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1 Introduction
We consider triviality of a family of zero-sets of real polynomial mappings. In [9], the
author introduced the notion of modified Nash triviality as a natural and desirable one for

it, and gave a modified Nash triviality theorem in the weighted homogeneous polynomial
case. Following [9], T. Fukui, S. Koike and M. Shiota gave some fundamental results to

construct local theory on modified Nash triviality. See [10] for the survey of this field. In
this note, we discuss the problem of finite modied Nash $V$-determinacy. In particular, we
give a characterization of the finite determinacy (Theorem I) and a sufficient condition
for an $r$-jet $w\in J^{r}(2,1)$ to be modified Nash $V$-sufficient (Theorem II).

2 Results
We first recall the definitions of a Nash manifold and a Nash mapping. A semialgebraic
set of $\mathrm{R}^{n}$ is called a Nash manifold if it is a $C^{\omega}$ submanifold of $\mathrm{R}^{n}$ . Let $M\subset \mathrm{R}^{m}$ and
$N\subset \mathrm{R}^{n}$ be Nash manifolds. A $C^{\omega}$ mapping $f$ : $Marrow N$ is called a Nash mapping if
the graph of $f$ is semialgebraic in $\mathrm{R}^{m}\cross \mathrm{R}^{n}$ . See M. Shiota [16] for properties of Nash

manifolds.
Let $M\subset \mathrm{R}^{m}$ be a Nash manifold possibly with boundary, and let $N_{1},$

$\ldots$ , $N_{q}$ be Nash

submanifolds of $M$ possibly with boundary, which together with $N_{0}=\partial M$ are normal
crossing. Assume that $\partial N_{i}\subset N_{0},$ $i=1,$ $\ldots$ , $q$ . Then the following Nash Isotopy Lemma

is given in [6]:

Theorem (2.1) ([6] Theorem I). Let $\varpi$ : $Marrow \mathrm{R}^{k},$ $k>0$ , be a proper onto Nash

submersion such that for every $0\leq i_{1}<\cdots<i_{s}\leq q,$ $\varpi|N_{i_{1^{\cap\cdots\cap}}i}Ns$ : $N_{i_{1^{\cap\cdots\cap N}}i}sarrow$

$\mathrm{R}^{k}$ is a proper onto submersion. Then there exists a Nash diffeomorphism

$\phi=(\phi^{*}, \varpi)$ : $(M;N_{1}, \ldots, N_{q})arrow(M^{*}; N_{1}*, \ldots, N_{q}^{*})\cross \mathrm{R}^{k}$

such that $\phi|M^{*}=id$, where $Z^{*}$ denotes $Z\cap\varpi^{-1}(0)$ for a subset $Z$ of $M$ .
Furthermore, if previously given are Nash diffeomorphisms $\phi_{i_{j}}$ : $N_{i_{\mathrm{j}}}arrow N_{i_{j}}^{*}\cross \mathrm{R}^{k}$ ,

$0\leq i_{1}<\cdots<i_{a}\leq q$, such that $\varpi\circ\phi_{i_{j}}-1$ is the natural projection, and $\phi_{i_{s}}=\phi_{i_{t}}$ on
$N_{i_{S}}\cap N_{i_{t}}$ , then we can choose the above Nash diffeomorphism $\phi$ which satisfies $\phi|N_{i_{\mathrm{j}}}=$

$\phi_{i_{j}},$ $j=1,$ $\ldots,$
$a$ .
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Remark (2.2). In Theorem (2.1), we can replace $\mathrm{R}^{k}$ by one of the followings:
(1) an open cuboid $\prod_{i=1}^{k}(a_{i}, bi)$ ,
(2) a closed cuboid $\prod_{i=1}^{k}[a_{i}, bi]$ ,
(3) a Nash manifold which is Nash diffeomorphic to an open simplex.

The above theorem is an effective tool to show modified Nash triviality for a family
of zero-sets of polynomial (or Nash) mappings with isolated singularities. Therefore this
is also useful to show finite modified Nash V-determinacy.

Let $N(n,p)$ denote the set of Nash map-germs : $(\mathrm{R}^{n}, 0)arrow(\mathrm{R}^{p}, 0)$ , and let $A(n,p)$

denote the set of analytic map-germs : $(\mathrm{R}^{n}, 0)arrow(\mathrm{R}^{p}, 0)$ .

Definition (2.3). We say that two map-germs $f_{1},f_{2}\in\Lambda((n,p)$ are modified Nash V-
equivalent (resp. modified Nash equivalent), if there are two Nash modifications $\pi_{1}$ :
$M_{1}arrow \mathrm{R}^{n},$ $\pi_{2}$ : $M_{2}arrow \mathrm{R}^{n}$ , and a Nash diffeomorphism $\Phi$ : $(W_{1}, \pi_{1}^{-1}(0))arrow(W_{2}, \pi_{2^{-1}}(\mathrm{o}))$

which induces a homeomorphism $\phi$ : $(U_{1},0)arrow(U_{2},0)$ such that $\phi((U_{1}, f1^{-1}(\mathrm{o})\cap U_{1}))=$

$(U_{2}, f_{2^{-1}}(0)\cap U_{2})$ (resp. $f_{1}=f_{2}\circ\phi$), where $W_{1},$ $W_{2}$ are semialgebraic neighborhoods of
$\pi_{1}^{-1}(0)$ in $M_{1}$ and $\pi_{2}^{-1}(0)$ in $M_{2}$ , respectively, and $U_{1},$ $U_{2}$ are neighborhoods of $0$ in $\mathrm{R}^{n}$ .

