C),g = (91,92) € G).

Then a highest weight vector is given by vy = E1;. By applying Uz to vy, we have
Vimin(Z) = M (Z).

We identify the dual space VY of V with V by (X,Y) = tr(’XY) for X,Y € Mp(C).

Then the action of G on VV is given by
pV()Y =tgr'Ygy' (Y € Mn(C),9 = (91,92) € G).

Note that ﬁV(G) is identified with p(G) via the above identification V = VV. A

highest Weight vector of V'V is given by
v(\)/ = Fpm.

Hence V0. (Z)

M, (Z), and

Vinaz(Z) = M (Z).

Hence there is only one split Z-form. A Z-basis of Vinin(Z) = Vinaz(Z) is given by

Ej (1<4,j<m)

and its dual 1s

EY=Ej (1<i,j<m).
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2.2. Type (2).

The representation space can be identified with the totality of n xn symmetric
matrices V = {X € M,(C) | X = X}. We may assume that G = GL,. The action
is given by

p(9)X =gX'% (X€V,g€Q).

A highest weight vector is given by vy = Ej;. By applying Uz to vy, we have
Vimin(Z) = {X € My(Z) | X = X}.

We identify the dual space VV of V with V by (X,Y) = tr XY. The action of G on
VV is given by
pV‘(g)Y =%yg! (YeVY,9€@).

Note that p¥(G) is identified with p(G) via the above identification V = VV. A
highest weight vector of V'V is given by vy = Ep,. Since V.Y

min — {Y € Mn(Z) I tYZ
Y}, |

n
Vimaz(Z) = > ZE;i + Y 1. L(Eij + Ej).
1=1

1<J
We can show that Vinez(Z)/Vimin(Z) is a simple graded Uz-module. (It is enough to
consider the action of the Weyl group.) Hence there are exactly two split Z-forms. A

Z-basis of Vipin(Z) is given by
Ei (1<i<n), Ej+E; (1<i<j<n).
Its dual basis is given by
Ef =E (1<i<), (Bij+Ep)Y =3(E;j+E;i) (1<i<j<n),

which is a basis of Vi,44(Z).



2.3. Type (3).

The representation space can be identified with the totality of 2m X 2m
skew-symmetric matrices V = {X € Man(C) | X + X = 0}. We may assume that

G = GLy,,. The action of GG is given by
p(9)X =gX% (XeV,geq).
A highest weight vector is given by vg = E12 — Ep1. By applying Uz to vy, we have
Vinin(@) = {X € Myp(Z) | X + X = 0}.
We identify the dua;l'space VV of V with V by (X,Y) = ——% tr XY. The action of G

on VV is given by

V()Y =Y%Ygt (YeVY,9€@).

Note that p¥(G) is identified with p(G) via our identification. A highest weight
vector of v¥ is given by vy = Eam—1,2m — Fam,2m—1. Since V¥, (Z) = {Y € Man(Z) |
Y + % =0},

Vinaz(Z) = {X € Mam(Z) | X + X = 0}.

Hence there is only one split Z-form. A Z-basis of Vipin(Z) = Vinaz(Z) is given by
Ei;j —Ej; (1<i<j<2m).
Its dual basis is

(Eij — Eji)Y = Eij — Eji (1<1<j <2m).
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2.4. Type (4).

The representation space can be identified with the third symmetric product
53(C?) of a two dimensional vector space. We may assume that G = GLy = GL(C?).
Then G acts naturally on $3(C?). Let e; = {1,0) and e; = {0,1). A highest weight

vector is given by vg = e3. By applying UZ to vy, we have
Vimin() =Z-e3 +7 -3eles +Z -3e1e2 + 7 - €.
We identify the dual space VV of V with V itself by

-1
< a_3—a _b 3—b> _{ (3) (a=1)
' 0 (a #b).

If we denote the actions of G on V and VV by p and pV, respectively, then pV(9) =
p(*g™1). In particular, p¥(G) = p(G). A highest weight vector of VV is given by

vy = e3. We have
'Vn\z/iﬁ(z) =2Z- e? +27-3e2e3+ 2 -3e1e2 + 7 - e

and

Vmaz(Z)=Z-ei’+l-e%ez+z-eleg+l-e%.

