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Abstract
We give a normal form theorem for arithmetical derivations. It is proved

by induction up to $\epsilon_{1}$ and implies the $\omega$-consistency of arithmetic.

1 Introduction
Mints [6] investigated some kinds of normal form theorems for $LK(\mathrm{c}\mathrm{f}.19])$ , which

can be considered as extensions of the cut elirnination theorem. In order to explain
his result, we shall state some notions. A variable in a derivation is said to be re-
dundant if it occurs in an upper sequent of an inference $I$ and does not occur in the
lower sequent of $I$ provided that it is not used as the eigenvariable of $I$ . A logical
inference $J$ in a derivation is said to be reducible with respect to $LK$ if one of the
auxiliary formula of $J$ is derivable (refutable) in $LK$ provided that it belongs to the
antecedent (succedent) of the sequent in which it occurs. Then, Mints proved the
following theorem:

Theorem (Mints) Assume that the language of $LK$ contains at least one constant
symbol. Let $\pi$ be a derivation. Then we can transform $\pi$ into a cut free derivation
$\pi’$ which satisfies the following conditions:

(1) The end sequent of $\pi’$ is that of $\pi$ .
(2) $\pi’$ includes no redundant variables.
(3) $\pi’$ includes no reducible inferences $w.r.t$. $LK$ .

On the other hand, normal forms for arithmetical derivations are investigated
by Hinata [3], Jervell [4] and others. Hinata’s normal form theorem is proved by
induction up to $\epsilon_{0}$ and implies the 1-consistency of arithmetic.

In this paper, we shall give an extended form of Hinata’s result, which can be
considered as an analogue of Mints’ Theorem. It is proved by induction up to $\epsilon_{1}$

and implies the $\omega$-consistency of arithmetic.
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As for the $\omega$-consistency of arithmetic, it is known that the $\omega$-consistency of
arithmetic is proved by induction up to $\epsilon_{1}$ and can not be proved by induction up
to $\alpha$ (a $<\epsilon_{1}$ )($\mathrm{C}\mathrm{f}.[2],$ $[5]$ and [8]).

I would like to thank Professor N. Motohashi for his valuable advices and Pro-
fessor T. Arai for his suggestions which improved the earlier version of our theorem.

2 Normal form theorem

In this paper, we shall consider the following system $PA$ . The nonlogical symbols
of $PA$ consist of the following symbols:

(1) Constant symbol: $0$ ;
(2) Function symbols: $\overline{f}$ for each primitive recursive function $f$ ;
(3) Predicate symbol: $=$ .

$S$ is used to denote the successor function. So, $\overline{S}$ is the function symbol for $S$ . Let
$LK^{*}$ be the system obtained from $LK$ by restricting its initial sequents to initial
sequents which consist of atomic formulas and by replacing

$\supset$ : right: $\frac{A,\Gammaarrow\triangle,B}{\Gammaarrow\Delta,A\supset B}$ $\mathrm{b}\mathrm{y}\supset$ : right: $\frac{A,\Gammaarrow\triangle}{\Gammaarrow\Delta,A\supset B}$ and $\frac{\Gammaarrow\Delta,B}{\Gammaarrow\Delta,A\supset B}$.

$PA^{-}$ is the system obtained from $LK^{*}$ by adding the usual initial sequents for
arithmetic, which consist of atomic formulas. And $PA$ is the system obtained from
$PA^{-}$ by adding the following inference rule $ind$ :

$\frac{\Gammaarrow\Delta,A(0)A(a),\Gammaarrow\triangle,A(\overline{S}(a))A(t),\Gammaarrow\Delta}{\Gammaarrow\triangle}$

where the free variable $a$ does not occur in $A(t),$ $\Gamma$ and $\triangle$ . This free variable is called
the eigenvariable, and $A(a)$ and $t$ is callcd the induction formula and the induction
term, respectively. And also $A(\mathrm{O}),$ $A(a),$ $A(\overline{S}(a))$ and $A(t)$ are called elimination
formula8. Ind is said to be $con\mathit{8}tant$ normal if its induction formula contains at least
one occurrence of its eigenvariable and its induction term contains at least one free
variable.

Definition 2.1 Let $\Gamma$ be a sequence $A_{1},$
$\cdots,$

$A_{n}$ of formulas. Let $<i_{1},$ $i_{2},$ $\cdots$ , $i_{k}>$

be a sequence of natural numbers such that $1\leq i_{1}<i_{2}<\cdots<i_{k}\leq n$ . Then, the
sequence $A_{i_{1}},$ $\cdots,$ $A_{i_{k}}$ is called a part of F. $\Gamma^{*}$ is used to denote a part of F. Let
$\Lambdaarrow\Pi$ be a sequent. Then $\Lambda^{*}arrow\Pi^{*}$ is called a part of $\Lambdaarrow\Pi$ .

Definition 2.2 Let $S$ be a sequent and $S^{*}$ a part of $S$ . And let $\pi$ be a derivation of
$S$ and $C$ a formula in $\pi$ . Then $C$ is said to be $(S^{*})$ -implicit if a descendant $(\mathrm{c}\mathrm{f}.[9])$

of $C$ is in $S^{*}$ or a cut formula or an elimination formula. Otherwise $C$ is said to be
$(S^{*})$-explicit. An inference in $\pi$ is called $(S^{*})$-implicit or $(S^{*})$-explicit according as
its principal formula is $(S^{*})$-implicit or $(S^{*})$ -explicit.
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Definition 2.3 A variable in a derivation is said to be redundant if it occurs in
an upper sequent of an inference $I$ and does not occur in the lower sequent of $I$

provided that it is not used as the eigenvariable of $I$ .

Definition 2.4 Let $T$ be a subtheory of $PA$ . And let $\pi$ be a $PA$-derivation. Then a
logical inference $I$ in $\pi$ is said to be reducible with respect to $T$ if one of the auxiliary
formulas of $I$ is derivable (refutable) in $T$ provided that it belongs to the antecedent
(succedent) of the sequent in which it occurs.

Definition 2.5 Let $S$ be a sequent and $S^{*}$ a part of $S$ . And let $\pi$ be a derivation
of $S$ . We consider the following conditions (1) $\sim(5)$ on $\pi$ .

(1) There are no redundant variables.
(2) There are no cuts except inessential ones (cf. |9]).
(3) There are no inds except constant normal ones.
(4) There are no inferences which are reducible with respect to $PA^{-}$

(5) There are no $(S^{*})$ -explicit inferences which are reducible with respect to $PA$ .
$\pi$ is said to be irreducible if it satisfies the conditions (1) $\sim(3)$ . And $\pi$ is said to be

$PA^{-}$ -irreducible or $(S^{*})$ -strongly irreducible according as it satisfies the conditions
(1) $\sim(4)$ or (1) $\sim(5)$ , respectively. Especially, we say that $\pi$ is strongly irreducible if
it is $(arrow)$ -strongly irreducible.

Definition 2.6 Let $T$ be a theory which contains arithmetic. Then $T$ is said to
be $\omega$-consistent if it satisfies the following condition: For any formula $A(a)$ which
does not have free variables except $a$ , if $\exists xA(x)$ is derivable in $T$ , then there exist a
numeral $n$ such that $\neg A(n)$ is not derivable in $T$ . Let $k\geq 1$ . Then the restriction
of the $\omega$-consistency of $T$ to formulas $A\in\Sigma_{k-1}$ is called the $k$-consistency of $T$ .

As for the $k$-consistency of a theory which contains arithmetic, the following fact
is known.