Remark (2.4). Similarly, we can define the notions of modified $C^{k}V$-equivalence and

modified $C^{k}$ equivalence for elements of $A(n,p)$ .

Definition (2.5). We say that $f\in N(n,p)$ is finitely modified Nash $V$-determined, if
there is a positive integer $r$ such that any $g\in N(n,p)$ with $j^{r}g(0)=j^{r}f(0)$ is modified
Nash $V$-equivalent to $f$ .

We have a criterion for finite modified Nash $V$-determinacy of polynomial map-germs.
We don’t give the proof here.

Theorem I. For a polynomial map-germ $f$ : $(\mathrm{R}^{n}, 0)arrow(\mathrm{R}^{p}, 0)$ , the following conditions
are equivdent.

(1) $f$ is finitely modified $Na\mathit{8}h$ V-determined.
(2) $f^{-1}(0)\cap S(f)\subset\{0\}$ as germs at $0\in \mathrm{R}^{n}$ .

Remark (2.6). Let $f\in A(n,p)$ . Originally, J. Bochnak and T. C. $Kuo([1])$ proved that
condition (2) in Theorem I is equivalent to finite $V$ -determinacy of $f$ . This was improved
by M. Buchner and W. Kucharz ([4]). Precisely, they proved that condition (2) is euivalent
to finite modified $C^{k}V$-determinacy of $f$ where $k$ is a positive integer.

Next we consider the problem of sufficiency of jets. We don’t distinguish $r$-jets from
their polynomial representatives of degree not exceeding $r$ . Recently, T. Fukui has in-
troduced some invariant for modified $C^{\omega}$ equivalence in the function case ([5]). Let $N_{\infty}$

denote the set of positive integers and infinity, and let $\Lambda(\mathrm{R}^{n}, 0)$ denote the set of analytic
arcs at $0\in \mathrm{R}^{n}$ , namely, the set of analytic maps $\lambda$ : $[0, \epsilon)arrow \mathrm{R}^{n}$ with $\lambda(0)=0,$ $\lambda(s)\neq 0$ ,
$s>0$ .

Fukui’s Invariant. For $f\in A(n, 1)$ , we define the following subset of $N_{\infty}$ :

$A(f)=\{0(f\circ\lambda)|\lambda\in\Lambda(\mathrm{R}^{n}, 0)\}$ ,

where $O(\phi)denote\mathit{8}$ the order of $\phi$ for $\phi\in A(1,1)$ .

(2.7) If $f,$ $g\in A(n, 1)$ are modified $C^{\{v}$ equivalent, then $A(f)=A(g)$ .
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Example (2.8). Let $w=x^{3}+3xy^{6}\in J^{7}(2,1)$ . By the Kuiper-Kuo theorem, $w$ is $C^{0_{-}}$

sufficient (see Theorem (2.11) and Remark (2.13) below). Let $f(x, y)=x^{3}+3xy^{6}+y^{8}$ . It
$i\mathit{8}$ easy to see that $8\not\in A(w)$ . On the other hand, $8\in A(f)$ . By (2.7), $fi_{\mathit{8}}$ not modified

$C^{\omega}$ -equivalent to $w$ . Therefore $wi\mathit{8}$ not modified $C^{\omega}$ -sufficient.
Remark that in the above example, $w$ satisfies the Kuiper-Kuo condition as a real 7-jet,

but $w$ does not do as a complex 7-jet. Let $v$ be a complex $r$-jet, and let $h:(\mathrm{C}^{n}, \mathrm{O})arrow(\mathrm{C}, 0)$

be a holomorphic function such that $j^{r}h(0)=v$ . Define $F:(\mathrm{C}^{n}\cross\Omega, \{\mathrm{O}\}\cross\Omega)arrow(\mathrm{C}, 0)$

by $F(z;t)=(1-t)v(z)+th(z)$ , where $\Omega$ is an open ball in $\mathrm{C}$ containing the interval
$[0,1]$ . For $t\in\Omega$ , let $f_{t}$ : $(\mathrm{C}^{n}, \mathrm{O})arrow(\mathrm{C}, 0)$ denote the function defined by $f_{t}(z)=F(z;t)$ ,
and set $V_{t}=f_{t}^{-1}(0)$ . Suppose that $v$ satisfies the Kuiper-Kuo condition. Then $F^{-1}(0)$

satisfies the Kuo’s Ratio Test ([13]) along $\{0\}\cross\Omega$ . This condition is equivalent to the
condition that $\mu^{*}(V_{t})$ is constant (see J. Brian\caon-J. P. Speder [3], J. P. Henry-M. Merle
[7], B. Teissier [17] $)$ . Therefore it follows from the main result in H. B. Laufer [15] that
in the case of surface singularities, $F^{-1}(0)$ admits a strong simultaneous resolution over
$\Omega$ in the sense of B. Teissier [18]. Then we have the following question:

Question (2.9). Let $w\in J^{r}(n, 1)$ be a real $r$ -jet. $Suppo\mathit{8}e$ that $w\mathit{8}atisfieS$ the Kuiper-
$Kuo$ condition as a complex jet. Then, is $w$ modified $C^{\omega}V$-sufficient (or modified $C^{\omega_{-}}$

sufficient)?

Let $w\in J^{r}(n, 1)$ , and let $f\in A(n, 1)$ (or $N(n,$ $1)$ ) with $j^{r}f(0)=w$ . After this, let
$f_{t}$ : $(\mathrm{R}^{n}, \mathrm{O})arrow(\mathrm{R}, 0)$ denote the function defined by $f_{t}(x)=(1-t)w(x)+tf(x)$ for
$t\in I=[0,1]$ . Concerning the above question, T. C. Kuo has proved

Theorem (2.10) ([14]). Let $w\in J^{r}(2,1)$ be a real $r$ -jet. $Suppo\mathit{8}e$ that $w$ satisfies the
Kuiper-Kuo condition as a complex jet. Then $wi_{\mathit{8}}$ modified $C^{\omega}$ sufficient in $A(2,1)$ .
Furthermore, $\{f_{t}\}_{0\leq t\leq}1i\mathit{8}$ modified $C^{\omega}$ trivial along $I$ .

The author and T. C. kuo have proved the following fact on Lojasiewicz inequalities.

Theorem (2.11). Let $r$ be a positive integer. For $f\in A(n, 1)$ , the following conditions
are equivalent.

(1) (The Kuiper-Kuo condition.) There are $c,$ $\alpha>0$ such that

$|gradf(x)|\geq c|X|r-1$ for $|x|<\alpha$ .

(2) (The Thom condition.) There are $K,$ $A>0$ such that

$\sum_{i<j}|xi\frac{\partial f}{\partial x_{j}}-xj^{\frac{\partial f}{\partial x_{i}}1+}2|f(X)|^{2}\geq K|x|^{2}r$ for $|x|<A$ .

Remark (2.12). It $i_{\mathit{8}}$ easy to $\mathit{8}ee$ that Theorem (2.11) holds for a $C^{r}$ function $f$ .

Remark (2.13). Suppose that $w\in J^{r}(n, 1)$ satisfies the Kuiper-Kuo condition. Then $w$

is $C^{0}$ -sufficient in $C^{r}$ functions. This is well-known as the Kuiper-Kuo theorem ([11], |12]).
The converse $i_{\mathit{8}}$ also true (J. Bochnak and S. Lojasiewicz [2]). At the almost same time

$a\mathit{8}$ Kuiper and $Kuo$, R. Thom showed if $w\in J^{r}(n, 1)\mathit{8}atisfie\mathit{8}$ the Thom condition, then
$w$ is $C^{0}$ -sufficient. The Kuiper-Kuo condition implies no coalescing of critical points of
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$\{f_{t}\}_{0\leq t\leq}1$ in the sense of King ([8]) for any realization of $w$ . On the other hand, the
Thom condition $implie\mathit{8}$ that the Milnor radii of $\{f_{t}^{-1}(0)\}_{0\leq t\leq}1$ are unifomdy $po\mathit{8}itive$ .
Therefore it seems that the Thom condition is stronger than the Kuiper-Kuo condition
on the surface. But it follows from the above fact that Thom $\prime Sre\mathit{8}ult$ is equivalent to the
Kuiper-Kuo theorem.

By using Theorems (2.1), (2.10) and (2.11), we can show

Theorem II. Let $w\in J^{r}(2,1)$ be a real $r$ -jet. Suppose that $w\mathit{8}atisfieS$ the Kuiper-Kuo
condition as a complex jet. Then $w$ is modified Nash $V$-sufficient in $N(2,1)$ .

Question (2.14). Does Theorem II hold for generd variables case $p$.

In the same way as Theorem II, we can reduce the above question to the following

Question (2.15). Let $w\in J^{r}(n, 1)$ be a real $r$ -jet. $Suppo\mathit{8}e$ that $wsatisfie\mathit{8}$ the Kuiper-
$Kuo$ condition as a comlex jet. Then $i\mathit{8}w$ modified $C^{1}V$ -sufficient in $N(n, 1)$ ? Fur-
thermore, is $\{f_{t}^{-1}(0)\}_{0\leq t\leq}1$ modified $C^{1}V$ -trivial along I as set-germs, not as embedded
varieties ?
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