We can show that Vinez(Z)/Vimin(Z) is a simple graded Uz-module. Hence there are

exactly two split Z-forms. A Z-basis of Vinin(Z) ais given by
e:f, 36%62, e e, e%.
Its dual basis is given by
() =€}, (3efe2)¥ = efes, (Ber1d)Y = ered, (e3)¥ = e,

which is a basis of Vj,44(Z).
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2.5. Types (5),(6),(7),(9),(10) and (11).

Let (I,m,n) = (3,6,1),(3,7,1),(3,8,1),(2,6,2),(2,5,3) or (2,5,4) for the
prehomogeneous vector space of type (5),(6),(7),(9),(10) or (11), respectively. Then
the representation space can be identified with V = A\!(C™) @ C", where \'(C™) is
the [-th Grassmann product of C™. We may assume that G = GL(C™) x GL(C"),
which acts naturally on V. Let {¢; | 1 < ¢ < m} and {f; | 1 < j < n} be the
standard bases of C™ and C", respectively. A highest weight vector is given by

vop = (e1 Aex A--- Aep) ® f1. By applying Uz to vo, we have

Vmaz(z): Z Z'(eil/\"'/\(iil)@fj-

1<ii<-<u<m
1<j<n

We idéntify the dual space VY of V with V by
<(€i1 A---Neip)® fi (eq A Aeir) ® fj’> = biyit - 040t 61,

where ‘il '< oo <4, 4y < --- < 4 and § is the Kronecker’s delta. Denote the
action of G on V and VV by p and pV, respectively. Then p¥(g1,92) = p( tgl_l, tgz_l)
for (g1,92) € G. In particular, p¥(G) = p(G). A highest weight vector of V'V
is given by vy = (em—it1 A - A em) ® fo. Then we have VY. (Z) = Vipez(Z)

and Vinaz(Z) = Vmin(Z). Hence there is exactly one split Z-form. A Z-basis of
Vinin(Z) = Vinaz(Z) is given by

(eis Ao Neiy))®f; (1<ir<-- <y <m1<j<n).
Its dual basis if given by

((eil /\"'Aeiz)@fj)v = (e, /\"'/\6,‘,)®fj~
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2.6. Type (8).

The representation space can be identified with V = S§2(C3) ® C2. We
may assume that G = GL(C3?) x GL(C?), which acts naturally on V. Let e =
{1,0,0),e2 = ¥'(0,1,0),e3 = {0,0,1), F; = ¥1,0) and f, = {0,1). A highest weight
vector of V is given by vg = e ® f1. By applying Uz to vy, we have

Viin@) = (Y Z-ef+ > Z-2ei;) @ (Zfy +1f).
1<i<3 1<i<y<3
We identify the dual space VV of V with V by

al!ag!as

by by b Gigitel if (a1, a9,a3,0) = (b, by, bs, b)
<e'1zl es’es’ ® fa,e1'e?e’ @ fb> = v
0, otherwise.
Denote the actions of G on V and VV by p and pV, respectively. Then pV(g1,92) =
P( tgl_la tgz_l)f((glaQZ) € G) In particular, pv(G) = p(G) A highest weight vector of
VvV is given by v[\)’ = eg ® f2 We have VV. (Z) — Vmin(Z) and

mn

Vmax(z) = Z Z- €:€5 ® fk
1<i<5<3
1<k<2

We can show that Vinaz(Z)/Vinin(Z) is a simple graded Uz-module. Hence there are

exactly two split Z-forms. A Z-basis of Vj,i,(Z) is given by

e} ® fx (1<i<3,1<k<?2),

2e;e; @ fr (1<i<j<3,1<k<2).

Its dual basis is given by

el® fi) =€ ® fi (1<i<3,1<k<2),

(2eie; ® fir)Y =eie;® fik (1<i<j<3,1<k<2),

which is a basis of Vip45(Z).
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2.7. Type (12).