Fact (Smoryn’ski [7]) Let $T$ be a theory which contain8 arithmetic. Then, for $k=1,2$,
$Ti_{\mathit{8}}k$ -consistent iff, for any $\Sigma_{k}$ -sentence $A$ , if $A$ is derivable in $T$, then $A$ is true.

The following theorem is proved by induction up to $\epsilon_{0}$ in [3].

Theorem 1 (Hinata) We can $tran\mathit{8}f_{\mathit{0}}r\prime amj$ derivation into an irreducible one with
the same end $\mathit{8}equent$ .

The following corollaries are direct consequences of Theorem 1.

Corollary 1 Let $\exists xR(x)$ be an $exi_{\mathit{8}}tential$ sentence. Assume that $\exists xR(x)i\mathit{8}$ deriv-
able in $PA$ . Then $\exists xR(x)$ is derivable in $PA^{-}$
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Corollary 2 $PA$ is l-con8i8tent.

In this paper, we shall show the following theorem by induction up to $\epsilon_{1}$ .

Theorenl 2 We can $tran\mathit{8}form$ any derivation into a $\mathit{8}trongly$ irreducible derivation
with the same end $\mathit{8}equent$ .

Corollary 3 $PA$ is w-consistent.

Proof. Let $A(a)$ be an arbitrary formula such that it has no free variables except
$a$ and $A(n)$ is derivable in $PA$ for any numeral $n$ . Then, it suffices to show that
$\forall xA(x)arrow \mathrm{i}\mathrm{s}$ not derivable in $PA$ . Assume that $\forall xA(x)arrow \mathrm{i}\mathrm{s}$ derivable in $PA$ .
Then, there exists a strongly irreducible derivation of $\forall xA(x)arrow \mathrm{b}\mathrm{y}$ Theorem 2. Let
$\pi$ be a strongly irreducible derivation of $\forall xA(x)arrow$ . Assume that $\pi$ includes at least
one boundary inference (cf. Definition 3.4). Note that the end-place (cf. Definition
3.4) of $\pi$ contains no free variable. So, no inds belong to the boundary of $\pi$ (cf.
Definition 3.4). Thus each inference which belongs to the boundary of $\pi$ must be of
the form:

$\frac{A(t),\Gammaarrow\triangle}{\forall xA(x),\mathrm{r}arrow\triangle}$

,

where $\Gamma$ consists of $\forall xA(x)$ or atomic formulas and $\triangle$ consists of atomic formulas.
Because, if $\Gamma(\triangle)$ contains a formula $B$ which includes at least one logical symbol,
then $B$ occurs in the antecedent (succcdent) of the end sequent of $\pi$ . Since $\pi$ contains
no redundant variables, $t$ contains no free variables. Since there is a numeral $n$ such
that $t=n$ is derivable in $PA,$ $arrow A(t)$ is derivable in $PA$ . But it contradicts our
assumption. So, $\pi$ includes no boundary inferences. Thus we can transform $\pi$ into a
derivation $\pi’$ whose end sequent is a part of the end sequent of $\pi$ and which includes
no free variables, no weakenings, no essential cuts, no inds and no logical inferences.
Since any formula in $\pi’$ doesn’t include logical symbols, the end sequent of $\pi’\mathrm{i}\mathrm{s}arrow$ .
But, it is clear that there is not such a derivation. 1

3 Preliminaries
In this section, we shall define some necessary notions and state some proposi-

tions, which will be used in the next section.

Definition 3.1 For any formula $A$ , the degree $d(A)$ of $A$ is defined inductively as
follows:

(1) $d(A)=1$ , if $A$ is atomic;
(2) $d$ ( $B_{1}$ A $B_{2}$ ) $=d(B_{1}B_{2})=d(B_{1} \supset B_{2})=\max\{d(B_{1})+1, d(B_{2})+1\}$ ;
(3) $d(\neg B)=d(\forall xB)=d(\exists xB)=d(B)+1$ .
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Definition 3.2 Let $I$ be an inference. Then the degree $d(I)$ of $I$ is defined as follows:

$d(I)=\{$

$\max$ { $d(A)|A$ is an auxiliary formula of $I$}, if $I$ is an logical inference,
the degree of a cut formula of $I$ , if $I$ is a cut,
the degree of the induction formula of $I$ , if $I$ is an $\mathrm{i}\mathrm{n}\mathrm{d}$ ,
$0$ , otherwise.

Definition 3.3 Let $\pi$ be a derivation and $S$ a sequent in $\pi$ . For any natural number
$\rho$ , the height $h_{\rho}(S;\pi)$ based on $\rho$ of $S$ in $\pi$ is defined as follows:

(1) $h_{\rho}(S;\pi)=\rho$ , if $S$ is the end sequent of $\pi$ .
(2) Let $S$ be one of the upper sequents of an inference $I$ in $\pi$ and $S’$ the lower

sequent of $I$ . Assume that $h_{\rho}(S’;\pi)$ is defined. Then,

$h_{\rho}(S; \pi)=\max\{h_{\rho}(s/;\pi), d(I)\}$.

Definition 3.4 Let $\pi$ be a derivation. We say that a sequent $S$ in $\pi$ belong8 to the
end-place of $\pi$ if neither a logical inference nor an ind occurs below $S$ in $\pi$ . And we
say that an inference $I$ in $\pi$ belong8 to the boundary of $\pi$ or is a boundary inference
of $\pi$ if the lower sequent of $I$ belongs to the end-place of $\pi$ and the upper sequents
of $I$ do not belong to the end-place of $\pi$ .

Notation. Let $\alpha$ and $\beta$ be ordinals. Then $\alpha\#\beta$ is used to denote the natural sum
of $\alpha$ and $\beta$ . And $\alpha\cross\beta$ is used to denote the natural product of $\alpha$ and $\beta$ . Let
$\beta=\omega^{\beta_{1}}+\cdots+\omega^{\beta_{m}}$ be in Cantor norrnal form and $n$ a finite ordinal. Then, we have
the following equations:

(1)
$\alpha\cross n=;\frac{n\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}}{\alpha\#\cdots\#\alpha}$

(2) $\beta_{\mathrm{X}\omega=}w\beta 1+1+\cdots+w^{\beta_{m}+}1$ .

Definition 3.5 Let $\check{S}$ be a scqucnt and $\check{S}^{*}$ a $\mathrm{p}\mathrm{a}\mathrm{l}\cdot \mathrm{t}$ of $\check{S}$ . And let $\pi$ be a derivation
of $\check{S}$ and $\rho$ a natural number. To cach scquent $S$ in $\pi$ and each inference $I$ in $\pi$ , we
assign ordinals $O_{\rho}(S;\pi;\check{s}^{*}),$ $O_{\rho}(I;\pi;\check{s}*)$ , respectively, as follows:
(1) If $S$ is an initial sequent,

$O_{\rho}(S;\pi;^{\check{s}^{*}})=1$ .

(2) Let Si $(1 \leq i\leq n)$ be the upper sequents of $I$ . Assume that $O_{\rho}(S_{i};\pi;\check{s}^{*})$ are
defined for each $1\leq i\leq n$ .

(2.1) If $I$ is a weak inference,

$O_{\rho}(I;\pi;^{\check{s}^{*})}=O_{\rho}(s_{1;\pi;\check{s}^{*})}$ .

