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Brauer Group of R(X) and Eichler Type Theorem

By

Aiichi Yamasaki

Abstract

The Brauer group of R(X), the rational function field over the real field, is isomorphic

to the continuous direct sum of Z /2Z. A central division algebra over R(X) has strong

| approximation property for R[X] if and only if it is trivial at the place not corresponding
to a prime ideal of R[X]. This is a generalization of Eichler theorem.

We discuss similar problems for algebraic function fields over R and obtain partial

solutions for some cases.

1. Brauer groups of R((X)) and R(X).

Let R((X)) be the field of formal power series over R. It is a complete valuation field
with the residue field R. By J.P.Serre “Corps locaux” Chap 12,we have

Br(R((X))) ~ Gal(C/R) x Br(R) ~ (Z/2Z)2.

(Br(K) denotes the Brauer group of K). We shall determine it more concretely.
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Let D be a central division algebra over R((X)). Since Br(C((X))) is trivial, D splits
over C((X)), so that D contains a maximal subfield isomorphic to C((X)). Thus we have

D=K+Ki+Kj+Kij, K=R(X)),

i = -1,5% = f € K*,ji = —ij.

We shall denote this D by {-1, f}.
Since {—1,f} ~ {-1,f'} <= ff™" € Ngm,x(K(V-1)*) = (K* + K?)*,
we have Br(K) ~ K*/(K? + K?)*, whose complete representative system is given by

{1,-1,X,—X} so that
Br(R((X))) = {R((X)),H((X)), {-1, X}, {-1,-X}}.

Note that R((X)) = {-1,1} and H((X)) = {—1,—1} where H is the usual quaternion
algebra over R. H((X)) is unramified over R((X)), while {-1,X} and {-1,—-X} are
ramified. ‘

Next, we shall determine the Brauer group of R(X).
Theorem 1 (1) Every central division algebra over R(X) has"the index < 2, hence if
it is not trivial, it is a quaternion algebra over R(X), |
(2) Br(R(X))~1Z/2L x (Z/2L)R ~ (Z/ZZ)?H{*“}, where (Z/22)® denotes the contin-
uous direct sum of Z/2Z, namely the aggregation of all finite subsets of R with the group
operation: A - B= the symmetric difference of A and B.
Proof Let D be a central division algebra over R(X). Then by the same reason as
before, C(X) is a splitting fleld of D. This proves (1), and some maximal subfield of D is
isomorphic to C(X). Thus D is in the form of D = {-1, f} for some f € K*, K = R(X),
and we have Br(R(X)) ~ K*/(K? + K?)*.

If f=¢%+v?, then f(a) > 0 for Va 6 R. Conversely, if f(a) > 0 for Ya € R, then f
is decomposed into the product f = H(X — a;)? H(X —a; }(X —aj),

i j

a; € R,a; € C\R. Since (X —a;)(X —aj) = Ny /=1, (X — @), we have f € K? + K*.
Therefore, as a complete representative system of K*/(K? + K?)*, we get

{£(X —ay) - (X —a,) | a; € R, mutually distinct }.
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For f = +(X —a1)--- (X —an), D = {1, f} is trivial at a such that f(a) > 0. It
is ramified at «; and at the non-prime place (which will be denoted by oo) if the degree
of fis odd. Since {—1, f1} Qr(x) {—1, f2} ~ {—1, f1f2}, the multiplication in Br(R(X))
corresponds to the symmetric difference of the sets of ramified places. Thus we have
obtained the desired result (2).

Remark A discrete valuation is called real (or imaginary) if its residue field is R (or
C). The set of all real places will be denoted by RP(K). For K = R(X), we have
RP(K)=R][{cc}.

Then, we have Br(R(X)) ~ (Z/ZZ)(I,%P(R(X)). The isomorphism is given as follows.
Suppose that a central division algebra D over R(X) corresponds to a finite subset A of
RP(R(X)) =R]]{cc}. D is ramified at every a € A\ {oc}, and at oo if |4\ {oc}| is odd.
There are two Ds which are ramified at no place. They are attributed to Z/2Z at 0.
Corollary R(X) satisfies Hasse’s principle.

{—1,—1} is unramified but non-trivial at every place. All other non-trivial {—1, f}.