The representation space can be identified with V = CeCeC: We
may assume that G = GL(C?) x GL(C?) x GL(C?). Let {e; | 1 < ¢ < 3} and
{f; | 1 <j <2} be the standard bases of C* and C?, respectively. A highest weight

vector is given by vg = €1 ® e; @ f1. We have

Vein@) = ) 1:€i®€;® fi.
1<4,5<3
1<k<k

We identify VV with V by

(ei®ej @ fr,eir ® ejr ® frr) = 6:ir8jj0 G-
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The action p" of G on V" is given by p¥(g1,92,93) = p('g7", ‘9", 'g53) for (91,92, 02) €

G. In particular, p¥(G) = p(G). A highest weight vector of VV is given by vy =
e1 ®.e'1 ® f2. Then we have |74

min

(Z) = Vmin(Z) and Vinaz(C) = Vinin(Z). Hence there

is exactly one split Z-form. A Z-basis of Vimin(Z) = Vinaz(Z) is given by
ei®e®fi (1<4,j<3,1<k<2).
Its dual basis is given by
(ei®ej® fr)Y =ei®e; ® fi.

2.8. Type (13).

The representation space can be identified with V = C* @ C?>™. We may
assume that G' = Spgn(C) X GLyp(C). Here we realize the symplectic group Spaq(C)
as in (1.3), i.e.,

Span(C) = {g € GL3(C) | gJ 'g = J}.



Then G acts naturally on V. Let {e; | 1 <7 < 2n} and {f; | 1 < j < 2m} be the
standard bases of C2® and C?™, respectively. A highest weight vector of V is given
by vg = e; ® f1. We have

1<i<2n
1<5<2m

We identify V'V with V by the skew-symmetric bilinear form defined by

(€ ® fj,entk ® f1) = 6irbj,

(€: ® fi,ex ® fi) = (en+i ® fi etk ® f1) =0,

for 1 <4,k <nand1<j,1<2m. Theaction p¥ of G on VV is given by p"(g1,92) =
p(g1, '931) for (g1,92) € G. In particular, p¥(G) = p(G). A highest weight vector
of VV is given by vo = €1 ® fam. Then we have V.Y, (Z) = Vinin(Z) and Vines(Z) =
Vinin(Z). Hence there is exactly one split Z-form. A Z-basis of Vinin(Z) = Vinas(Z) is

given by

e @ fj (1Si§2n,l§j§2m).

Its dual basis is given by
(e:® f;)V = ex ® fj,

where

T =

.{i+n (1<i<n)

-t

t—n (n+1<17<2n).
2.9. Type (14).

Let {e;}1<i<¢ be the standard basis of C. The representation space can be

identified with

V=A{ Z Tijrei Aej Aep | Titg +zizs + 236 =0 (1 <i<6)},
1<i<y<k<6
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where we regard (z;;;) as an alternating tensor. We may assume that G = C* x

Spe(C), where Spg(C) is realized as in (1.3). Then G acts naturally on V. A highest
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weight vector is given by vg =ej Aey Aes. Let 1'=4,2'=5,3 =6,4'=1,5 =2,

6' =3, and 15k = e; A e A eg. Then a Z-basis of Vizin(Z) is given by
123, 1'23, 123, 123', 12'3', 1'23', 1’23, 1'2'3,
(2.9.1) 122' — 133', 211’ — 233/, 311’ — 322/,
1'22' —1'33', 2'11' — 2'33', 3'11' — 3'22".

Let us define a skew-symmetric bilinear form on /\S(CG) by

1 2 3 4 5 6
(ijk,Imn) =sgn | ,

t J kI m n

where sgn is the signature on the symmetric group S¢ which is extended by

1 2 3 4 5 6
sgn =0, if {ijklmn} # {123456}.
it 73 kI m n

Note that X (r) acts on A*(C) as

(1) 17, g = =, k—0 (k # i,7)
(2) i -7, § =, E—0 (k#4,5")
or

(3) i— 3, j—, k—0 (k#1,79),

where 7,7 € {1,2,3},1 <k <6, —2 = —e; and —i' = —e;. Note also that

(ijk,75'k'y =1 and (ijk',i5'k) = -1
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for 1,5,k € {1,2,3}. By using these facts, we can show that our bilinear form is
Spe(C)-invariant. We identify V and V'V by this bilinear form. Hence the action p¥
of G on VV is given by p¥(g1,92) = p(97",92) for (91,92) € G = C* x Spg(C). In
particular, p¥(G) = p(G). A highest weight vector of V'V is given by vy = 123. Then
we have VY. (Z) = Vppin(Z). The dual basis of (2.9.1) is

m

(123)Y =1'2'3', (1'23)¥ = —12'8', (12'3)¥ = —1"29', (123')Y = —-1'2'3,
(12'3")Y = —1'23, (1'23")¥ = —12'3, (1'2'3)¥ = —123', (1'2'3")¥ =123
(2.9.2)
(122' —133")¥ = 1(1'22 - 1'3'3)  ete.
(

1'22' —1'33")Y = 2(12'2—-13'3)  etc.

