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1 Introduction

The concept of Morley rank arose in 1965 when Morley treated a prob-
lem of Lo\’{s} concerning first order theories which have only one model of a
given uncountable cardinality, up to isomorphism, a property known as $\mathrm{N}_{1^{-}}$

categoricity. The prototypical example of this is the theory of algebraically
closed fields of specified characteristic, and Morley showed quite generally
that the models of any such theory admits a notion of dimension, to which
he assigned the not entirely felicitous name “rank”, which Baldwin later
showed is finite (Morley defined an ordinal rank which in a more general
context can in fact be infinite) [B].

A first order theory is said to have finite Morley rank if it has a saturated
structure whose definable subsets are endowed with a positive integer in such
a way that these integers behave like the “dimension” of the sets they are
attached to. For example every variety over an algebraically closed field is a
structure of finite Morley rank and in this context the Morley rank coincides
with the Zariski dimension.

The main problem in the subject is the Cherlin-Zil’ber Conjecture: $A$

simple group of finite Morley rank is an algebraic group over an a lgebraically
closed field.

In this paper, I will first define the concept of Morley rank and then re-
view some results and open problems on permutation groups of finite Morley
rank. All the results and definitions can be found in [BN].
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2 Morley Rank

Let $T$ be a complete theory and let $\mathcal{M}$ be a saturated model of $T$ . For
a definable set $X$ in $\mathcal{M}$ (may be with parameters from $M$ ) we attempt
to define the Morley $\iota$ ank of $X$ , an ordinal denoted by $\mathrm{r}\mathrm{k}(X)$ , as follows:
$\mathrm{r}\mathrm{k}(X)\geq 0$ if $X\neq\emptyset$ . $\mathrm{r}\mathrm{k}(X)\geq n+1$ if $X$ has infinitely many disjoint
definable subsets $Y_{i}$ such that $\mathrm{r}\mathrm{k}(Y_{i})\geq n$ . The theory $T$ is $\omega$-stable if and
only if every definable subset of $M$ has an ordinal Morley rank. (Having
a Morley rank is independent of the choice of the saturated model $\mathcal{M}$ of
$T)$ . The theory $T$ has finite Morley rank if every definable subset of $M$

has finite Morley rank. A structure $\mathcal{M}$ is said to have finite Morley rank if
Th $(\mathcal{M})$ has finite Morley rank.

$-$

In an $\omega$-stable group $G$ , the definable subgroups satisfy the descending
chain condition, so that the intersection of all the definable subgroups of
finite index of $G$ is a definable subgroup of finite index of $G$ . This subgroup
is called the connected component of $G$ and is denoted by $G^{\mathrm{O}}$ . We say
that $G$ is connected if $G=G^{\mathrm{O}}$ .

3 Permutation Groups

A group $G$ is said to act on a set $X$ if there is a group homomorphism $\phi$

from $G$ into $\mathrm{S}\mathrm{y}\mathrm{m}(X)$ . For $g\in G$ and $x\in X$ , we write $gx$ for the image
of $x$ under $\phi(g)$ . With this notation, we have the following two equalities:
$1x=x$ and $g(hx)=(gh)x$ for all $g,$ $h\in G$ and $x\in X$ . The pair $(G, X)$ -

without mentioning the homomorphism $\phi$ , but strictly speaking we should
-is called a permutation group. For $x_{1},$ $\ldots,$

$x_{n}\in X$ , we let

$G_{x_{1},\ldots,x_{n}}=$ { $g\in G:gx_{i}=x_{i}$ for $i=1,$ $\ldots$ , $n$ }.

This is clearly a subgroup of $G$ .
If $G$ is any group and $H$ is any subgroup of $G$ , denote by $G/H$ the

left coset space of $H$ in $G$ . Then the group $G$ acts on the set $G/H$ by
$g(xH)=gxH$ . This permutation group has the property that for all $x,$ $y\in$

$G/H$ , there is a $g\in G$ such that $gx=y$ . A permutation group $(G, X)$

that satisfies this property is called a transitive permutation group. Any
transitive permutation group can be taken to be of the form $(G, G/G_{x})$ for
any fixed $x\in G$ .