‘are ramified at some places.

2. Brauer group of R(X,Y).

Let K be a finite extension of R(X), namely an algebraic function field of one variable
over R. In other words, K = R(X,Y), Y is algebraic .ove_r R(X).

If /=1 € K, then K is an algebraic function field of one variable over C, so that
Br(K) is trivial.

Hereafter we shall assume that v/—1 ¢ K. Since Br(K(y/—1)) is trivial, a central
division algebra D over K, splits over K(y/—1). This implies that D is a quaternion
algebra and D = {—1, f} for some f € K*. From this we see that Br(K) has the
exponent 2, and Br(K) ~ K*/(K? + K?)*.

A valuation on K which is trivial on R* is called a place. The residue field of a place

v is R or C, according to which v is called real or imaginary. (Note that this terminology
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differs from the ones used for algebraic number fields).

For an imaginary place v, D, is trivial over K,. For a real place v, D, is one of four
algebras over K,. The one is trivial, another one is an unramified quaternion, and the
other two are ramified quaternions. See the results in §1.

Let RP(K) be the set of all real places. Since the place of K(v/—1) = C(X,Y) are in
one-to-one correspondence with points of a compact Riemann surface R, and since a real
place v of K does not decompose in K(v/—1), RP(K) is identified with a subset of R.

For a real place v of I, we have 3p € K, ord,(¢) = 1. Then, ¢(z) is a local
coordinate in a neighbourhood of the corresponding z, € R. Since z € RP(K) is equivalent
to ¢(z) € R in this neighbourhood, RP(K) is a one-dimensional real manifold. Since
R is compact, RP(K) consists of v closed curves, where v is the number of connected
components of RP(K).

Theorem 2 We have Br(K) =~ (Z/ZZ)(I)%P(K).

The isomorphism is given as follows: Fix a poiht zi (1 < i < v) from each connected
component of RP(K). Suppose that Br(K) > D corrésponds to a finite subset A of
RP(K). Then, D is ramified at A\ {z1,--- ,2,} and possibly at z;. The ramification at z;
is determined by the rule that D is ramified atv even number of places on each connected
component of RP(K).

There are 2 different division algebras which are ramified at no real place. They are
attributed to (Z/2Z){z1 >},

Proof Let Bri(K) be the group of all division algebras which are ramified at no real
place. Then, D = {-1,f} € Bri(K) is equivalent to that ord.(f) is even for every
z € RP(K), namely that f(z) has definite sign on each connected component of RP(K).

As shown later, Hasse’s principle holds for K = R(X,Y"). Therefore, D = {—1, f} is
trivial if and only if f is non-negative on RP(K), so that we have |Br;(K)| < 2. The
equality holds if for any connected component C of RP(K), there exists f € K such that
f(z) <0on C but f(2) > 0on RP(K)\ C. Since RP(K) is mapped homeomorphically
into R by z — (Ty(2))1<i<a, Th(2) = oy, To(2) = s T(2) = v Ta(2) =
Tz;zﬂ’ and since the function F defined by F(z) = —1 on C and F(z) =1 on RP(K)\C

is continuous on RP(K), the polynomial approximation theorem of Weierstrass assures
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that there exists a polynomial P(T;) such that P(Ty(z)) < 0 on C but P(Ti(z)) > 0 on
RP(K)\ C. This completes the proof of Bri(K) ~ (Z/2Z)%*1, %},

Take any f € K*. If ord, (f) is odd for zg € RP(K), then f(z) changes its sign
when z crosses zg. Since a connected component C of RP(K) is a closed curve, f(z) must
change its sign even times on C, therefore D = {—1, f} is ramified at even number of
places on €. ,

Now, we shall show that for any two points ( and (' on C, there exists f € K* such
that D = {—1, f} is ramified at ( and (’, but not ramified at other real places. Again we

shall map RP(K) into R* by z — (Ti(z))1<i<a. Since C is a closed analytic curve, there

. 4

are ( = (o, (1, ==+ Cn = (' (¢; € C) and small spheres S; : Z(Ti —a;)? = r? such that
=1

S; N RP(K) = {¢j-1, (5}

n 4
Then, f = H { (Ty(2) — ai;)? — r?} satisfies ord¢(f) = orde/(f) = 1, ord,(f) =
1

2(1<i<n-— 11),—1andz_ordz(f) = 0for z € RP(K)\ {¢;}. This f is the desired element of
K*. |

Thus we have proved Br(K)/Bri(K) =~ (Z/QZ)?P(K)\{Q’""z”}, so combining with
the result for Bri(K), we get Br(K) ~ (Z/ZZ)(?P(K).
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Remark K satisfies Hasse’s principle as a result of the following lemma.

