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A normal form for arithmetical
derivations implying the w-consistency
of arithmetic

P RFRFIER tH—E (Kazuma Ikeda)

Abstract

We give a normal form theorem for arithmetical derivations. It is proved
by induction up to e; and implies the w-consistency of arithmetic.

1 Introduction

Mints [6] investigated some kinds of normal form theorems for LK (cf.[9]), which
can be considered as extensions of the cut elimination theorem. In order to explain
his result, we shall state some notions. A variable in a derivation is said to be re-
dundant if it occurs in an upper sequent of an inference I and does not occur in the
lower sequent of I provided that it is not used as the eigenvariable of I. A logical
inference J in a derivation is said to be reducible with respect to LK if one of the
auxiliary formula of J is derivable (refutable) in LK provided that it belongs to the
antecedent (succedent) of the sequent in which it occurs. Then, Mints proved the
following theorem:

Theorem (Mints) Assume that the language of LK contains at least one constant
symbol. Let © be a deriwation. Then we can transform w into a cut free derivation
7' which satisfies the following conditions:

(1) The end sequent of 7' is that of .

(2) 7' includes no redundant variables.

(3) ' includes no reducible inferences w.r.t. LK.

On the other hand, normal forms for arithmetical derivations are investigated
by Hinata [3], Jervell [4] and others. Hinata’s normal form theorem is proved by
induction up to €y and implies the 1-consistency of arithmetic.

In this paper, we shall give an extended form of Hinata’s result, which can be
considered as an analogue of Mints’ Theorem. It is proved by induction up to &;
and implies the w-consistency of arithmetic.



As for the w-consistency of arithmetic, it is known that the w-consistency of
arithmetic is proved by induction up to €; and can not be proved by induction up
to o (o < €;) (cf.[2], [5] and [8]).

I would like to thank Professor N. Motohashi for his valuable advices and Pro-
fessor T. Arai for his suggestions which improved the earlier version of our theorem.

2 Normal form theorem

In this paper, we shall consider the following system PA. The nonlogical symbols
of PA consist of the following symbols:

(1) Constant symbol: 0;

(2) Function symbols: f for each primitive recursive function f;

(3) Predicate symbol: =.
S is used to denote the successor function. So, S is the function symbol for S. Let
LK* be the system obtained from LK by restricting its initial sequents to initial
sequents which consist of atomic formulas and by replacing

AT — A,B AT — A . _T—-AB
T>AADB T—2,45B M TSAADEB

PA- is the system obtained from LK* by adding the usual initial sequents for
arithmetic, which consist of atomic formulas. And PA is the system obtained from
PA~ by adding the following inference rule ind :

I = A,A(0) A(a),T — A, A(S(a)) A(t),T — A
'—A ;

D:right: by D: right :

where the free variable a does not occur in A(¢),I" and A. This free variable is called

the eigenvariable, and A(a) and ¢ is called the induction formula and the induction.

term, respectively. And also A(0), A(a), A(S(a)) and A(t) are called elimination
formulas. Ind is said to be constant normal if its induction formula contains at least
one occurrence of its eigenvariable and its induction term contains at least one free
variable.

Definition 2.1 Let I" be a sequence Aj,---, A, of formulas. Let < 41,%9,---,% >
be a sequence of natural numbers such that 1 < 4y < i3 < --+ < 4 < n. Then, the
sequence A;,,---,A;, is called a part of I'. T* is used to denote a part of I'. Let
A — TI be a sequent. Then A* — TI* is called a part of A — I

Definition 2.2 Let S be a sequent and S* a part of S. And let 7 be a derivation of
S and C a formula in 7. Then C is said to be (S*)-implicit if a descendant (cf.[9])
of C is in S* or a cut formula or an elimination formula. Otherwise C' is said to be
(S*)-ezplicit. An inference in = is called (S*)-implicit or (S*)-ezplicit according as
its principal formula is (S*)-implicit or (S*)-explicit.

91



Definition 2.3 A variable in a derivation is said to be redundant if it occurs in
an upper sequent of an inference I and does not occur in the lower sequent of I
provided that it is not used as the eigenvariable of I.