More generaly, the permutation group $(G, X)$ is said to be n-transitive
if for any distinct $x_{1},$ $\ldots,$

$x_{n}\in X$ and any distinct $y_{1},$ $\ldots,$
$y_{n}\in X$ , there is
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a $g\in G$ such that $gx_{i}=x_{i}$ for $\dot{i}=1,$
$\ldots,$

$n$ . If further the element $g\in G$ is
unique, then $(G,X)$ is said to be sharply $n$-transitive. One uses the term
regular rather than “sharply l-transitive”.

A 2-transitive group of finite Morley rank where $G_{x}$ is definable (this
means exactly that the action of $G$ on $X$ may be taken to be interpretable
in $G$) has involutions [BN].

4 Frobenius Groups

A Frobenius group is a group $B$ with a proper subgroup $T$ , called Frobe-
nius complement, such that for $b\in B,$ $T^{b}\cap T\neq 1$ implies $b\in T$ . Equiv-
alently a Frobenius group is a group $G$ acting transitively on a set $X$ of
cardinality $>1$ in such a way that $G_{x}\neq 1$ and $G_{x,y}=1$ for all distinct
$x,$ $y\in G$ . Note that a sharply 2-transitive group is a Frobenius group.

The phrase “$T<B$ is a Frobenius group” will mean that $B$ is a Frobenius
group and $T$ is a Frobenius complement of $B$ . Note that if $T<B$ is a
Frobenius group, then so is $T^{b}<B$ for any $b\in B$ . Whenever $B=U_{\aleph}T$

for some normal subgroup $U,$ $B$ is said to be $\dot{\alpha}^{\backslash }$ split Frobenius group. The
subgroup $\mathrm{C}^{T}$ is called the Frobenius kernel of $B$ .

Finite Frobenius groups are of great importance in the classification of
finite simple groups and for this reason they have been subject to intensive
study. Let $T\leq B$ stand for a finite Frobenius group for a while. It is
well-known that $B$ splits, say as $U\mathrm{r}T$ . The proof of the splitting is quite
easy when $T$ has an involution [ $\mathrm{P}$ , Proposition 8.3]. But the general proof,
due to Frobenius, is much more involved and uses character theory (see e.g.
[ $\mathrm{B}$ , page 172], [ $\mathrm{P}$ , Theorem 17.1] or [ $\mathrm{S}$ , Chapter 6, Theorem 2.2] $)$ . It was
well-known that if $U$ is solvable then it is nilpotent (see [H]). For a long
time the structure of $U$ was unknown and was conjectured to be nilpotent
by Robenius. in 1959, Thompson proved Frobenius’ Conjectuce [T]. The
structure of $T$ is investigated by Zassenhaus (see $[\mathrm{P},$ \S 18]).

We conjecture the following:

Conjecture 1 A Frobenius group $T<B$ of finite Morley rank $spl_{\dot{i}}ts$ as
$U\aleph T$ for some nilpotent group $U$ .

It is known that if $T<B$ is a Frobenius group of iinite Morley rank,
then the following hold:

1) The Frobenius complement $T$ is necessarily definable in the pure group
structure of $B$ [N3].
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2) If $B=U\nu T$ is split, then $U$ is also definable in the pure group
structure of $B$ . Furthermore if $U$ is solvable then $U$ is nilpotent [N3].

3) If $B$ is solvable, then $B=U\nu T$ is split. If, further, $B$ is connected,
then $B=B’\aleph T$ [N3].

4) The subgroup $T$ has finitely many involutions and if $T$ is connected
then it has at most one involution [DN1].

5) If $T$ is finite, then $B$ splits [EN].
6) A minimal counteiexample to the splitting of FIobenius groups of

finite Morley rank is a counterexample to the Cherlin-Zil’ber conjecture
[EN].

7) If $B=UnT$ with nonnilpotent $U$ and if $B$ has smallest Morley rank
with this property, then $U$ is simple and a counterexample to the Cherlin-
Zil’ber $\mathrm{C}\mathrm{o}\mathrm{H}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ [EN].

5 Sharply 2-Transitive Groups

Let $K$ be a field and consider the affine group

$G=\{$ : $t\in K^{*},$ $u\in K\}\simeq K^{+_{\aleph}}K^{*}$ .