Let 0K be the set of all sums of squares, (UK = {3 z?|z; € K'}.
Lemma Let K = R(X,Y) be an algebraic function field over R,
(1) For f € K*,f € OK if and only if f(z) > 0 for Yz € RP(K). Especially, if
RP(K) = ¢ then UK = K.
(2) Every element of (0K can be written asi a sum of two squares.

We shall omit the proof here, and refer to [6], Th3.2, Chap.3 and Th.2.1, Chap.4.
Corollary K = R(X,Y) satisfies Hasse’s priciple.
Proof D = {-1,f} islocally trivial if andionly if f(z) > 0 for Yz € RP(K), which is
equivalent to f € K2 + K? = Ny =n 5 (K€/=1)%), hence D = {~1, f} is trivial

3. Approximation in idele groups.

Let R be a Dedekind domain, and K be its quotient field. Every prime ideal p of
R defines the p-adic valuation on K. This is called a prime valuation. Besides p-adic -
valuations, we often consider some others, which are called non-prime valuations. For
instance, all valuations trivial on £* when K is an algebraie function field over the constant
field k. |

We define the adele ring Ry of R by Hp = HRP, where p runs over all prime

P
valuations:and R, denotes the completion of R at the place p. Also we define the adele

ring Kn of K by Kn = K Qg Ra =~ U(H K, x HRP) where: S runs over all finite set
5 peS PES
of prime valuations. The idele group K A i defined as the group of inversible elements of
Kn. It is written in the form of Ky = Lﬂ{ﬂ Ky x H R>)-
3 peS pEsS
The fundamental system of meighbourhoods of 0 in Kp Is given by {V(S,n)}, where

V(S,n) =[] p"Ryp x [ Ry-

peES PE€S

Similarly, the fundamental system of neighbourhoods of 1 in K A is given by {U(S,n)},
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where

U(S,n) = [J(1+r"R,) x [] B}

pES p€S

Let D be a central division algebra over K. A finitely generated R-submodule of D is
called an R-lattice, and if it spans D as a K-vector space, it is called a full R-lattice. An
R-lattice is called an R-order, if it is a subring including 1 (= the unit element of D).

The adele ring Dp of D is defined by Dy = D ® Kpn. It is written in the form of

Dp = U(H D, x H I',), where T is a full R-order of D and '), =T ®g R,. The idele
S peS pE€S
group Dp is defined similarly. The fundamental system of neighbourhoods of 1 in Dj is

given by
U(S,n) = [Ja+p"T,) x [] Ty
PES p€S
D is diagonally imbedded into Da, and D* is diagonally imbedded into Dy. D is dense
in Dp(by chinese remainder theorem), but D’>< is not dense in D3. But D* may be dense
in some subgroup of Dp.

Let 115,k be the reduced norm D — K. 1l p/k maps D homomorphically into K.
We shall denote its kernel by DO N j /K is uniquely extended as a K p\—valued.polynomial
function on Dpn. This extension is denoted by the same symbol Ilp/k, and its kernel in
D} is denoted by Dg).

Eichier theorem aécertains that for global fields, D) is dense in Dg) (in the topology
of D) if and only if D, is not a division algebra for some non-prime v.

For global fields, we have also DY) = [D*, D*], the commutator group of D*. But
for a general K, this relation does not hold (For instance, Platonov [3]).

For a general K, in the connection with the cancellation problem of I'; it seems natural
to consider [D*, D*] rather than D). Thus we define the strong approximation property
as follows: A central division algebra D is said to have strong approximation property
if [D*,D*] is dense in [DZ, DA]. To find a necessary and sufficient condition for strong
approximation property is a generalization of Eichler theorem to a general case.