(2.2) If $I$ is $(\check{S}^{*})$ -explicit,

$O_{\rho}(I;\pi;\check{S}*)=\{$

$O_{\rho}(S_{1}; \pi;\check{s}*)\#\epsilon_{0}$ , if $I$ has one upper sequent,
$O_{\rho}(s_{1}; \pi;\check{S}^{*})\# O\rho(s2;\pi;^{\check{s}*})\#\epsilon 0$ , if $I$ has two upper sequents.
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(2.3) If $I$ is $(\check{S}^{*})$ -implicit,

$O_{\rho}(I;\pi;\check{s}^{*})=\{$

$O_{\beta}(S1;\pi;\check{S}*)\#\omega d(I)$ , if $I$ has one upper sequent,
$O_{\rho}(S_{1}; \pi;\check{S}^{*})\# O\rho(S2;\pi;\check{S}*)\#\omega^{d}(I)$ , if $I$ has two upper sequents.

(2.4) If $I$ is a cut,
$O_{\rho}(I;\pi;^{\check{s})}*=O_{\rho}(s_{1;\pi;}\check{s}^{*})\#^{o(\check{s}^{*})}\rho s_{2;\pi};$.

(2.5) If $I$ is an $\mathrm{i}\mathrm{n}\mathrm{d}$ ,
$o_{\rho}(I;\pi;\check{s}^{*})=O_{\rho}(S_{1}; \pi;\check{S}*)\#(o_{\rho}(s_{2;\pi;}\check{S}*)\cross\omega)\# o_{\rho}(S_{3;}\pi;\check{s}^{*})\#\omega^{d}(I)$.

(3) Let $S$ be the lower sequent of $I$ . And let $\sigma$ be the height based on $\rho$ of an upper
sequent of $I$ and $\tau$ the height based on $\rho$ of $S$ . Then,

$O_{\rho}(S;\pi;^{\check{s}^{*}})=w-\mathcal{T}(\sigma o(\rho I;\pi;\check{s}*))$ .
We define $O_{\rho}(\pi;\check{S}^{*})$ by $O_{\rho}(S;\pi;\check{S}*)$ , where $S$ is the end sequent of $\pi$ .

The following propositions are proved easily.

Proposition 1 $A\mathit{8}\mathit{8}ume$ that $\pi i\mathit{8}$ a derivation. Let $S$ be a sequent in $\pi$ . Let $\rho$ and
$\sigma$ be natural number8 $\mathit{8}uch$ that $\rho\leq\sigma$ . Then, $h_{\rho}(S, \pi)\leq h_{\sigma}(S;\pi)$ .
Proposition 2 Suppose that $\pi i\mathit{8}$ a derivation of \v{S}. $A_{\mathit{8}}sume$ that $\check{S}^{*}$ is a part of $\check{S}$ .
Let $\rho$ and a be natural number8 $\mathit{8}uch$ that $\rho\leq\sigma$ . Let $S$ be a sequent in $\pi$ . Then,
$\omega_{h_{\rho}(s;\pi})(o_{\rho}(S;\pi;\check{S}^{*}))\leq\omega_{h_{\sigma}(s)}\pi(;\mathit{0}\sigma(s;\pi;\check{s}*))$ .

We can prove the next corollary by the same way as in Lemma 12.7 in [9], using
the property that the ordinal operation $\#,$ $\cross \mathrm{a}\mathrm{n}\mathrm{d}$ exponential are strictly increasing.

Proposition 3 $s_{upp_{\mathit{0}\mathit{8}}e}$ that $\pi i\mathit{8}$ of the form:

$\Lambda^{1}arrow...\cdot.\cdot\Pi\pi$.
$\Gammaarrow\triangle$ .

Let $\pi_{1}’$ be a derivation of $\Lambda,$ $\Gamma’arrow\triangle^{J},$ $\Pi$ . Then we define $\pi’a\mathit{8}$ follow8:

$\Lambda,$

$\mathrm{r}^{\pi_{1}’}’arrow..\cdot\triangle/,$

$\Pi$...$\cdot$

$\Gamma,$ $\Gamma’arrow\triangle’,$ $\triangle$ .
Let $\Gamma^{*}arrow\triangle^{*}$ be a part of $\Gammaarrow\triangle$ . And let $\Gamma^{\prime*}$ be a part of $\Gamma’$ and $\triangle^{\prime*}$ a part of $\Delta’$ .
$As\mathit{8}ume$ that

$O_{0}(\Lambda, \Gamma^{;}arrow\triangle’, \Pi;\pi’;\Gamma^{*}, \Gamma/*arrow\triangle^{\prime*}, \triangle^{*})<O_{0}(\Lambdaarrow\Pi;\pi;^{\mathrm{r}^{*}}arrow\triangle^{*})$.
Then $O_{0}(\pi’;^{\mathrm{r}}*, \mathrm{r}^{\prime*}arrow\triangle^{\prime*}, \triangle^{*})<O_{0}(\pi;\Gamma^{*}arrow\triangle^{*})$ .
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4 Proof of Theorem 2

We shall prove the following Theorem 3 which clearly implies Theorem 2.

Theorenl 3 $As\mathit{8}ume$ that $\check{\pi}$ is a derivation of \v{S}. Let $\check{S}^{*}$ be a part of \v{S}. Then we
can $tran\mathit{8}form\check{\pi}$ into a derivation whose end $\mathit{8}equenti\mathit{8}\check{S}$ and which $i\mathit{8}(\check{S}^{*})$ -strongly
irreducible.

Proof. We shall prove this statement by induction on $O_{0}(\check{\pi};\check{S}^{*})$ . Assume that $\check{S}$ is
of the form $\Gammaarrow\triangle$ and $\check{S}^{*}$ is of the form $\Gamma^{*}arrow\triangle^{*}$ .

As usual, we transform $\check{\pi}$ into a derivation $\pi$ which satisfies the following condi-
tions:

1) $\pi$ includes no redundant variables.
2) The end sequent of $\pi$ is $\check{S}$ .
3) If $I$ is a weakening in the end place of $\pi$ , then every inference below $I$ is an

exchange or a weakening.
4) $O_{0}(\pi;\check{S}^{*})\leq O_{0}(\check{\pi};\check{S}^{*})$ .
We shall classify $\pi$ into some cases. When we are concerned with a case in the

following, we suppose that $\pi$ satisfies none of the conditions of the preceding cases.
From now on, the letter “ $S$” in “$\Lambdaarrow\Pi s,$

, is used to denote the sequent $\Lambdaarrow\Pi$ .
(1) The case where $\pi$ includcs at least one $(\check{S}^{*})$ -explicit inference which is reducible
w.r.t. $PA$ .

We shall transform $\pi$ into a derivation $\pi’$ by the same way as in [1]. Let $I$ be
one of $(\check{S}^{*})- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{i}\mathrm{t}$ inferences which are reducible w.r.t. $PA$ . We shall consider the
case that $I$ is $\mathrm{a}\supset$ : left. The other cases are treated similarly.

Assume that $\pi$ is of the form:

$\pi_{1}.\cdot$. $\pi_{2}.\cdot$.