Definition 2.4 Let T be a subtheory of PA. And let 7 be a PA-derivation. Then a
logical inference I in 7 is said to be reducible with respect to T if one of the auxiliary
formulas of I is derivable (refutable) in T provided that it belongs to the antecedent
(succedent) of the sequent in which it occurs.

Definition 2.5 Let S be a sequent and S* a part of S. And let 7 be a derivation
of S. We consider the following conditions (1)~(5) on .

(1) There are no redundant variables.

(2) There are no cuts except inessential ones (cf.[9]).

(3) There are no inds except constant normal ones.

(4) There are no inferences which are reducible with respect to PA™.

(5) There are no (S*)-explicit inferences which are reducible with respect to PA.

7 is said to be irreducible if it satisfies the conditions (1)~(3). And 7 is said to be
PA~-irreducible or (S*)-strongly irreducible according as it satisfies the conditions
(1)~(4) or (1)~(5), respectively. Especially, we say that = is strongly irreducible if
it is (—)-strongly irreducible.

Definition 2.6 Let T be a theory which contains arithmetic. Then T is said to
be w-consistent if it satisfies the following condition: For any formula A(a) which
does not have free variables except a, if 3xA(x) is derivable in T, then there exist a
numeral n such that —~A(n) is not derivable in T. Let k¥ > 1. Then the restriction
of the w-consistency of T to formulas A € ¥;_; is called the k-consistency of T.

As for the k-consistency of a theory which contains arithmetic, the following fact
is known.

Fact (Smorynski (7)) Let T be a theory which contains arithmetic. Then, fork = 1,2,
T 1is k-consistent iff, for any Xi-sentence A, if A is derivable in T, then A is true.

The following theorem is proved by induction up to &g in [3].

Theorem 1 (Hinata) We can transform any derivation into an irreducible one with
the same end sequent.

The following corollaries are direct consequences of Theorem 1.

Corollary 1 Let 3z R(z) be an existential sentence. Assume that 3z R(x) is deriv-
able in PA. Then 3z R(x) is derivable in PA~.
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Corollary 2 PA is 1-consistent.
In this paper, we shall show the following theorem by induction up to €;.

Theorem 2 We can transform any derivation into a strongly irreducible derivation
with the same end sequent.

Corollary 3 PA is w-consistent.

Proof. Let A(a) be an arbitrary formula such that it has no free variables except
a and A(n) is derivable in PA for any numeral n. Then, it suffices to show that
VzA(z) — is not derivable in PA. Assume that VzA(z) — is derivable in PA.
Then, there exists a strongly irreducible derivation of VzA(z) — by Theorem 2. Let
7 be a strongly irreducible derivation of Yz A(z) —. Assume that  includes at least

one boundary inference (cf. Definition 3.4). Note that the end-place (cf. Definition .

3.4) of 7 contains no free variable. So, no inds belong to the boundary of « (cf.
Definition 3.4). Thus each inference which belongs to the boundary of 7 must be of

the form:
At),I = A

VzA(z), T — A,

where I' consists of VzA(z) or atomic formulas and A consists of atomic formulas.
Because, if T' (A) contains a formula B which includes at least one logical symbol,
then B occurs in the antecedent (succedent) of the end sequent of 7. Since 7 contains
no redundant variables, ¢ contains no free variables. Since there is a numeral n such
that ¢ = n is derivable in PA, — A(¢) is derivable in PA. But it contradicts our
assumption. So, 7 includes no boundary inferences. Thus we can transform = into a
derivation 7’ whose end sequent is a part of the end sequent of 7 and which includes
no free variables, no weakenings, no essential cuts, no inds and no logical inferences.
Since any formula in 7’ doesn’t include logical symbols, the end sequent of 7’ is —.
But, it is clear that there is not such a derivation. I

3 Preliminaries

In this section, we shall define some necessary notions and state some proposi-
tions, which will be used in the next section.

Definition 3.1 For any formula A, the degree d(A) of A is defined inductively as
follows:

(1) d(A) =1, if A is atomic;

(2) d(Bl AN Bg) = d(Bl \Y Bg) = d(Bl D) Bz) = mam{d(Bl) + l,d(Bz) + 1},

(3) d(—B) = d(VzB) = d(3zB) = d(B) + 1.
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Definition 3.2 Let I be an inference. Then the degree d(I') of I is defined as follows:

maxz{d(A)|A is an auxiliary formula of I}, if I is an logical inference,

d(I) = the degree of a cut formula of I, if I is a cut,
~ ] the degree of the induction formula of I,  if I is an ind,
0, otherwise.

