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On finite modified Nash V-determinacy of
polynomial map-germs

Satoshi KOIKE (/> 7 4 7] )

1 Introduction

We consider triviality of a family of zero-sets of real polynomial mappings. In [9], the
author introduced the notion of modified Nash triviality as a natural and desirable one for
it, and gave a modified Nash triviality theorem in the weighted homogeneous polynomial
case. Following [9], T. Fukui, S. Koike and M. Shiota gave some fundamental results to
construct local theory on modified Nash triviality. See [10] for the survey of this field. In
this note, we discuss the problem of finite modied Nash V-determinacy. In particular, we
give a characterization of the finite determinacy (Theorem I) and a sufficient condition
for an r-jet w € J7(2,1) to be modified Nash V-sufficient (Theorem II).

2 Results

We first recall the definitions of a Nash manifold and a Nash mapping. A semialgebraic
set of R™ is called a Nash manifold if it is a C* submanifold of R*. Let M C R™ and
N C R”™ be Nash manifolds. A C¥ mapping f : M — N is called a Nash mapping if .
the graph of f is semialgebraic in R™ x R". See M. Shiota [16] for properties of Nash

manifolds.
Let M C R™ be a Nash manifold possibly with boundary, and let Ny, ..., Ny be Nash

submanifolds of M possibly with boundary, which together with Ny = OM are normal
crossing. Assume that ON; C No, ¢+ = 1,...,q. Then the following Nash Isotopy Lemma
is given in [6]:

Theorem (2.1) ([6] Theorem I). Let w : M — R*, k > 0, be a proper onto Nash
submersion such that for every 0 < iy < -+ <15 < g, w | NjyN---NN;, : NiyyN-- ‘NN;, —
R* is a proper onto submersion. Then there exists a Nash diffeomorphism

6= (4", @) : (M;Ny,...,Ng) = (M*; Ny,...,Nj) x R

such that ¢ | M* = id, where Z* denotes Z Nw™'(0) for a subset Z of M.

Furthermore, if previously given are Nash diffeomorphisms ¢i; : Ni; — N, x R*,
0< 4 < -+ < ig < gq, such that w o d){jl is the natural projection, and ¢;, = ¢;, on
Ni, NN, then we can choose the above Nash diffeomorphism ¢ which satisfies ¢ | N;; =
¢i;, J=1,...,a
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Remark (2.2). In Theorem (2.1), we can replace R* by one of the followings:
(1) an open cuboid [T, (as, b;),
(2) a closed cuboid TT%_,[as, bi],
(3) a Nash manifold which is Nash diffeomorphic to an open simplez.

The above theorem is an effective tool to show modified Nash triviality for a family
of zero-sets of polynomial (or Nash) mappings with isolated singularities. Therefore this
is also useful to show finite modified Nash V-determinacy.

Let N (n,p) denote the set of Nash map-germs : (R",0) — (RP,0), and let A(n,p)
denote the set of analytic map-germs : (R"®, 0) — (R?,0).

Definition (2.3). We say that two map-germs fi,f» € N(n,p) are modified Nash V-
equivalent (resp. modified Nash equivalent), if there are two Nash modifications m; :
M; — R, my : My — R", and a Nash diffeomorphism ® : (W, 771(0)) — (Wa,73%(0))
which induces a homeomorphism ¢ : (Uy,0) — (Uy,0) such that ¢((Us, f71(0) NUL)) =
(Us, f52(0) N Us) (resp. f1 = f2 o ¢), where Wy, W, are semialgebraic neighborhoods of
771(0) in M; and 73 1(0) in Ma, respectively, and Ui, Up are neighborhoods of 0 in R™.

Remark (2.4). Similarly, we can define the notions of modified C* V -equivalence and
modified C* equivalence for elements of A(n,p).

Definition (2.5). We say that f € N(n,p) is finitely modified Nash V-determined, if
there is a positive integer r such that any g € N (n,p) with j7¢g(0) = 7" f(0) is modified
Nash V-equivalent to f. :

We have a criterion for finite modified Nash V-determinacy of polynomial map-germs.
‘We don’t give the proof here.

Theorem 1. For a polynomial map-germ f : (R™,0) — (RP?,0), the following conditions
are equivalent.

(1) f is finitely modified Nash V -determined.

(2) f7H0)N S(f) c {0} as germs at 0 € R™.
Remark (2.6). Let f € A(n,p). Originally, J. Bochnak and T. C. Kuo ([1]) proved that
condition (2) in Theorem | is equivalent to finite V -determinacy of f. This was improved

by M. Buchner and W. Kucharz ([4]). Precisely, they proved that condition (2) is euivalent
to finite modified C* V -determinacy of f where k is a positive integer.

Next we consider the problem of sufficiency of jets. We don’t distinguish r-jets from
their polynomial representatives of degree not exceeding r. Recently, T. Fukui has in-
troduced some invariant for modified C¥ equivalence in the function case ([5]). Let Ny
denote the set of positive integers and infinity, and let A(R™,0) denote the set of analytic
arcs at 0 € R™, namely, the set of analytic maps X : [0,€) — R™ with A(0) = 0, A(s) # 0,
s > 0.