$\frac{\Lambda_{1}arrow\Pi 1A.BS_{1}.s_{2}\Lambda 2^{arrow\Pi}2}{A\supset B,\Lambda_{1},\Lambda_{2}arrow S\Pi_{1},\Pi_{2}},..’ I$

Assume that $h_{0}(s_{1;)}T=\rho$ and $h_{0}(S;\pi)=\sigma$ . And also assume that $\Lambda_{1}^{*}arrow\Pi_{1}^{*}$ is
the sequent obtained from $S_{1}$ by delcting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . By our
assumption, $Aarrow \mathrm{o}\mathrm{r}arrow B$ is derivable in $PA$ . We treat only the case that $Aarrow \mathrm{i}\mathrm{s}$

derivable in $P\mathrm{A}$ , since the other case is similar. Let $\hat{\pi}$ be a derivation of $Aarrow$ . Then
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we reduce $\pi$ into the derivation $\pi’$ :

$\Lambda_{1}arrow\Pi s_{1}\pi 1\dot{:}_{1},$

$A$

$Aarrow\hat{\pi}:\hat{s}$

.

$\underline{\overline{.\Lambda_{1}arrow\Pi_{1}}}$

$A\supset B,$ $\Lambda_{1},$

$\Lambda_{2}’..\cdotarrow\Pi_{1},$

$\Pi_{2}s$

Then we shall prove $O_{0}(\pi^{\prime\cdot\check{s}*}\mathrm{I})<O_{0}(\pi,\check{S}*)$ . $\Lambda_{1}^{*}arrow\Pi_{1}^{*},$ $A$ is the sequent obtained
from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi’$ and $h_{0}(s;\pi’)=\sigma$ . Assume that
$h_{0}(s_{1;}\pi’)=\tau(\leq\rho)$ . Then,

$O_{0}(S_{1};\pi’;\check{s}*)$ $=$ $O_{\tau}(S_{1;\pi_{1;}}\Lambda_{1}*arrow\Pi_{1}^{*}, A)$

$\leq$ $O_{\mathcal{T}}(S_{1;}\pi 1 \Lambda_{1}^{*}arrow\Pi_{1}^{*})$

$\leq$ $\omega_{\rho-}\mathcal{T}(o_{\rho}(S_{1;}\pi_{1};\Lambda_{1}^{*}arrow\Pi_{1}^{*}))$

$=$ $w_{\rho-\tau}(o_{0}(S_{1;\pi};\check{s}^{*}))$ .

On the other hand, we have $O_{0}(\hat{S};\pi;\check{s}’*)<\epsilon_{0}$ , because every inference in $\hat{\pi}$ is
$(S^{*})$-implicit in $\pi’$ . Thus,

$O_{0}(s;\pi’);\check{s}^{*}$ $=$ $\omega_{\tau-\sigma}(O_{0}(s_{1}; \pi;^{\check{s}*})/\# O_{0}(\hat{S};\pi’;\check{S}*))$

$<$ $w_{\tau-\sigma}(\omega_{\beta}-\mathcal{T}(o0(s_{1} ; \pi;\check{s}^{*}))\#\epsilon_{0})$

$\leq$ $w_{\tau-\sigma}(w_{\rho}-\mathcal{T}(o0(s_{1}; \pi;\check{S}^{*})\#\epsilon_{0}))$

$<$ $w_{\rho-}(\sigma o_{0}(S1;\pi;\check{s}^{*})\#^{o(s\check{S}^{*}}02;\pi;)\#\epsilon 0)$

$=$ $O_{0}(s_{;}\pi;\check{S}*)$ .

So, $o_{0}(\pi;’\check{s}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi’$ into a
derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by induc-
tion hypothesis.
(2) The case where $\pi$ includes at least one inference which is reducible w.r.t. $PA^{-}$ .

We shall transform $\pi$ into a derivation $\pi’$ by the same way as in [1]. Let $I$ be
one of inferences which are reducible $\mathrm{w}.\mathrm{r}.\mathrm{t}$ . $PA^{-}$ . Then $I$ is $(\check{S}^{*})$ -implicit, because $\pi$

includes no $(\check{S}^{*})$ -explicit inferences which are reducible w.r.t. $PA$ . We shall consider
the case that $I$ is $\mathrm{a}\supset$ : right. The other cases are treated similarly.

Assume that $\pi$ is of the form:

$\pi_{1}.\cdot$

.

$\frac{A,\Lambdaarrow\Pi s_{1}}{\Lambdaarrow\Pi.A\supset BS:}I$
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Assume that $h_{0}(S_{1}; \pi)=\rho$ and $h_{0}(S;\pi)=\sigma$ . And also assume that $A,$ $\Lambda^{*}arrow\Pi^{*}$

is the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . By
our assumption, $arrow A$ is derivable in $PA^{-}$ Let $\hat{\pi}$ be a $PA^{-}$ -derivation whose end
sequent $\mathrm{i}\mathrm{s}arrow A$ and includes no cuts except inessential ones. Then we reduce $\pi$ into
the derivation $\pi’$ :

$\hat{\pi}:$. $\pi_{1}..$.
$\frac{arrow AA,\Lambdaarrow\Pi\hat{s}s_{1}}{\underline{\Lambdaarrow\Pi}}$

$\Lambdaarrow\Pi.\cdot.A\supset Bs$:

Then we shall prove $O_{0}(\pi’;\check{s}^{*})<O_{0}(\pi;\check{S}^{*})$. $h_{0}(S_{1} ; \pi’)=\rho$ and $h_{0}(s;\pi)’=\sigma$ . And
$A,$ $\Lambda^{*}arrow\Pi^{*}$ is the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas
in $\pi’$ . Then $O_{0}(s_{1}; \pi’;\check{s}*)=O_{\rho}(s_{1}; \pi 1;A, \Lambda^{*}arrow\Pi^{*})=O_{0}(s_{1}; \pi;\check{s}*)$ . On the other
hand, we have $O_{0}(\hat{S};\pi’;\check{S}^{*})<\omega^{d(J)}$ , because every inference in $\hat{\pi}$ is $(S^{*})$-implicit in
$\pi’$ and every formula in $\hat{\pi}$ is an atomic formula or a subformula of $A$ . Thus,

$O_{0}(S;\pi’;\check{s}^{*})$ $=w_{\rho-\sigma}(o0(\hat{s};T’;\check{S}^{*})\#^{o_{0}}(s1;\pi;/\check{S}*))$

$<$ $w_{\rho-\sigma}(\omega^{d(}\#^{o_{0}}I)(S1;\pi;\check{s}*))$

$=$ $O_{0}(S;\pi;\check{S}^{*})$ .

So, $o_{0}(\pi;\check{s}^{*}/)<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi’$ into a
derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by induc-
tion hypothesis.
(3) The case where $\pi$ includes no boundary inferences.

$\pi$ consists of initial sequents, weak inferences and cuts. Note that the cut for-
mulas in $\pi$ are only inessential, since weakings do not occur above cuts in $\pi$ by our
assumption. Thus $\pi$ is a required derivation.
(4) The case where $\pi$ includes at least one ind which belongs to the boundary of $\pi$ .

Assume that $\pi$ is of the form:

$\pi_{1}.\cdot$

.
$\pi_{2}(a):$. $\pi_{3}.\cdot$

.
$\frac{\Lambdaarrow\Pi,A(0)A(s_{1}a),\Lambdaarrow\Pi S_{2}SA(\overline{S}(a))A(t),\Lambda 4\Pi}{s},I$

$\Lambdaarrow\Pi$

:
:

$\Gammaarrow\triangle$

where $I$ belongs to the boundary of $\pi$ . Assume that $h_{0}(S_{1} ; \pi)=\rho$ and $h_{0}(S;\pi)=\sigma$ .
Assume that $\Lambda^{*}arrow\Pi^{*},$ $A(\mathrm{O})$ is the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})-$

explicit formulas in $\pi$ . Then $A(a),$ $\Lambda^{*}arrow\Pi^{*},$ $A(\overline{S}(a))$ is the sequent obtained from
$S_{2}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ and $A(t),$ $\Lambda^{*}arrow\Pi^{*}$ is the sequent
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obtained from $S_{3}$ by deleting thc $(\check{S}^{*})$ -explicit formulas in $\pi$ .
(4.1) The case where $I$ is not constant normal.