Definition 3.3 Let 7 be a derivation and S a sequent in . For any natural number
p, the height h,(S; ) based on p of S in 7 is defined as follows:
(1) h,(S;m) = p, if S is the end sequent of .
(2) Let S be one of the upper sequents of an inference I in 7 and S’ the lower
sequent of I. Assume that h,(S’;7) is defined. Then,

ho(S; ) = maz{h,(S";7),d(I)}.

Definition 3.4 Let 7 be a derivation. We say that a sequent S in 7 belongs to the
end-place of 7 if neither a logical inference nor an ind occurs below S in 7. And we
say that an inference I in w belongs to the boundary of w or is a boundary inference
of 7 if the lower sequent of I belongs to the end-place of 7 and the upper sequents
of I do not belong to the end-place of 7.

Notation. Let o and # be ordinals. Then afif is used to denote the natural sum
of @ and 8. And a x ( is used to denote the natural product of o and 3. Let
B = whPt +---+wPm be in Cantor normal form and n a finite ordinal. Then, we have
the following equations:

n times

—— '
(1) axn=qaof --fa; (2) Bxw=whtl 4.4 fmtl

Definition 3.5 Let S be a sequent and S* a part of S. And let 7 be a derivation
of S and p a natural number. To each sequent S in 7 and each inference I in 7, we
assign ordinals O,(S;; S*), O,(I;m; S*), respectively, as follows:
(1) If S is an initial sequent,
0,(S;m; 8*) = 1.

(2) Let S; (1 < i < n) be the upper sequents of I. Assume that 0,(Si;m; 8*) are
defined for each 1 <17 < n.

(2.1) If I is a weak inference,

O,(I; m; S5*) = O,(Sy;m; 5*).
(2.2) If I is (S*)-explicit,

0,(I;m; 8*) = O,(Sy; 5 5™)teo, if T has one upper sequent,
PRI O,(Sy; w5 S*)0,(Sa; 5 S*)eo, if T has two upper sequents.
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(2.3) If T is (S*)-implicit,

0,(I;m 57) = O,(S1; 7; S*)ﬁwd(”, ) if I has one upper sequent,
PR T )T 0,(S1y 5 S*)O,(Sa; m; S*)wd™, if I has two upper sequents.

(2.4) If I is a cut,
O,(I;7;8*) = 0,(S1; m; S*WO(Sa; ; )
(2.5) If I is an ind,
OP(I;W;S*) = 0,(S1;; S*)(0,(Se; T; S*) x w)§0,(Ss;m; S*)ﬁwd(l).

(3) Let S be the lower sequent of J. And let o be the height based on p of an upper
sequent of I and 7 the height based on p of S. Then,

0,(S;7;8*) = wy—r (O,(I;m; 5%)).
We define O,(r; S*) by O,(S;; S*), where S is the end sequent of 7.
The following propositions are proved easily.

Proposition 1 Assume that 7 is a derivation. Let S be a sequent in w. Let p and
o be natural numbers such that p < o. Then, h,(S;7) < ho(S; ™).

Proposition 2 Suppose that 7 is a derivation of S. Assume that S* is a part of S.
Let p and o be natural numbers such that p < 0. Let S be a sequent in w. Then,
wh,(5:m)(Op(S; 73 5*)) L Why(s:m) (06 (S57; 57)).

We can prove the next corollary by the same way as in Lemma 12.7 in [9], using
the property that the ordinal operation §, x and exponential are strictly increasing.

Proposition 3 Suppose that 7 is of the form:

™ o
ATl
T > A.
Let 7] be a derivation of A, TV — A’ T1. Then we define 7’ as follows:
o
AT — AL
T, T — A A.
Let T* — A* be a part of T — A. And let T™ be a part of I' and A™ a part of A'.
Assume that
Oo(A, T" — AT 7 T, T — A, A*) < Og(A — T T — A”).
Then Op(m'; T*, T — A™ A*) < Op(m; I* — A¥).