Hence Vinag(Z) is the free Z-module generated by (2.9.2). We can show that Vinaz (Z)/Vinin(Z)

is a simple graded Uz-module. Hence, there are exactly two split Z-forms.

2.10. Type (15B)

The representatibn space can be identified with V = C2+! @ C™. We may

assume that G = S03441(C) X GLy(C). Here we realize the special orthogonal group
S02;+1(C) as in (1.2), i.e.,

SOt 41(C) = {g € GL3p41(C) | gJ g = J}.

Then G acts naturally on V. Let {e; | 1 <7 <2k +1} and {f; | 1 <j < m} be the
standard bases of C%**1 and C™, respectively. A highest weight vector of V is given

by vg = e; ® f1. We have

Vain@)= Y Z-ei®@fi+ Y, L-2e041® f.
1<i<2k 1<j<m
1<j<m
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Let us identify V with Magy1 m(C) by

Zapqep ® fq = (apq)-
P,
The induced G-action on Myg41 1 (C) is given by
v — g1v tgz (gl,g2) c@G= SO2k+1 X GLm.

We identify VV with V by the symmetric bilinear form defined by

(v1,v9) = tr( v J " 1wy).

Then
| 1 (p=r'#2k+1,q=23)
"<ep®fqver®fs)= % (p=r'"=2k+1,g=23)
0 otherwise,
where

i+k (1<i<k)
=4 i—k (k+1<i<2k)
2%k +1 (i=2k+1).
The action p¥ of G on VV is given by p¥(g1,92) = p(g1, '9;") for (91,92) € G. In

particular, p¥(G) = p(G). A highest weight vector of VV is given by vy = €1 ® fm.
Then we have VY

min

(Z) = Vimin(Z). A Z-basis of Vipin(Z) is given by

€ @ fj (1<i<2k 1<5<m),

2ek11® f; (1 <5 <m).
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Its dual basis is given by

(ei®fi)=er®f; (1<i<2k, 1<j<m),

(2e2041 ® f5)Y = ear41 ® fj (1<j<m).

Hence

Vmaz(D) = Y Z-® f;.
1<i<2k+1
1<5<m

We can show that Vinez(Z)/Vimin(Z) is a simple graded Uz-module. Hence, there are

exactly two split Z-forms.

2.11. Type (15D).

With a trivial modification of (2.10), we have

1 (p=r1',qg=5)
<ep®fq76r®fs) :{ )

0, otherwise,

vo = €1 ® fi,
v(\]/ :el®fm7

Vmin(z):Vmaz(Z)z Z Z'ei®fja

1<i<2k
1Z%m

and

(ei ® f;)V = ei ® fj.

In particular, there is exactly one split Z-form.



2.12. Types (20), (21), (23) and (24).

Let (m,n) = (2,5), (3,5), (1,6), (1,7), if we are considering a prehomoge-
neous vector space of type (20), (21), (23), (24), respectively. Then the representation
space can be identified with A®**"(C") ® C™. Here and below in this paragraph, we
use the notations of (1.4). We may assume that G = Spingy X GLn, which acts
naturally on V. Let {e; | 1 <7 < n} and {u; | 1 <j < m} be the standard bases of
C" and C™, respectively. A highest weight vector is given by erez...e; ® ui, where

| = 2[%]. We have

Vmin(Z) = Z Z 7 e €. .., @ uj.

0<k<l 1<t << <
k:even 1<y3<m

We identify VV with V by

(€q; - - - €ay ® Ui, e€p, - . .1 ® Uj)

{ 1 ({a1,...,ax} = {b1,..., b}, 1=7)

0 (otherwise),

where

1<a; <+ <ar <n,
1<bh<--- <y <n,

1<,y <m.

Then the action p¥ of G on VV is given by p¥(g1,92) = p(¢(91), 95!) for (g1,92) €
G = Spingn X GLp,. Here ¢ is the involutory automorphism of Spinz, given in (1.4).