We assume that the induction formula $A(a)$ of $I$ includes at least one occurrence
of $a$ , since we can treat the other case similarly. Then the induction term $t$ of $I$ is
closed. So, there exists a numeral $n$ such that $t=n$ is derivable in $PA$ , and there
exists a derivation $\hat{\pi}$ of $A(n)arrow A(t)$ such that $\hat{\pi}$ does not include essential cuts and
inds $(\mathrm{c}\mathrm{f}.[9])$ . We shall reduce $\pi$ into the following derivation $\pi’$ :

$\pi_{1}..\cdot$
$\pi_{2}.(0).\cdot$

.

$\frac{\Lambdaarrow\Pi,A(0)A(s_{1}0),\Lambdaarrow\Pi 2As^{0}(1)}{\underline{\underline{\Lambda,\Lambdaarrow\Pi,\Pi,A(1)}}}$

,
$\pi_{2}(1).\cdot$

.

$\frac{\Lambdaarrow\Pi,A(1)A(1),\Lambda^{S_{2}}arrow\Pi 1A(2)}{\Lambda,\Lambdaarrow\prod_{arrow\Lambda\Pi},\Pi,A(2)\underline{\underline{\mathrm{A}(2)}}},$

”

$. \frac{\Lambdaarrow \mathrm{I}\dot{\mathrm{i}},A(n)A(n)arrow A(t)\hat{\pi}:\hat{S}}{\underline{\underline{\Lambda,\Lambdaarrow\Pi,\Pi,A(t)}}}$

.

$\pi_{3}.\cdot$

.

$\frac{\Lambdaarrow\Pi,A(t).A(t),\Lambda sS\Pi}{\underline{\underline{\Lambda,\Lambdaarrow\Pi,\Pi}}}\Lambdaarrow..\cdot\Pi s$

$\Gammaarrow\Delta$

Then we shall prove $o_{0}(\pi;\check{s}^{*}/)<O_{0}(\pi;\check{S}^{*})$ . We shall note that $O_{0}(S_{i;;}\pi^{\prime\check{s})}*=$

$O_{0}(s_{i;\pi;\check{s}^{*})}$ for $i=1,3$ and $O_{0}(S_{),\sim}^{j\prime}‘;\pi;^{\check{s}^{*}})=O_{0}(S_{2}; \pi;\check{S}^{*})$ for $j=0,$ $\cdots,$ $n-1$ .
On the other hand, we have $O_{0}(\hat{S};\pi^{;};^{\check{s}*})<\omega^{d(I)}$ , because every inference in $\hat{\pi}$ is
$(S^{*})$-implicit in $\pi’$ and every formula in $\hat{\pi}$ is an atomic formula or a subformula of
$A(n)$ or $A(t)$ . Since $O_{0}(S_{2};\pi;\check{S}^{*})\cross n<O_{0}(S_{2;}T;\check{s}^{*})\cross\omega$ and $O_{0}(\hat{S};\pi/;\check{S}^{*})<w^{d(I)}$ ,
we have

$O_{0}(S;\pi/;\check{S}^{*})$ $=$ $\omega_{\rho-\sigma}(o\mathrm{o}(S_{1;;\check{s}^{*}}\pi)\#(O0(s2;\pi;\check{S}^{*})\cross n)\#^{o}\mathrm{o}(S_{3};\pi;\check{s}*)\#^{o}\mathrm{o}(\hat{S};\pi;\check{S}J*))$

$<$ $w_{\rho-\sigma}(O\mathrm{o}(s1;\pi;\check{s}^{*})\#(o0(s2;\pi;\check{S}^{*})\cross\omega)\# O_{0}(s_{3};\pi;\check{S}*)\# w)d(I)$

$=$ $O_{0}(S;\pi;\check{S}^{*})$ .

So, $O_{0}(\pi’;\check{s}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi’$ into a
derivation whose end scquent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by induc-
tion hypothesis.
(4.2) The case where $I$ is constant normal.
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Let $b$ be a variable which does not occur in $\pi$ . We shall construct the following
derivations $\hat{\pi}_{1},\hat{\pi}_{2},\hat{\pi}_{3}$ from $\pi$ .

$\hat{\pi}_{1}$ $\hat{\pi}_{2}$ $\hat{\pi}_{3}$

$\pi_{1}..$. $\pi_{2}(b)..\cdot$
$\pi_{3}..\cdot$

$\Lambda s\Pi,$$A(0S)$ $A(b),$ $\Lambda 3\Pi,$$A(\overline{S}\underline{S}(b))$ $A(t),$ $\Lambda^{S}-3\Pi$

$\Lambda^{S^{1}}arrow A..(0),$
$\Pi$ $\Lambda,$ $A(b)arrow As^{2}(\overline{s}(b)),$ $\Pi$

$\Lambda,$ $A(t..)arrow^{\Pi}s^{s}$

$\Gammaarrow 4\dot{4}.(0),$
$\triangle$ $\Gamma,$

$A(b)arrow.\cdot.\cdot A(\overline{S}(b)),$

$\triangle$
$\Gamma,$

$A(t):arrow\Delta$

$\overline{\Gammaarrow\triangle,A(0)}$ $\overline{A(b),\Gammaarrow\triangle,A(\overline{s}(b))}$ $\overline{A(t),\Gammaarrow\triangle}$

Then we shall prove $O_{0}(\hat{\pi}_{\underline{9}}; A(b), \mathrm{r}^{*}arrow\triangle^{*}, A(\overline{S}(b)))<O_{0}(\pi;\check{S}^{*})$. $h_{0}(S_{2},\hat{\pi}_{2})=\sigma$ and
$A(b),$ $\Lambda^{*}arrow\Pi^{*},$ $A(\overline{S}(b))$ is the sequent obtained from $S_{2}$ by deleting the $(A(b),$ $\mathrm{r}^{*}arrow$

$\triangle^{*},$ $A(\overline{S}(b)))$ -explicit formulas in $\hat{\pi}_{2}$ . So,

$O_{0}(s_{2};\hat{\pi}2;A(b), \Gamma*arrow\triangle^{*}, A(\overline{S}(b)))$ $=$ $O_{\sigma}(s_{2};\pi 2;A(b), \Lambda^{*}arrow\Pi^{*}, A(\overline{S}(b)))$

$\leq$ $w_{\rho-\sigma}(o_{\rho}(S_{2;}\pi_{2};A(b), \Lambda^{*}arrow\Pi^{*}, A(\overline{S}(b))))$

$=$ $\omega_{\rho-\sigma}(O_{0}(S_{2}; \pi;\check{s}*))$ .

Thus,

$O_{0}(S^{2};\hat{\pi}_{2};A(b), \Gamma*arrow\triangle^{*}, A(\overline{S}(b)))$

$=$ $O_{0}(S_{2};\hat{\pi}_{\vee}9;A(b), \mathrm{r}*arrow\triangle^{*}, A(\overline{S}(b)))$

$\leq$ $\omega_{\rho-\sigma}(O\mathrm{o}(S_{2};\pi;\check{s}^{*}))$

$<$ $\omega_{\rho-\sigma}(O_{0}(S\cdot’;\sim\pi;\dot{s}^{*})\mathrm{x}\omega)$

$<$ $w_{\rho-\sigma}(o_{0}(s1;\pi;\check{S}^{*})\#(o0(S_{\sim}9; \pi;\check{S}^{*})\cross\omega)\#^{o_{0}}(s_{3};\pi;\check{s}*)\#\omega)d(I)$

$=$ $O_{0}(S;\pi;\check{s}^{*})$ .