4 Proof of Theorem 2

We shall prove the following Theorem 3 which clearly implies Theorem 2.

Theorem 3 Assume that 7 is a derivation of S. Let S* be a part of S. Then we
can transform ¥ into a derivation whose end sequent is S and which is (S*)-strongly
irreducible.

Proof. We shall prove this statement by induction on Op(#; S*). Assume that § is
of the form I' — A and §* is of the form T'™* — A*,

As usual, we transform 7 into a derivation 7 which satisfies the following condi-
tions:

1) 7 includes no redundant variables.

2) The end sequent of 7 is S.

3) If I is a weakening in the end place of 7, then every inference below I is an

exchange or a weakening.

4) Op(; 5*) < Og(i; 5%).

We shall classify 7 into some cases. When we are concerned with a case in the
following, we suppose that 7 satisfies none of the conditions of the preceding cases.

From now on, the letter “S” in “A 5, 11 is used to denote the sequent A — II.
(1) The case where 7 includes at least one (S*)-explicit inference which is reducible
w.r.t. PA.

We shall transform 7 into a derivation #’ by the same way as in [1]. Let I be
one of (S*)-explicit inferences which are reducible w.r.t. PA. We shall consider the
case that I is a D: left. The other cases are treated similarly.

Assume that 7 is of the form:

7!'1; 7['22
AS T, A BA, BT ;
AD B, A, Ay 510,10,

Assume that ho(Sy;m) = p and ho(S;7) = 0. And also assume that A} — II7 is
the sequent obtained from S; by deleting the (S*)-explicit formulas in 7. By our
assumption, A — or — B is derivable in PA. We treat only the case that A — is
derivable in PA, since the other case is similar. Let 7 be a derivation of A —. Then
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we reduce 7 into the derivation 7’ :

nA

7(1; 7(':A
M3m4a 45
A — I

A DB,AlaAQ _S')HI)H2

Then we shall prove Oo(’; S5*) < Og(m; 8*). A* — I, A is the sequent obtained
from S; by deleting the (5*)-explicit formulas in 7’ and ho(S;7’) = 0. Assume that
ho(S1;7") = 7(< p). Then,

Oy(Sy; 7'; S*) 0,(Sy;m; AT — 113, A)
O-(Sy;m; AT — IIY)
(—Up—'r(Op(Sl; 15 AI - HI))

wp—T(OO(Sl; 5 S*))

IN A

On the other hand, we have Oy(S;n’; 5*) < e, because every inference in # is
(S*)-implicit in #’. Thus,

Oo(S; '3 S*) wr—o(Oo(S1;7'; S™)H0s(S; 75 S*))
Wr— o (Wp—r(Oo(S1; ™5 8*))teo)
Wr—o(Wp—r(Oo(S1; 75 8*)en))

Wp—o (O0(S1;7; 57 )400(Sa; ;3 5*)Hteo)

00(5; T, S*)-

ANIN AN

So, Og(n';8*) < Oy(m;S*) by Proposition 3. Thus we can transform 7’ into a
derivation whose end sequent is S and which is (S*)-strongly irreducible, by induc-
tion hypothesis.
(2) The case where 7 includes at least one inference which is reducible w.r.t. PA~.
We shall transform « into a derivation 7’ by the same way as in [1]. Let I be
one of inferences which are reducible w.r.t. PA~. Then I is (S*)-implicit, because =
includes no (S*)-explicit inferences which are reducible w.r.t. PA. We shall consider
the case that I is a D: right. The other cases are treated similarly.
Assume that 7 is of the form:

7r15
AN
AimADB

I
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Assume that ho(Si;7) = p and ho(S;7) = 0. And also assume that A, A* — II*
is the sequent obtained from S; by deleting the (S*)-explicit formulas in 7. By
our assumption, — A is derivable in PA~. Let # be a PA™-derivation whose end
sequent is — A and includes no cuts except inessential ones. Then we reduce 7 into
the derivation 7':

7 T

S5 A AANBT

A =TI
AST,A>B

Then we shall prove Oy(7'; $*) < Oo(T; S’*). ho(S1;7') = p and ho(S;#’) = o. And
A,A* — TI” is the sequent obtained from S; by deleting the (S*)-explicit formulas
in 7. Then Op(S1;7'; S*) = O,(S1;m; A, A* — TI*) = Oy(Sy; 7; 5*). On the other
hand, we have Oy(S;7'; $*) < w¥!), because every inference in # is (S*)-implicit in
7' and every formula in 7 is an atomic formula or a subformula of A. Thus,

Ov(S; 7r';5“) = w,,_(,(OO(S'; 7' S*)ﬁOo(Sl;’/r’;S*))
< wp_a(wd(l)]jOO(Sl;'/r; S’*))
= Oy(S;m; 5*).