Fukui’s Invariant. For f € A(n,1), we define the following subset of N,:
A(f) ={O(f o)) | X € A(R",0)},

where O(¢) denotes the order of ¢ for ¢ € A(1,1).
(2.7) If f, g € A(n, 1) are modified C* equivalent, then A(f) = A(g).
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Example (2.8). Let w = x3 + 3zy® € J7(2,1). By the Kuiper-Kuo theorem, w is C°-
sufficient (see Theorem (2.11) and Remark (2.13) below). Let f(x,y) = 2%+ 3zy® +4%. It
is easy to see that 8 ¢ A(w). On the other hand, 8 € A(f). By (2.7), f is not modified
C¥-equivalent to w. Therefore w is not modified C*-sufficient.

Remark that in the above example, w satisfies the Kuiper-Kuo condition as a real 7-jet,
but w does not do as a complex 7-jet. Let v be a complex r-jet, and let h : (C*,0) — (C,0)
be a holomorphic function such that j7h(0) = v. Define F : (C" x Q,{0} x Q) — (C,0)
by F(z;t) = (1 — t)v(z) + th(z), where Q is an open ball in C containing the interval
[0,1]. For t € 2, let f; : (C"*,0) — (C,0) denote the function defined by fi(z) = F(z;t),
and set V; = f;!(0). Suppose that v satisfies the Kuiper-Kuo condition. Then F~1(0)
satisfies the Kuo’s Ratio Test ([13]) along {0} x €. This condition is equivalent to the
condition that u*(V;) is constant (see J. Briangon-J. P. Speder [3], J. P. Henry-M. Merle
[7], B. Teissier [17]). Therefore it follows from the main result in H. B. Laufer [15] that
in the case of surface singularities, F~}(0) admits a strong simultaneous resolution over
Q2 in the sense of B. Teissier [18]. Then we have the following question:

Question (2.9). Let w € J"(n,1) be a real r-jet. Suppose that w satisfies the Kuiper-
Kuo condition as a complex jet. Then, is w modified C* V -sufficient (or modified C*-
sufficient)? '

Let w € J"(n,1), and let f € A(n,1) (or NM(n,1)) with j7f(0) = w. After this, let
fi + (R™,0) — (R,0) denote the function defined by fi(z) = (1 — t)w(x) + tf(z) for
t € I =0,1]. Concerning the above question, T. C. Kuo has proved

Theorem (2.10) ([14]). Let w € J"(2,1) be a real r-jet. Suppose that w satisfies the
Kuiper-Kuo condition as a complex jet. Then w is modified C¥ sufficient in A(2,1).
Furthermore, { f;}o<t<1 is modified C* trivial along I.

The author and T. C. kuo have proved the following fact on Lojasiewicz inequalities.

Theorem (2.11). Let r be a positive integer. For f € A(n,1), the following conditions

are equivalent.
(1) (The Kuiper-Kuo condition.) There are c,o0 > 0 such that

lgrad f(z)] > clz|"™" for |z] <o

(2) (The Thom condition.) There are K, A > 0 such that

> leal -

i<j J

+f(@)? > K|z|* for |z| < A.

Remark (2.12). It is easy to see that Theorem (2.11) holds for a C" function f.

Remark (2.13). Suppose that w € J"(n, 1) satisfies the Kuiper-Kuo condition. Then w
is CV-sufficient in C" functions. This is well-known as the Kuiper-Kuo theorem ([11],[12]).
The converse is also true (J. Bochnak and S. Lojasiewicz [2]). At the almost same time
as Kuiper and Kuo, R. Thom showed if w € J"(n,1) satisfies the Thom condition, then
w is C%-sufficient. The Kuiper-Kuo condition implies no coalescing of critical points of
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{fi}o<i<1 in the sense of King ([8]) for any realization of w. On the other hand, the
Thom condition implies that the Milnor radii of {fi'(0)}o<i<1 are uniformly positive.
Therefore it seems that the Thom condition is stronger than the Kuiper-Kuo condition
on the surface. But it follows from the above fact that Thom’s result is equivalent to the
Kuiper-Kuo theorem.

By using Theorems (2.1), (2.10) and (2.11), we can show

Theorem II. Let w € J7(2,1) be a real r-jet. Suppose that w satisfies the Kuiper-Kuo
condition as a complex jet. Then w is modified Nash V-sufficient in N(2,1).

Question (2.14). Does Theorem 11 hold for general variables case?
In the same way as Theorem II, we can reduce the above question to the following

Question (2.15). Let w € J'(n,1) be a real r-jet. Suppose that w satisfies the Kuiper-
Kuo condition as a comlez jet. Then is w modified C* V-sufficient in N'(n,1)? Fur-
thermore, s {f72(0)}o<t<1 modified C* V -trivial along I as set-germs, not as embedded
varieties?
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