In the connection with the cancellation problem of I', we consider a little weaker

approximation property. D is said to have D*-approximation, if the closure of D* (in the
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topology of D) contains [Dj, Dal. D is said to have Ry D*-approximation, if the closure
of RgDX contains [Dx, Da]. (Both of D* and Rj are contained in Dy, so RAD* C Dj.)
The last and weakest approximation property is necessary and sufficient for the cancellation
of every full R-order I" of D (namely ' §I' ~ L & T implies I' >~ L, the isomorphism being
as [-lattices).

4. Eichler theorem for R(X).

In §1 we have seen that D = {—1, f} is trivial at the non-prime place oo if and only
if f is monic of even degree. ‘ |
Theorem 3 If D, is not trivial, then D* is discrete in D3 and R3 D™ is closed in DJ.
Corollary If D, is not trivial, then R;;DX';app1~<)xi111a.ti()11 property does not hold.
Proof of Corollary It suffices to show [Dx, DAl ¢ RaD*. For a real place a, we shall

identify D with the subgroup D} X H(l)p of DA. It is clear that [Dj,Da] N DY =
pFa
[DY,DYX]. Since D, is a quaternion (or a matrix) algebra over K,, we have [D;, D] =

DV, so that [DX,DX] ¢ K.
On the other hand, if + = (z,) € RAD* N D}, then we have 3d € D*,"p (prime

place), 3r, € RY,xp = rpd. Forp # a, we have z, = 1sothat d = 7";1 € Ry C K, sothat
de D*NK) = K>, hence z, = r,d € RYK* C K. This assures RaD* N D} C K
so that [Dx, DAl ¢ RAD™. .

Proof of Theorem 3 D = {—1, f} means that

D=K+Ki+Kj+ Ky

i =—1, j* = f, ji=—ij.

Then I' = R+ Ri + Rj + Rij is a full R-order of D (K = R(X), R = R[X]).
A fundamental neighbourhood of 1 in D3 is U(g) = H(l +4I,)N HT; forg € R

P P
and we have U(g) N D* = (1 4+ ¢gT') NT'*, so the first half of Theorem 3 is proved if
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Q+g0)NI*=(1).

Suppose that d = ¢ + @i + @3] + patj € (L +gT)NT*,»; € R. This means that
¢1 =1 mod g,¢; =0 mod gfori > 2, and Np/x(d) = 3 +¢5— f(p3+¢i) € R* =R*.
If g € R\ R*, substituting a zero of g, we see that I1p, g (d) = 1.

Since each ¢? has, if not zero, a positive coefficient of the highest degree term, such
terms of ¢? and 3 (resp. »3 and %) do not cancel.

From ¢? + @2 —1 = f(p% +¢3), if f is of odd degree, both hand sides should be zero.
This implies that 3 = ¢4 = 0 and 1,92 € R, which implies ¢, = 0 and ¢; = 1 because
2 is a multiple of g.

If f is of even degree with a negative coefficient of the highest degree term, then the
highest degree terms of p? + ¢2 — f(¢2 + ¢2) do not cancel, so that we have Vi,¢; € R.
This again implies ¢; = 0 for ¢ > 2, and so ¢ = 1.

Thus the first half of Theorem 3 has been proved. Similar discussions show that
(R+gl)* =R*,ifg€ R\ R*.

I'y = R+ ¢TI is a full R-order of D, and (THA = H(RP + gT'p)* is an open subgroup
» ,
of DX, so (I'y)AD* is open and closed, hence ﬂ(l"g)ng is a closed subgroup of Dj,
9
containing Ry D*.

We shall show the inverse inclusion. Take any z € ﬂ(Fg)f\Dx, then Vg,3y, €

9
(Ty)A,%dy € D*,2 = v,d,. Since (T'y)g N D* = (R4 ¢I')* = R*, d, is determined

modulo R, so if g; is a multiple of g, then d,, differs from d, only modulo R*. This

implies that we can choose d, independently of g, thus 3d € D*,zd™* € ﬂ(Fg)g.
9

But we have Ry = ﬂ(rg)g, because p, ﬂ(Rp +gI'p)* = R). Thus the proof of the

9 9
second half of Theorem 3 is completed.