So, Og(n';S*) < Oy(m;8*) by Proposition 3. Thus we can transform 7 into a
derivation whose end sequent is S and which is ($*)-strongly irreducible, by induc-
tion hypothesis.

(3) The case where 7 includes no boundary inferences.

7 consists of initial sequents, weak inferences and cuts. Note that the cut for-
mulas in 7 are only inessential, since weakings do not occur above cuts in 7 by our
assumption. Thus 7 is a required derivation.

(4) The case where 7 includes at least one ind which belongs to the boundary of .

Assume that 7 is of the form:

m ma(a) : Ty
ASTLA®0) Ale) A3 TL,A50) A@),AST ;
AST
T— A

?

where I belongs to the boundary of w. Assume that ho(S1;7) = p and he(S;7) = 0.
Assume that A* — II*, A(0) is the sequent obtained from S; by deleting the (S*)-
explicit formulas in 7. Then A(a), A* — II*, A(S(a)) is the sequent obtained from
S, by deleting the (S*)-explicit formulas in 7 and A(t), A* — TI* is the sequent



obtained from S; by deleting the (S*)-explicit formulas in .
(4.1) The case where [ is not constant normal.

We assume that the induction formula A(a) of I includes at least one occurrence
of a, since we can treat the other case similarly. Then the induction term ¢ of I is
closed. So, there exists a numeral n such that ¢ = n is derivable in PA, and there
exists a derivation 7 of A(n) — A(¢) such that # does not include essential cuts and
inds (cf.[9]). We shall reduce 7 into the following derivation #’:

7 2 ( 0>:
ASBTLA0) A0),A 3T AQ)
A A =TT, A(1) ma(1) :
A= ILAQ) A1), A B 11, 4(2)
AA - T T, A(2)
A =TI, A(2)
: T
A =TI, A(n) A(n) 5 AQ)
AA S ILTTLAQR) T3
A =TI, A1) A, A 3T
AA—TLTI
AST
L= A

Then we shall prove Oy(n'; S*) < Oo(7r S*). We shall note that Og(S;; 7r'; 5*) =
Oo(Si;m; 8*) for i = 1,3 and Oo(S3; 7' :$*) = 0p(Sy;m;8*) for j = 0,---,n — 1.
On the other hand, we have Oy(S;'; S*) < w9, because every mference in 7 is
(S*)-implicit in 7’ and every formula in 7 is an atomic formula or a subformula of
A(n) or A(t). Since Op(Sy;m;5*) x n < Op(Se;7; 8*) X w and Oy(S;'; §*) < wid,
we have
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00(S;7';8*) = wpeo(O0(S1; 75 8*)(O0(Sa; m5.8%) x n)06(Ss; 7; S*)Oo(S; 7'; %))

< wWp—o(O0(S1;m; S*)H(Op(Sa; 15 5*) X w)HOo(Ss; w5 S*)w™D)
= 0(S;m;S*).

So, Og(n';8*) < Ogy(m;5*) by Proposition 3. Thus we can transform 7’ into a
derivation whose end sequent is S and which is (S*)-strongly irreducible, by induc-
tion hypothesis.

(4.2) The case where [ is constant normal.



Let b be a variable which does not occur in 7. We shall construct the following
derivations 7y, g, 73 from .