In particular, p¥(G) = p(G). A highest weight vector is given by 1 ® um. Then we
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have V,Y; (Z) = Vimaz(Z) and Vinaz(Z) = Vinin(Z). Hence there is exactly one split
Z-form. A Z-basis of Vipin(Z) is given by

€y - - - €i, D Uj (1<iu<---<ipg<n, k:even, 1 <j<m),

and its dual basis is given by
(e,'1 e, @ u]')v =€ ... € QU .

2.13. Types (27) and (28).

Let n = 1,2 if we are considering a prehomogeneous vector space of type (27)
or (28), respectively. The representation space can be identified with J ® C™. Here
and below in this section, we use the notations of (1.6) and (1.7). We may assume

that G = G(Eg) X GLy, where
G(Es) = {linear automorphism of J which preserves det(X,Y, Z)}.

See [F,8.1]. Then G acts naturally on V. Let {u;} be the standard basis of C*. A
highest weight vector of V' is given by vy = Eﬁ) ® u1. We have

Viin@) = | Y z-EY + S 2-Gmile Y 7w
1<i<3 1<i<3 1<k<n
1<5<8

See (1.6) for (a);. We identify VV with V by the symmetric bilinear form defined by

(X Quj,Y @up) =i - x(X oY) (XY € H),



where ¥ is the trace function of J (see (1.7)), and X oY = (XY + Y X). A direct

calculation shows

&L 73 T2 m ys N2
3
< M &L on|, B onon >=Z{§mi+2($i,yi)},
=1
T2 Tt &3 Y2 T1 M

where

(z,y) = 3(=5T+y7) = 3(Fy +7z)  (z,¥ € Q).
Let p¥ be the dual of p. Since x(X oY) is §4-invariant [F, 4.5.13],
Pv(glagZ) = p(gla tgz_l)

for (g1,92) € G(F4) X GLy. Here G(Fy) is the subgroup of G(Eg) which corresponds
to the Lie subalgebra §4(C &) of the infinitesimal automorphisms of the Jordan

algebra J. A direct calculation shows that
x(@GX oY)+ x(Xo(-a)j;Y) =0 (t#j,a€e €, XeJY €.
Hence we can define an involutory automorphism ¢ of &g by
d(a)j) = (-a);  (i#7,0€9)

and

¢|§4 = identity.

Since G(Eg)(D {w | w® = 1}) is simply connected, ¢ induces an automorphism of

G(Es), which we shall denote by the same letter «. Then we have

X(gXoY)=x(Xoug)Y) (g€ G(Es)).
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Hence pV(g1,92) = p(u(91), ‘95 ") for (g1,92) € G = G(Eg) x GLy. In particular,
p¥(G) = p(G). A highest weight vector of V'V is given by vy = E'E(,? ® uy. Then we
have V.Y. (Z) = Vimin(Z). A Z-basis of Vipin(Z) is given by

m

ED@u (1<i<3,1<k<n)

Afi)iouw (1<i<3,1<j<81<k<n).
Its dual basis is given by

(B ©w)" = B @ u

((357)i ® up)Y = =(3F5())i ® ur,

1 23456 7 8
g = - .
56 78 1 2 3 4

Hence Vipaz(Z) = Vinin(Z). Hence there is exactly one split Z-form..

where

2.14. Type (29).

In this paragraph, we use the notations of (1.8). The representation space
can be identified with X. We may assume that G = G(E7) x GLy, where G(Er) is the
subgroup of GL(X) which corresponds to the Lie subalgebra €7 of gl(X). A highest
weight vector is given be vy = (0, E13 — E31). Here and below, we choose {ay,...as}

as a basis of R. We have
Vmin(@)= > (Z-(Eij — Eji,0) +Z - (0, Eij - Ejq)).
1<i<j<8

We identify VV with V by the symmetric bilinear form defined by

((z1,22), (1,92)) = —3(tr(z131) + tr(z2y2)),  (21,22), (v1,92) € X.



Since G(E7) (D {£1}) is simply connected, the involutory automorphism ¢ defined
in (1.8) induces an involutory automorphism of G(E7), which we shall denote by the
same letter . Then the action p¥ of G on V'V is given by pV (g1, 92) = p(:(91),95 ") for
(91,92) € G = G(E7) x GL;. In particular, p¥(G) = p(G). A highest weight vector
of VV is given by vy = (E1s — Es1,0). We have V.Y, (Z) = Vimin(Z). A Z-basis of

Vinin(Z) is given by
(Eij — Eji,0),(0,Eij — Eji)  (1<i<j<8)
and its dual basis is given by

(Eij — Eji,())v = (Ei; — E;i,0), and

(0, Eij — Eji)¥ = (0, Eij — Ej;).