So, $O_{0}(\hat{\pi}_{2;A(}b),$ $\Gamma*arrow\triangle^{*},$ $A(\overline{S}(b)))<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Similarly, we can
prove $O_{0}(\hat{\pi}_{1}; \mathrm{r}*arrow\triangle^{*}, A(\mathrm{O}))<O_{0}(\pi;\check{S}^{*})$ and $O_{0}(\hat{\pi}_{3;}A(t), \Gamma*arrow\triangle^{*})<O_{0}(\pi;\check{S}^{*})$ .

Thus, by induction hypothesis, we can transform $\hat{\pi}_{1}$ into a derivation $\pi_{1}’$ whose
end sequent is $\Gammaarrow\triangle,$ $A(\mathrm{O})$ and which is $(\Gamma^{*}arrow\triangle^{*}, A(\mathrm{O}))$-strongly irreducible, and
$\hat{\pi}_{2}$ into a derivation $\pi_{2}’$ whose end scquent is $A(b),$ $\Gammaarrow\triangle,$ $A(\overline{S}(b))$ and which is
$(A(b), \mathrm{r}^{*}arrow\triangle^{*}A()\overline{S}(b)))$-strongly irreducible, and $\hat{\pi}_{3}$ into a derivation $\pi_{3}’$ whose
end sequent is $A(t),$ $\Gammaarrow\triangle$ and which is $(A(t), \Gamma^{*}arrow\triangle^{*})$ -strongly irreducible. We
shall define $\pi’$ as follows:

$\pi_{1}’.\cdot$

.
$\pi_{2}’.\cdot$

.
$\pi_{3}’.\cdot$

.

$\frac{\Gammaarrow\triangle,A(0)A(b),\Gammaarrow\triangle,A(\overline{S}(b))A(t),\Gammaarrow\triangle}{\Gammaarrow\triangle}$

100



Note that $\pi$ includes no ledundant variables, and $I$ is constant normal and belongs
to the boundary of $\pi$ . So, the free variables which occur in $t$ occur in $\Gammaarrow\Delta$ . Thus
$\pi’$ is a derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible.
(5) The case where $\pi$ includes at least one $(arrow)$-explicit inference which belongs to
the boundary of $\pi$ .

Let $I$ be one of $(arrow)$ -explicit inferences which belong to the boundary of $\pi$ .
(5.1) The case where $I$ is $(\check{S}^{*})$ -explicit.

We shall consider the case that $I$ is a $\forall$ : left. The other cases are treated
similarly.

Assume that $\pi$ is of the form:

$\pi_{1}.\cdot$

.

$\underline{A(t),\Lambdaarrow\Pi s_{1}}I$

$\forall xA(x),$
$\Lambdaarrow\Pi s$

::
$\Gammaarrow\triangle$

Assume that $h_{0}(s_{1;}\pi)=\rho$ and $h_{0}(S;\pi)=\sigma$ . Assume that $\Lambda^{*}arrow\Pi^{*}$ is the sequent
obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Then we reduce $\pi$ into
the derivation $\pi’$ :

$\pi_{1}.\cdot$

.

$A(t),$ $\Lambdaarrow\Pi S_{1}$

$\frac{\Lambda,A(t)arrow\Pi}{\forall xA(x),\Lambda,A(t)arrow\Pi s}$

:
$\Gamma,$

$A(t).\cdotarrow\triangle$

Then we shall prove $O_{0}(\pi’;\Gamma*arrow\triangle^{*})<O_{0}(\pi;\check{S}^{*})$ . $\Lambda^{*}arrow\Pi^{*}$ is the sequent ob-
tained from $S_{1}$ by deleting the $(\Gamma^{*}arrow\triangle^{*})$ -explicit formulas in $\pi’$ . And $h_{0}(S_{1};\pi’)=$

$h_{0}(s;\pi’)=\sigma$ . So,

$O_{0}(s_{1};\pi’;\mathrm{r}^{*}arrow\triangle^{*})$ $=$ $O_{\sigma}(S_{1};\pi_{1;}\Lambda^{*}arrow\Pi^{*})$

$\leq$ $\omega_{\rho-\sigma}(O_{\beta}(s_{1};\pi 1;\Lambda^{*}arrow\Pi^{*}))$

$=$ $w_{\rho-\sigma}(o_{\mathrm{o}(s;\pi}1;\check{S}*))$ .

Thus,

$O_{0}(S;\pi’;\mathrm{r}^{*}arrow\triangle^{*})$ $=$ $O_{0}(S_{1;}\pi’;\Gamma^{*}arrow\triangle^{*})$

$\leq$ $w_{\rho-\sigma}(O_{0}(S_{1}; \pi;\check{s}*))$

$<$ $w_{\rho-\sigma}(O_{0}(S1;\pi;\check{S}*)\#\mathcal{E}_{0})$

$=$ $o_{0}(S;\pi;\check{s}*)$ .
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Hence $O_{0}(\pi’;^{\mathrm{r}*}arrow\triangle^{*})<O_{0}(\pi;\check{s}*)$ by Proposition 3. Thus we can transform $\pi’$ into
a derivation $\hat{\pi}$ whose end sequent is $\Gamma,$ $A(t)arrow\triangle$ and which is $(\Gamma^{*}arrow\triangle^{*})$-strongly
irreducible, by induction hypothesis. So, we shall define $\tilde{\pi}$ as follows:

$\frac{\hat{\pi}}{\overline{A(t),\Gammaarrow\triangle}}$

$\overline{\forall xA(x),\mathrm{r}arrow\triangle}J$

$\overline{\overline{\Gammaarrow\triangle}}$

Note that $\pi$ includes no redundant variablcs and $I$ belongs to the boundary of $\pi$ .
So, the free variables which occur in $t$ occur in $\Gammaarrow\triangle$ . Note that $J$ is $(\check{S}^{*})$ -explicit
inference in $\tilde{\pi}$ . $\mathrm{A}\mathrm{n}\mathrm{d}arrow A(t)$ is not derivable in $PA$ , since $\pi$ includes no $(\check{S}^{*})$ -explicit
inferences which are reducible $\mathrm{w}.\mathrm{r}.\mathrm{t}$ . $PA$ . Thus $\tilde{\pi}$ is $(\check{S}^{*})$ -strongly irreducible.
(5.2) The case where $I$ is $(\check{S}^{*})$-implicit.

We shall consider the case that $I$ is a $\forall$ : right. The other cases are treated
similarly.

Assume that $\pi$ is of the form:

$\pi_{1}(a)..$.