A ~ A

T T T3

™ 7T2(b) T3
A 311, A(0) A(b), A B T1, AS(®)) TON 31
AS 4(0),T A A®B) S ASE),T AAR ST
I = 4(0), A T, A(D) — A(S(), A T, A(t) — A
' — A, A0) A, T — A,A(S(D)) A(t), T - A

(
Then we shall prove Og(7; A(b), T* — A*, A(S(b))) < Og(; S*). ho(Se,72) = o and
A(b), A* — TI*, A(S(b)) is the sequent obtained from S, by deleting the (A(b),I™* —
A*, A(S(b)))-explicit formulas in #,. So,

Op(Sa; fia; A(D),T* — A*, A(S(D))) = Oo(Sz;ma; A(b), A* — TI*, A(S(D)))
wp—a(op(SZ;ﬂ2;wA(b)’ A —TI*, A(S(D))))
Wp—g(Oo(Sa; m; S7)).

A

Thus,

©)))

O0(S%; 7tg; A(D), T* — A*, A(
A(S(D)))

S
Oo(Sz;’frg;A(b),F* — A*, S
Wp-o(Oo(Se; ; ‘?*))
Wp—o(Oo(S2;m; ™) x w)
Wp—o (Og(S1; m; S*)4(O0(Sa; 75 8*) X w)§Oo(Ss; ; S*)ﬁwd(’))
Oo(S; 7;5*).

ANVAN VAN

So, Oy (ftg; A(b), T* — A*, A(S(b))) < Og(7; S*) by Proposition 3. Similarly, we can
prove Og(fy; T* — A*, A(0)) < Op(m; S*) and Op(#3; A(t), T* — A*) < Oy(m; 5*).

Thus, by induction hypothesis, we can transform 7 into a derivation 7] whose
end sequent is I' — A, A(0) and which is (T* — A*, A(0))-strongly irreducible, and
#ty into a derivation 7, whose end sequent is A(b),I’ — A, A(S(d)) and which is
(A(b),T* — A*, A(S(b)))-strongly irreducible, and #3 into a derivation 74 whose
end sequent is A(¢),I’ — A and which is (A(t), I — A*)-strongly irreducible. We
shall define 7’ as follows:

) Th 7y
T — A, A(0) A®D),T — A, AS(H) A®),T — A
r-A
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Note that 7 includes no redundant variables, and I is constant normal and belongs
to the boundary of . So, the free variables which occur in ¢ occur in ' — A. Thus
7 is a derivation whose end sequent is S and which is ($*)-strongly irreducible.
(5) The case where 7 includes at least one (—)-explicit inference which belongs to
the boundary of 7.

Let I be one of (— )-explicit inferences which belong to the boundary of .
(5.1) The case where I is (S*)-explicit.

We shall consider the case that I is a V : left. The other cases are treated
similarly.

Assume that 7 is of the form:

1
A, A S
VzA(z), A S TI

- A

“Assume that ho(S1;7) = p and ho(S; ) = 0. Assume that A* — TI* is the sequent
obtained from S; by deleting the (5*)-explicit formulas in 7. Then we reduce 7 into
the derivation n':

i
A(t),A 3
AA() - 1T

VzA(z), A, At) S 11

[LA(L) — A

Then we shall prove Op(#’;T* — A*) < Og(m;S*). A* — II* is the sequent ob-
tained from S; by deleting the (I — A*)-explicit formulas in 7. And ho(Sy; 7') =
ho(S; ') = 0. So,

Oo(Sy; s T — A¥) O, (Sy; m; A* — IT¥)
S Wp-o(Op(S15m; A — IT7))
= Wy_g(O(Sy; ; 5’*))

Il

Thus,

Oo(S; 7", T* — AY) Op(Sy;o'; T — A¥)
wp—a(OO(Sl;ﬂ';S*))
Wp—o(Oo(S1; 75 5% )feo)

Oo(S;7; 5*).

i

NN
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Hence Oy(n';T* — A*) < Og(m; S*) by Proposition 3. Thus we can transform #’ into
a derivation 7 whose end sequent is I', A(t) — A and which is (I™ — A*)-strongly
irreducible, by induction hypothesis. So, we shall define # as follows:

~

—_
FTOREET
VzA(z), ' — A
- A

Note that 7 includes no redundant variables and I belongs to the boundary of .
So, the free variables which occur in ¢ occur in T' — A. Note that J is (S*)-explicit
inference in 7. And — A(t) is not derivable in PA, since 7 includes no (S*)-explicit
inferences which are reducible w.r.t. PA. Thus # is (S*)-strongly irreducible.
(5.2) The case where I is (5*)-implicit.

We shall consider the case that I is a V : right. The other cases are treated
similarly.