Theorem 4 If D, is trivial, hence if f is monic of even degree, then [D*, D*] = DM
is dense in [Dgx, DAl

This theorem is divided into the following two parts.

Theorem 4.1 If f is monic of even degree, then for g,h € R such that (h,gf) =1, we
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have

(1+gT)N (G +AT)NT> # 6.

Theorem 4.2 The conclusion part of Theorem 4.1 is equivalent to strong approximation

property.

Proof of Theorem 4.1 It suffices to show the existence of ¢; € R,1 <7 < 4 such that

w1 =1(mod g¢), ¢;=0( mod g¢), 2<i<4
w2=1( mod k), ¢;=0( mod h), 1=1,3,4, and

(1) @1 + 5 — f(o3 +¢3) =1.

Put 1 = 1+ ¢%fur, 2 = g% fuz,o; = gui(i = 3,4), then the required congruence
modulo ¢ is automatically satisfied. Substituting them into (1) and dividing both sides by
g2 f, we get

(2) 2ur + g% ful + ¢° fuj — (v3 +uf) =0.
Since (h?,g%f) =1, g*f is inversible in R/h?R, so there exist ¥,%' € R such that
g*f=1+h*.

Put us = —¢ + h?v1,uz = ¥ + h?vy,u; = hv(¢s = 3,4), then the required congruence

modulo h is automatically satisfied. Substituting them into (2), we get
=20 4 2h%vy + ¢* {297 + 200y — 1) + R (vf 4 03)} = AP0 + v)).
Since —2¢ + 2¢% fyp? = —2¢(1 — ¢ fyp) = 2h%pyp’, we have
(3) 299" +2(1 — g% fp)or + 29° fpvz + g* FRE(v] + ) = v} + v},
Put v; = (1 — ¢*fv)w and vy, = g% fyhw, then we get

(4) 2+ {(1— g2 F0) + (67 FO) N 2w + ¢ FRPw?) =l 4 o
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A polynomial P € R = R[X] belongs to R? + R?, if and only if P(a) > 0 for a € R, as
shown in the proof of Theorem 1. So it suffices to show that the left hand side of (4) is
everywhere non-negative for some w € R.

Put 2y’ = F and ¢° fh? = G, then (1 — ¢*f9)? + (¢°f¢)* = 1= 2¢* f(1 — g* fop) =
14+ 2¢? fyh?y' =14 FG, so we have

(5) ' F4(1+ FG)(2w + Guw?) > 0

The above calculation also shows 1+ FG > %, namely F'G > —%. Since f 1s monic of even
degree,we have tEiHmG(t) = 0o so that ?M > 0,%t € R,G(t) > —M. Since {t | G(t) < 0}
is compact, F' is bounded there, so ?N > 0,|F(t)| < N for G(t) < 0.

The left hand side of (5) is zero for

w = é{—li(l-l—FG)"%}.

Since (1-}-1&)‘l <1-%+4 —j—=f2 fort>—1 ifwesetw=—L£+ %FZG then (5) is satisfied
for G > 0. Let P be an everywhere positive polynomial of two variables s and ¢, then
w=-% v 5 F?G + P(G, FG) satisfies (5) for G > 0.

The condition (5) is satisfied also for G < 0, if

7‘ 3 1

on A ={(s,t)| —M <s<0, t>—1, |t| < Nls|}. The condition (6) is satisfied if

—

vt 3
>2{1- T2 42 >
6_5{1 (141¢)"2 2+\/§t}—|—P(s,t)__0

on A, where ¢ < (1 4+ NM)~2/M. Since a(s,t) = L {1 — 14tz -1 L+ 7t2} is non-
positive and continuous on A (it is continuous at (0,0) because of [t| < N|s|), such a
polynomial P(s,t) exists by virtue of polynomial approximation theorem of Weierstrass.
P(s,t) can be assumed everywhere positive, because we can put P = Q? + 5, @ being an

approximating polynomial of /|a(s,t)|. Thus Theorem 4.1 has been proved.
Proof of Theorem 4.2 Let H be the closure of [D*, D*] = DM in DX. Let py be a

prime place where D is unramified, and let ¢,, = (1,---,1,7,1,---) € DA be the element

of Dy whose py-coordinate is ¢, while other coordinates are 1.
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The proof is completed by the following steps, which are slight modifications of ones
given in [1] §51.
Step 1  The conclusion part of Theorem 4.1 is equivalent to that Vpy (where Dy, is
unramified), i,, € H (note that i,, € DSy = [DX,DX] C [DA, D])-

0

Step 2 Identify D%) with a subgroup Dg) X H (1), of DA, then HN D,(,I) is a closed
P#Po
normal subgroup of Dﬁ,?.