Hence Vinaz(Z) = Vinin(Z). Hence there is exactly one split Z-form.

2.15. Non-regular prehomogeneous vector space with a relative
invariant.

There is a uﬁique non-regular irreducible reduced prehomogeneous vector
space which has a non-trivial relative invariant, which we refer to as the type (NR)
(= non-regular) provisionally in this paper. The representation space can be identified
with V = C?® x S%(C?). We may assume that G = C* x Spas(C) x SLy(C), where
Spon(C) is realized as in (1.3). (Note that SLy(C)/{£} = SO3(C).) The first factor
C* acts on V as scalar multiplications, Sp2,(C) (resp. SL2(C)) acts naturally on
C?" (resp. S?(C?)), and hence we get a G-action p on V. Let {ei}1<i<2n (resp.
{f1, f2}) be the standard basis of C*" (resp. C2). A highest weight vector is given
byvw =€ ® f12 A Z-basis of Vipin(Z) is given by

&i® fi, ei®2f1fr, €®f;, (1<i<2n).
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We identify VV with V by the skew-symmetric bilinear form on V defined by

(i ® fofo, € ® frfs) = (eires) (Fofo Frfs)
(€i) entj) = — (en4j, &) = &ij,

(e, e5) = (en+i ents) = 0

(1, 1) = (. 5) = L{hifs, i) = 3
(fofa, fefs) =0 for the other cases,

for 1 < 4,5 <2nand 1 < p,q,r,s < 2. Then the action p¥ of G on VV is given
by p¥(91,92,93) = plg; "> 92,0 95') € G = € x Sp(C) x SLy(C). In particular
p¥(G) = p(G). A highest weight vector of VV is given by vy = e; ® fZ. Then we
have VY. (Z) = Vimin(Z). A Z-basis of Vipey(Z) is given by

¢i®ff, &®fifs, e®f2, (1<i<2n).

We can show that Vi,45(Z)/Vinin(Z) is a simple graded Uz-module. Hence there are

exactly two split Z-forms.
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2.16. Let (Gj, ps, Vi) (i = 1,2) be two irreducible representations and (Gj, p/, V.¥)

their duéls. We assume that a Borel subgroup of each G; is given. Let v; and v)
be highest root vectors of V; and V.Y, respectively. Assume that a non-degenerate
bilinear form (, ) is given for each V; and that p;(G;) = p) (Gi), if we identify V¥ with
V; via this bilinear form.

Let us consider the irreducible representation (G,p,V) = (G1 x G2,p1 ®
p2, V1 ® V3) and its dual (G, pV,VV) = (G1 x Ga,pY ® p3, VY ® V). Highest weight

vectors of Vi ® V3 and V)Y ® V,' are given by v; ® vz and vy ® vy. Then we have

Vmin(z) = Vl,'rmn(z) & VZ,min(Z)a

Vmaz(z) = Vl,maz(z) ® VZ,ma:c(Z)-
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A non-degenerate bilinear form on V is given by
! ! n m\ __ ! n ! "
(V1 ® vy, 0] ®vy) = (vy,v7) (v3,03)

for v!, v € V; (i =1,2). Then VV can be identified with V and p¥(G) = p(Q).
Combining this fact with the calculations in (2.1)-(2.15), we have the follow-

ing theorem.

2.17. Theorem. Let (G,p,V) be an irreducible prehomogeneous vector
space. Then there are at most two split Z-forms which are given by Viyez(Z) and
Vinaz(Z). The exact number of split Z-forms of each (G, p, V') is given in the following
table. (The first row indicates the type of (G, p,V) and the second row indicates the

number of split Z-forms.)

L @ B @ 6 6 M ® (9 ) ) 12 @3
1 ; 2 1 2 1 1 1 2 1 1 1 1 1
(14) (15B) (15D) (20) (21) (23) (24) (27) (28) (29) (NR)

2 2 1 1 1 1 1 1 1 1 2
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