$\frac{\Lambda.\Pi,A(\underline{s_{\mathrm{t}.a)}}}{\int\backslash arrow\Pi,.\forall s.xA(x)}.I$

$\Gammaarrow\triangle$

Assume that $h_{0}(S_{1}; \pi)=\rho$ and $h_{0}(S;\pi)=\sigma$ . And assume that $\Lambda^{*}arrow\Pi^{*},$ $A(a)$ is
the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Let $b$ be
a variable which does not occur in $\pi$ . Then we reduce $\pi$ into the derivation $\pi’$ :

$\Lambdaarrow\Pi,As_{1}\pi_{1}(b).\cdot.(b)$

$\underline{\overline{\Lambdaarrow A(b),\Pi}}$

$\Lambdaarrow A(bS),$ $\Pi,\forall xA(X)$

::
$\Gammaarrow A(b),$ $\triangle$

Then we shall prove $O_{0}(\pi’;\mathrm{r}*arrow A(b), \triangle^{*})<O_{0}(\pi;\check{S}^{*})$ . $h_{0}(s_{1;\pi’)}=h_{0}(S;\pi’)=\sigma$ .
And $\Lambda^{*}arrow\Pi^{*},$ $A(b)$ is the sequcnt obtained from $S_{1}$ by deleting the $(\Gamma^{*}arrow A(b), \triangle^{*})-$

explicit formulas in $\pi’$ . So,

$O_{0}(S_{1} ; \pi’;^{\mathrm{r}*}arrow A(b), \triangle^{*})$ $=$ $O_{\sigma}(s_{1}; \pi 1;\Lambda^{*}arrow\Pi^{*}, A(b))$

$\leq$ $\omega_{\rho-\sigma}(O_{\rho}(s_{1}; \pi 1;\Lambda^{*}arrow\Pi^{*}, A(b)))$

$=$ $w_{\rho-\sigma}(O_{0}(s_{1}; \pi;\check{s}*))$ .
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Thus,

$O_{0}(S;\pi;\mathrm{r}^{*}/arrow A(b), \triangle^{*})$ $=$ $O_{0}(s_{1;}\pi^{\prime \mathrm{r}*};arrow A(b), \Delta^{*})$

$\leq$ $w_{\rho-\sigma}(o_{0}(S_{1;}\pi;\check{S}^{*}))$

$<$ $w_{\rho-\sigma}(O\mathrm{o}(S_{1;\pi};\check{s}*)\#\omega)d(I)$

$=$ $o_{0}(s;\pi;\check{S}^{*})$ .

Hence $O_{0}(\pi’;^{\mathrm{r}*}arrow A(b), \triangle^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. So, we can transform $\pi’$

into a derivation $\hat{\pi}$ whose end sequent is $\Gammaarrow A(b),$ $\triangle$ and which is $(\Gamma^{*}arrow A(b), \triangle^{*})-$

strongly irreducible, by induction hypothesis. We shall define $\tilde{\pi}$ as follows:

$\frac{\Gammaarrow\triangle,A\hat{\pi}\overline{\overline{(b)}}}{\Gammaarrow\triangle,\forall xA(X)}\overline{\overline{\Gammaarrow\triangle}}J$

Note that $J$ is $(\check{S}^{*})$ -implicit in $\tilde{\pi}$ . And the sequent $A(b)arrow \mathrm{i}\mathrm{s}$ not derivable in $PA^{-}$ ,
since $\pi$ includes no inferences which are reducible w.r.t. $PA^{-}$ . So, $\tilde{\pi}$ is $(\check{S}^{*})$-strongly
irreducible.
(6) The case where all the inferences which belong to the boundary of $\pi$ are $(arrow)-$

implicit inferences.
At first, we shall show that there exists a suitable cut $(\mathrm{c}\mathrm{f}.[9])$ . We shall consider

the following property $(*)$ for a scquent $S$ in the end-place of $\pi$ .

$(*)$ $S$ includes a descendant of the principal formula of a boundary inference.

The lower scquent of a boundary inference satisfies the property $(*)$ and the end
sequent doesn’t satisfy tlle propcrty $(*)$ . So, there exists an inference whose upper
sequent(s) satisfies the property $(*)$ and whose lower sequent doesn’t satisfy the
property $(*)$ . We take one of the uppermost ones and denote it by $I$ . It is clear
that $I$ is a cut. Let $S_{1}(S_{2})$ be the left (right) upper sequent of $I$ . Then, we can
suppose that $S_{1}$ satisfies the property $(*)$ . Then the cut formula which occurs in $S_{1}$

must be a descendant of the $\mathrm{P}^{1}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{P}\mathrm{a}1$ formula of a boundary inference and include
logical symbols. If no boundary inferences occur above $S_{2},$ $S_{2}$ doesn’t include a
formula which contains logical symbols. Because $\pi$ includes no weakenings above $S_{2}$

by our assumption. However, $S_{2}$ includes a formula which contains logical symbols.
So, $\pi$ must include at least one boundary inference above $S_{2}$ . If $S_{2}$ doesn’t satisfy
the property $(*)$ , there exists an inference above $I$ whose upper sequent(s) satisfies
the property $(*)$ and whose lower sequent doesn’t satisfy the property $(*)$ . But it
contradicts our choice of $I$ . Thus $S_{2}$ satisfies the property $(*)$ . Since the lower
sequent of $I$ doesn’t satisfy the property $(*)$ , the cut formula of $I$ which occurs in
$S_{2}$ must be a descendant of the principal formula of a boundary inference. So, $I$ is
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a suitable cut. We shall considcr the case that the cut formulas of $I$ have $\forall$ as its
outermost logical symbol. The other cases are treated similarly.

Assume that $\pi$ is of the form:

$\frac{\Lambda_{1}arrow\triangle,A(s_{1}^{u}\pi_{1}(a_{1}).a)}{s_{1}^{l}}.\cdot I_{1}$ $\frac{A(t),\Lambda_{2^{arrow}}:s^{u}2\triangle 2}{S^{l}}..I_{2}$

$\Lambda_{1}arrow\triangle_{1}..\forall xA(X:’)$ $\forall xA(x),.\cdot\Lambda_{2}:- 3\triangle_{2}$

$\frac{\Lambda_{3}s_{\triangle_{3}},\forall XA(x)\forall XA(X),\Lambda 4s\underline{s}\triangle_{4}s}{\Lambda_{3},\Lambda_{4^{arrow}}\triangle_{3,4}\triangle}I$

–... $I_{3}$

$\Gamma_{1}arrow.\cdot$.$\triangle_{1}s$

$\Gammaarrow\triangle$ .
Here $I_{1}$ and $I_{-},\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}$ to the boundary of $\pi$ . And $\Gamma_{1}arrow\triangle_{1}$ denotes the uppermost
sequent below $I$ whose height bascd on $0$ is less than that of the upper sequents of
I. Assume that $h_{0}(S_{1}^{u};\pi)=\rho_{1u},$ $h_{0}(s_{1}^{l}; \pi)=\rho_{11},$ $h_{0}(S_{3};\pi)=\rho$ and $h_{0}(s;\pi)=\sigma$ .
And also assume that $\Lambda_{1}^{*}arrow\triangle_{1}^{*},$ $A(a)$ is the sequent obtained from $S_{1}^{u}$ by deleting
the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Then we reduce $\pi$ into the derivation $\pi’$ :

$\pi_{1}(t).\cdot$

.
.$\cdot$
.$\cdot$

$s_{\mathrm{i}^{1}}$ $S_{2}^{u}$

$\Lambda_{1}arrow\Delta_{1},A(t)$ $A(t),\Lambda_{2}arrow\Delta_{2}$

$\Lambda_{1}s_{1}^{l}arrow A(t),$
$\Delta_{1}$ , $\forall xA(x)$ $\forall xA(x),$ $\Lambda 2,$