Step 3 If D is unramified at py, then ¢,, € H implies Df,})) C H.

If D,, is a matrix algebra, the assertion is a result of simplicity of PSL(2,K,,). If
D,, is an unramified quaternion algebra, since = a + b1 + ¢j + diy € D;,})) satisfies
22 — 2ax + 1 = 0, the condition 2 € H depends only on a. (Here we identify x € D,(,},) with
2,0 =(1,---,1,2,1,---) € Dp.)

Take any x = a+ bt +¢j +dij € D&). Since b + ¢% + d? has a root in I, , we have
e € I&’po,bz+cz+d2 = e‘z.vlfi € H, then —ai+ej € H, therefore i(—at+ej) = a+etj € H,
hence » € H. This means D;,? C H.

Step 4 Assume the conclusion part of Theorem 4.1. For a finite set S of prime places,

we have H Dé,l)‘ X H(l)P C H.
pES PE€S
If D is unramified on S, the assertion is a consequence of Step 3.

Let Sy be the set of all prime places where D is ramified. The assertion for S = Sy
follows from the fact that D) is dense in H D](Dl) in the product topology of D .

PESH

Step 5 U H D;,l) X H(l)p is dense in [DX, D]
S pES pE&S
Combining the five assertions above, we complete the proof of Theorem 4.2.

5. Eichler theorem for R(X,Y).

For an algebraic function field K = R(X,Y’), we shall fix a set P of valuations (which

are trivial on R*). A valuation v € P is called a prime place and v ¢ P is called a non-
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prime place. We assume that there exists a non-prime place. Then, Rp = {z € K| €
P,v(z) < 1} is a Dedekind domain and K is its quotient field. A prime ideal of Rp is
given by p, = {z € Rp|v(z) < 1} for v € P.

The adele ring and the idele group are constructed using prime places only. We shall
write R instead of Rp.

We consider the following property(E):
(E) A central division algebra D over K has strong approximation property, if D is
trivial at some non-prime place.

The converse of the property(E) holds always as shown below.
Theorem 5 If a central division algebra D is non-trivial at every non—}prime place, then
D does not have Ry D*-approximation property.
Remark Before proving this theorem, we shall mention about the product formula. The
formula, is expressed as follows using ord,; v(z) = 8°74() (0 < 8 < 1)

Ve € K* Z ord,( Z ord,(z) =0,
vireal viimag.

where the sum is taken over all places, prime or not.

‘Proof Similar discussions as the proof of Theorem 3 show that it suffices to prove that
(R+¢gT')* = R* for g € R\ R*.

Let D = {—1, f}, f € R. The assumption of Theorem 5 means that all non-prime places
are real and that for every non-prime place v, ord,(f) is odd or ord,(f) is even with a
negative coefficient of the lowest degree term with respect to the prime element 7.

Suppose that ¢1 + 2t +@3j+@aij € (R+gT)*, then ¢ € R,p; € gR(2 <i < 4), and
01 +¢5— f(p3+¢i) € R. Put ¢ = pi+93 — f(93+¢5), then o € R* implies ord, () = 0
for every prime place v. As for a non-prime place v, the assumption on f implies that the
lowest degree terms do not cancel, so that ord,(¢) = Min(2ord, (1), 2ord1,(4,92) ord,(f) +
2ord, (¢3),0rd,(f) + 20rd,(¢4)), if ¢; # 0.