Assume that 7 is of the form:

m1(a) :
A3 T, Aa)

AS IL,VzA(z)

r=A
Assume that ho(S1;7) = p and ho(S;7) = 0. And assume that A* — TI*, A(a) is
the sequent obtained from S by deleting the (S*)-explicit formulas in 7. Let b be
a variable which does not occur in 7. Then we reduce # into the derivation =’
T (b)
A 211, A®D)
A — A(b), I
A S A®),T1,VzA(z)

I — A(b), A

Then we shall prove Oy('; T* — A(b), A*) < Og(7; S*). ho(Si; ') = ho(S; ) = 0.
And A* — TI*, A(b) is the sequent obtained from S; by deleting the (I'™* — A(b), A*)-
explicit formulas in 7’. So,
Op(Sy;n"; T — A(b), A*) = Oyi(Sy;m; A* — IT1*, A(D))
< Wp-o(Op(S15m; A” — 117, A(D)))
= wp—-a(OO(Sl; U S*))



Thus,

Oy(S;n'; T — A(D),A") Oo(Sy; ;T — A(b), A*)
Wp—q(Oo(S1; 75 5™))
Wp—o(O0(S1;m; 8wy

Oy(S;7; 5*).

VARRVAN

Hence Og(n';T* — A(b), A*) < Og(m; S*) by Proposition 3. So, we can transform 7’
into a derivation # whose end sequent is I' — A(b), A and which is (I'"* — A(b), A*)-
strongly irreducible, by induction hypothesis. We shall define 7 as follows:

~

s
[ — A, A(b)
' - A,VzA(z)
r-A

Note that J is (S*)-implicit in #. And the sequent A(b) — is not derivable in PA™,
since 7 includes no inferences which are reducible w.r.t. PA~. So, 7 is (S*)-strongly
irreducible.
(6) The case where all the inferences which belong to the boundary of 7 are (—)-
implicit inferences.

At first, we shall show that there exists a suitable cut (cf.[9]). We shall consider
the following property (x) for a sequent S in the end-place of 7. '

(*) S includes a descendant of the principal formula of a boundary inference.

The lower sequent of a boundary inference satisfies the property (x) and the end
sequent doesn’t satisfy the property (x). So, there exists an inference whose upper
sequent(s) satisfies the property (x) and whose lower sequent doesn’t satisfy the
property (*). We take one of the uppermost ones and denote it by I. It is clear
that 7 is a cut. Let S; (S;) be the left (right) upper sequent of 7. Then, we can
suppose that S; satisfies the property (). Then the cut formula which occurs in S;
must be a descendant of the principal formula of a boundary inference and include
logical symbols. If no boundary inferences occur above Sy, S; doesn’t include a
formula which contains logical symbols. Because 7 includes no weakenings above S,
by our assumption. However, S, includes a formula which contains logical symbols.
So, 7 must include at least one boundary inference above S;. If S; doesn’t satisfy
the property (%), there exists an inference above I whose upper sequent(s) satisfies
the property (x) and whose lower sequent doesn’t satisfy the property (x). But it
contradicts our choice of I. Thus S, satisfies the property (*). Since the lower
sequent of I doesn’t satisfy the property (x), the cut formula of I which occurs in
S, must be a descendant of the principal formula of a boundary inference. So, I is
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a suitable cut. We shall consider the case that the cut formulas of I have V as its
outermost logical symbol. The other cases are treated similarly.
Assume that 7 is of the form:

m(a) : :
A3 AL Aa) AR W
1 2

l ]
A3 ALVZA®R)  VzA(R), A 32 A,

A3 2% Ag,VLCA(SC) V:cA(:c), A4 i‘* A4
Ao hi = Bg, A, !