$A(t)arrow s^{\iota}2\Delta_{2}$. .. ... .$\cdot$.
$,,’ \frac{\Lambda_{3}arrow A(s\mathrm{t})s^{1}S4\triangle_{\mathrm{s}}\forall xA(X)\forall XA(X),\Lambda_{4}arrow\triangle_{4}1}{\Lambda 3\Lambda 4arrow A(t),\triangle 3\triangle_{4}}$

,

$\underline{\bigwedge_{3}\triangle_{3},\forall xAs\frac{\mathrm{o}}{arrow 3}s_{4}(X)\forall XA(X),\Lambda_{4},A(t)arrow\Delta_{4}2}$

$\Lambda_{3}$ , A4, $A(t)arrow\triangle \mathrm{s},$ $\triangle_{4}$

$\Gamma_{1}arrow A^{\cdot}\cdot\overline{(S^{1}l).\triangle 1}J_{3}$

’
$\overline{\ovalbox{\tt\small REJECT}_{tarrow}^{s^{2}}\Gamma A}.\cdot.\Delta I’3$

’

$\frac{\overline{\overline{\Gamma_{1}arrow\triangle_{1},A(t)}}\overline{A(t),\Gamma_{1}arrow\triangle_{1}}}{\underline{\underline{\Gamma_{1},\Gamma_{1^{arrow}}\triangle_{1},\triangle_{1}}}}$

$\Gamma_{1}arrow\triangle_{1}s$

:
:

$\Gammaarrow\triangle$

Then we shall prove $O_{0}(\pi’;\check{s}^{*})<O_{0}(\pi;\check{S}^{*})$ . $\Lambda_{1}^{*}arrow\triangle_{1}^{*},$ $A(t)$ is the sequent obtained
from $S_{1}^{u}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi’$ . And $h_{0}(S_{1}^{u};\pi’)=h_{0}(S_{1}^{l}; \pi’)=$

$\rho_{1l},$ $h_{0}(S_{3}^{1}; \pi’)=\rho$ and $h_{0}(s_{;\pi’})=\sigma$ . Assume that $h_{0}(s^{1}; \pi)/=h_{0}(S^{2};\pi)/=\tau$.
Then $\sigma\leq\tau<\rho$ . Since we have

$O_{0}(s_{1}^{u/};\pi;\check{s}*)$ $=$ $O_{p_{1l}}(S_{1}^{u};\pi 1;\Lambda_{1}*arrow\triangle_{1}^{*}, A(t))$

$\leq$ $w_{\beta 1u}-\rho 1l(o_{\beta u}(1;\pi 1;s_{1}^{u}\Lambda_{1}^{*}arrow\triangle_{1}^{*}, A(t)))$

$=$ $\omega_{\rho_{1u^{-}}p1l}(O_{0}(S^{u};\pi;\check{s}*1))$ ,
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we have
$O_{0}(s_{1}^{l}; \pi’;\check{S}*)$ $=$ $O_{0}(S_{1}^{u};\pi’;\check{s}*)$

$\leq$ $w_{\rho_{1u}}-\rho_{1l}(O_{\mathrm{o}(;\pi;}Su\check{S}^{*}1))$

$<$ $w_{\rho_{1u}-\rho_{1\iota}}(o_{0}(S_{1}^{u};\pi;\check{s}*)\#\omega(I1))d$

$=$ $O_{0}(S_{1}^{\iota}; \pi;\check{s}*)$ .
Thus $O_{0}(I_{3}’;\pi’;\check{s}*)<O_{0}(I_{3};\pi;\check{s}*)$ . Similarly, we have $O_{0}(I_{3’}’;\pi’;\check{S}*)<O_{0}(I_{3};\pi;\check{s}*)$ .
Then,

$O_{0}(S^{1};\pi’;\check{S}*)$ $=$ $w_{\rho-\mathcal{T}}(O0(I’;3\pi;’\check{s}*))<\omega_{\rho-\tau}(O0(I3;T;\check{s}*))$ ,
$O_{0}(S^{2};\pi’;\check{S}*)$ $=$ $w_{\rho-\tau}(O_{0(\pi’\check{S}^{*}}I^{\prime/};3;))<w_{\rho-\tau}(O_{0(I_{3;;}\check{S}))}\pi*$ .

Thus, $o_{0}(S1;\pi;\check{s}’*)\#^{o}\mathrm{o}(S2;;\pi’\check{s}*)<w_{\rho-\tau}(O_{0}(I_{3;}\pi;\check{s}*)),\dot{\mathrm{b}}$ecause $\rho-\tau>0$ . Hence,

$O_{0}(s;\pi^{;};\dot{s}*)$ $=$ $w_{\tau-\sigma}(O_{0}(S1;\pi;J\check{S}^{*})\# o0(s^{2}; \pi’;\check{s}*))$

$<$ $\omega_{\mathcal{T}-\sigma}(w\rho-\tau(O_{0}(I_{3};\pi;\check{S}^{*})))$

$=$ $w_{\rho-\sigma}(O_{0}(I3;\pi;^{\check{s}*}))$

$=$ $O_{0}(S;\pi;\check{s}*)$ .

So, $O_{0}(\pi J;\check{s}^{*})<O_{0}(.\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi’$ into a
derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by induc-
tion hypothesis. 1

5 Appendix
We can prove the following theorem by induction up to $\epsilon_{0}$ .

Theorem 4 Assume that $\pi$ is a derivation of S. Then we can transform $\pi$ into a
$PA^{-}$ -irreducible derivation with the same end $\mathit{8}equent$ .

Proof. We can prove this statement by a method similar to that in Theorem 3.
Note that then we use induction on $O_{0}(\pi, s)$ . 1

Corollary 4 $PA$ is 2-consistent.

Proof. Let $\exists xA(x)$ be a $\Sigma_{2}$ -sentence. Then we can assume that $A(a)$ is a $\Pi_{1^{-}}$

formula. Suppose that $\exists xA(x)$ is derivable in $PA$ . Then we shall show that $\exists xA(x)$

is true. Assume that $\exists xA(x)$ is not true. Lct $t$ be a closed term. Then, $\neg A(t)$ is true.
Since $\neg A(t)$ is a $\Sigma_{1}$ -sentence, $arrow\neg A(t)$ is derivable in $PA^{-}$ by $\Sigma_{1}$ -completeness. So,
we have the statement $(*)$ that $A(t)arrow \mathrm{i}\mathrm{s}$ derivable in $PA^{-}$ for any closed term $t$ .

On the other hand, thele is a $PA^{-}$ -irreducible derivation $\pi$ of $\exists xA(x)$ by our
assumption and Theorem 4. Assume that $\pi$ includes at least one boundary inference.
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Since the end-place of $\pi$ includes no free variable, no inds belong to the boundary
of $\pi$ . Thus, every boundary inference must be of the form:

$\frac{\Gammaarrow\triangle,A(t\prime)}{\Gammaarrow\triangle,\exists x\mathrm{A}(x)}$

,

where $\Gamma$ consists of atomic formulas and $\triangle$ consists of atomic formulas or $\exists xA(x)$ .
Since $\pi$ includes no redundant variables, $t’$ is closed. Since $\pi$ is a $PA^{-}$ -irreducible
derivation, $A(t’)arrow \mathrm{i}\mathrm{s}$ not derivable in $PA^{-}$ But, this contradicts $(*)$ . Thus, $\pi$

includes no boundary inferences. Then we can transform $\pi$ into a derivation $\mathrm{o}\mathrm{f}arrow$

which includes no free variables, no essential cuts, no inds and no logical inferences.
But there is not such a derivation. Thus $\exists xA(x)$ is true.
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