Combining this with the product formula, we have

Z ord,(¢;) >0 (:=1,2),

non-prime
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Zm ord, (i) > %p;eavordv(f) (i = 3,4
where a, = 1 for a real v and «, = 2 for an imaginary v. Since ¢; € R and f € R, we have
ord,(¢;) > 0 and ord,(f) > 0 for a prime place v, hence again from the product formula,
we must have ord,(y;) = 0 for every prime place v. This means ¢; € R*. For i > 2, this
contradicts with ¢; € gR, so we must have ¢; = 0, which in turn implies ¢; € R*. This
completes the proof of (R + ¢T')* = R*.
Remark Property(E) depends not only on K, but also on R, or equivalently on the
choice of non-prime places. However:
Theorem 6 (1) Suppose that property(E) holds whenever R has only one non-prime
place, then it holds for any R.
(2) For the rational function field K = R(X), property(E) holds for any R.
Proof of (1) Let P(R) be the set of all prime places for the Dedekind domain R. Then
P(R') C P(R) implies R C R'. We shall denote the idele group of D with respect to R
by DA(R). Then P(R) = P(R')[] P(R:) implies that D(R) is the product topological
group of DA(R') and DA(R1), because of Dx(R) = U (H D} x H I‘:) where

S \veS vEP(R)\S
S runs over all finite subsets of P(R). L :

D* is imbedded diagonally in D4, and strong approximation property means precisely
that the image i g(D")) is dense in [DX(R), DX (R)]. '

If P(R') C P(R), then the projection DA (R) — DA(R') maps ir(D™)) onto in(D(l)_)
and [DA(R), DA(R)] onto [DX(R'), DA(R')]. Therefore, if ig(DW) is dense in [Dp(R),
DX(R)], then ig/(DW) is dense in [DA(R'), DA(R')].

Now suppose that D is trivial at some non-prime place v of a given R. Let Py be the set
of all places other than v, and suppose that property(E) holds fof Ry corresponding to Py,
then ig, (D) is dense in [DX(Ro), DA(Ro)], hence ir(DV) is dense in [DA(R), DX(R)),
so property(E) holds for R.

Remark  The proof of Theorem 4.2 does work for a general algebraic function field
K = R(X,Y) and its Dedekind domain R. So, strong approximation property holds for
D={-1,f},if (1+¢gT)N( +AT)NT* +# ¢ for Yg,h € R such that (¢f, h) = 1.
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Also the proof of Theorem 4,1 works partially. For 1,¢' € R such that ¢?f¢ =
1+ A%, put F = 293" and G = ¢g? fh%. Then, we have (1 +g')N (7 + D) NT> #£ ¢ if
3w e R, F+(1+ FG)(2w + Gw?) € R? + R2.

Suppose that R has only one non-prime place v, then f € R means that f does not
have a pole other than v. If v is real and D, is trivial, then ord,(f) is even and f(2) is
positive near v. Since RP(K) is compact, this implies that f, hence G, is bounded from
below on RP(K), and that F is bounded on {z € RP(K)|G(z) < 0}. If v is imaginary,
then both F' and G are bounded on RP(K). So, similar discussions as the proof of Theorem
4.1 show that 3w € R, F + (1 + FG)(2w + Gw?) > 0 on RP(K).

The proof for general K fails only because the condition “¢ € Rand ¢ > 0 on RP(K)”
does not imply ¢ € R? + R?. Since Hasse’s principle is satisfied, o € K% + K? is assured,
but ¢ € R* + R? is not concluded. We shall give a counter example for an elliptic function
field K =R(X,Y),Y? = (X —a)(X —b)(X —¢). If o € R is smaller than Min(a, b, ¢), then
we have X —a > 0 on RP(K). X — « has a double pole at the non-prime place v, while
an element of R% + R? = Ng(=ny/x(R+ v/—1R) should have ord, < —4.

Proof of Theorem 6 (2) -b '

Let K = R(X) and suppose that R has only one non-prime place v.

If R # R[X], then v corresponds to an irreducible polynomial p, and ¢ € R is equiva-
lent to ¢ = ¢g/p”, 9 € R[X] and degg < vdegp. Here we can assume that v is even. Then -
¢ > 0 on RP(K) implies ¢ > 0 on RP(K), so ¢ is of even degree and can be written as
g =91 +9% g¢i € RX], deggi < Ldegg. Therefore ¢ = (gl/P"/Q)z + (gz/p”/2)2 and
deg g; < % degp, so that p» € R* + R%.

From the remark above, this completes the proof of Theorem 6 (2).
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