Y

I' - A.
Here I; and I, belong to the boundary of 7. And I'; — A; denotes the uppermost
sequent below I whose height based on 0 is less than that of the upper sequents of
I. Assume that ho(S¥;m) = pru, ho(SL;m) = pu, ho(Ss;7) = p and ho(S;7) = 0.
And also assume that A] — A}, A(a) is the sequent obtained from S} by deleting
the (S*)-explicit formulas in 7. Then we reduce 7 into the derivation «’:

m(t)

S’l ) Su
A1 3 A1, A A(t),A2 3 A
s! st
Ay = A(t), Ay, Vo A(T) VzA(z), A2, A(t) = A,

Sl ) ) Sl S’.’ ’ s2
Az 3 A(), A, VzA(z) VzA(z), Ay 2 A4 Az 3 Az, VzA(z) VYzA(z), Aq, At) =3 Ay

Az, Aq — A(t), Az, Ay A3, Ag, A(t) — Az, Ay
. 1 : "
e I3 — o I3
M = A1), M\ ML, A= 4N
1 — A A() A(t), 1 — Ay
', Ty —4,,4
I LA A
r—A

Then we shall prove O(7'; S*) < Og(m; S*). A} — A, A(t) is the sequent obtained
from S¥ by deleting the (S*)-explicit formulas in 7'. And ho(S¥; #) = ho(SL; ') =
pu, ho(S3;7) = p and ho(S;7') = 0. Assume that ho(S%; ') = ho(S%7') = 7.
Then 0 < 7 < p. Since we have

Oo(S; 75 S*) O, (S5 715 A7 — A}, A(Y))
wplu_l)ll (Ol’lu (S’{L; 7r1; A‘{ - AI) A(t)))

Wpru—pu (OO(Sf; 75 S*))’

VAN
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we have v
Oo(St;7;8%)

Woru—py (O0 (ST 73 é'*))
Worw—pu (Op(Si‘;ﬂ; S*)ﬂwd(ll))
Oo(St; m; S*).

Thus Oy (I}; 7'; 5*) < Og(I3;; S*). Similarly, we have Og(Iy; 7'; S*) < Op(Is;m; S*).
Then, .

Oo(S%; /s 5’*)

AN

Oo(SH755%) = wper(Oo(I3; 75 8*)) < wp—r(Oo(I5; 73 5%)),
Oo(S% '3 5*) = wpr(Oo(I;7'; 5*)) < wp—r(Oo(I3;; S*)).
Thus, Oy(S*; 7'; $*)§00(S%; 7' §*) < w,—-(Op(I3; 7; S*)), because p—7 > 0. Hence,
Oo(S;;8%) = wr_o(Op(S*;7'; §*)400(S% 75 S*))
wr—o(Wp—r(Oo(I3; 73 5%)))
wp-—a(OO(!3;7r; S*))
Op(S;m; S*).

A

So, Og(n';8*) < Op(m;5*) by Proposition 3. Thus we can transform #' into a
derivation whose end sequent is S and which is (S*)-strongly irreducible, by induc-
tion hypothesis. 1

5 Appendix
We can prove the following theorem by induction up to &g.

Theorem 4 Assume that © is a derivation of S. Then we can transform 7 into a
PA~ -irreducible derivation with the same end sequent.

Proof. We can prove this statement by a method similar to that in Theorem 3.
Note that then we use induction on Oqy(7; S). 1

Corollary 4 PA 1s 2-consistent.

Proof. Let 3zA(z) be a Yp-sentence. Then we can assume that A(a) is a II;-
formula. Suppose that 3z A(x) is derivable in PA. Then we shall show that 3z A(x)
is true. Assume that 3z A(z) is not true. Let ¢ be a closed term. Then, ~A(¢) is true.
Since —A(t) is a Xj-sentence, — —A(t) is derivable in PA™ by ¥;-completeness. So,
we have the statement (x) that A(t) — is derivable in PA~ for any closed term t.
On the other hand, there is a PA~-irreducible derivation 7 of 3z A(z) by our
assumption and Theorem 4. Assume that 7 includes at least one boundary inference.



Since the end-place of = includes no free variable, no inds belong to the boundary
of w. Thus, every boundary inference must be of the form:
I'— A A(t)
I'— A,z A(z),

where I" consists of atomic formulas and A consists of atomic formulas or 3z A(z).
Since 7 includes no redundant variables, ¢’ is closed. Since 7 is a PA~-irreducible
derivation, A(t') — is not derivable in PA~. But, this contradicts (). Thus, =
includes no boundary inferences. Then we can transform « into a derivation of —
which includes no free variables, no essential cuts, no inds and no logical inferences.
But there is not such a derivation. Thus 3z A(z) is true. 1
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