The $\mathrm{g}\iota \mathrm{o}\mathrm{u}\mathrm{p}G$ acts on the set

$X=\{$ : $x\in K\}$

sharply 2-transitively. We will $\mathrm{c}\mathrm{a}\mathrm{U}$ a permutation group of this kind a stan-
dard sharply 2-transitive group.

We make the following conjecture about sharply 2-transitive group of
finite Morley rank:

Conjecture 2 An infinite sharply 2-transitive group $G$ offinite Morley rank
is a standard sharply 2-transitive group.

A sharply 2-transitive group where a one point stabilizer has a normal
complement is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}spl_{\dot{i}}t$ . It is well-known such a complement is neces-
sarily abelian. It is not known whether or not there are nonsplit sharply
2-transitive groups. The folowing problem is one of the main obstacles to
Conjecture 2:
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Conjecture 3 A sharply 2-transitive group $G$ of finite Morley rank $s\mathrm{p}$ lits,
$i.e$ . $G=NnH$ for some normal subgroup $N$ where $H$ is $a$ one-point stabi-
lizer.

The reader should note that Conjecture 3 is a special case of Conjec-
ture 1. Even the split sharply 2-transitive groups of finite Morley rank do
not allow an easy treatment and it is worth while to restate Conjecture 2
for this particular case:

Conjecture 4 An infinite split sharply 2-transitive group of finite Morley
rank is isomorphic to a standard sharply 2-transitive.

Till the end of this section we assume that $G$ is an infinite sharply 2-
transitive group of finite Morley rank. We let $H$ to be a one-point stabilizer.
Since $H<G$ is a Frobenius group, $H$ is definable. and if $G$ splits as $U\aleph H$ ,
then we know that $U$ is also definable. Therefore, replacing $X$ by $G/H$ , we
may assume that the action of $G$ on $X$ is interpretable. The subgroup $H$

is known to have at most one involution and if it does have one, then for
two distinct involutions $i,$ $j$ of $G$ , the order of the element $\dot{i}j$ is independent
of the choice of $i$ and $j$ and either is a prime $p$ or is infinite. When $H$

has no involution, one says that the characteristic of $G$ is 2. If $H$ has an
involution, then $\mathrm{c}\mathrm{h}\mathrm{a}\iota \mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}$ of $G$ is defined to be the order of $ij$ for two
distinct involutions $\dot{\mathrm{t}},$ $j$ of $G$ .

We know the following about $G$ :
1. $G$ and $H$ are connected [N1].
2. If $H$ is abelian, then $G$ is standard [K]. (This is a general result that

does not need any model theoretic assumption on $G$ ).
3. If $G$ is split and If has an infinite normal solvable subgroup, then $G$

is stalldalrd [BN].
4. Assume $G=U\aleph$ If is split and $c_{\mathrm{E}\mathrm{n}\mathrm{d}(U)}(H)$ is infinite. Then $G$ is

standard [CGNV].
5. If $G=U\mathrm{x}H$ is split and has characteristic $\infty$ , then $G$ is standard

[CGNV].
6. If $G=U\mathrm{x}H$ is split and $Z(H)$ is infinite then $G$ is standard [CGNV].
7. If $G$ is split, then the connected solvable subgroups of $H$ are abelian

[BN].
8. Assume the characteristic of $G$ is not 2. Let $i\in H$ be the unique

involution and let $w$ be another involution. Assume that for some nilpotent
subgroup $H_{1}$ , we have $N_{H}C_{G}(wi)\leq H_{1}\triangleleft H$ . Then $G$ is standard [N2,
$\mathrm{D}\mathrm{N}1]$ .
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9. In particular, if char$(G)\neq 2$ and $H$ is nilpotent, then $G$ is standard
[N2, $\mathrm{D}\mathrm{N}1$ ].

6 Zassenhaus Groups

A doubly transitive permutation group is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a Zassenhaus group if
the stabilizer of two distinct points is nontrivial and if the stabihzer of any
three distinct points is trivial. In particular, a sharply 3-transitive group
is a Zassenhaus group. Let $G$ be a Zassenhaus group acting on a set $X$

of cardinality $\geq 3$ . Set $B=G_{x}$ , the stabilizer of the point $x\in X$ , and
$T=G_{x,y}$ the pointwise stabilizer of the two distinct points $x,$ $y\in X$ . Since
$B$ acts transitively on the set $X\backslash \{x\}$ , and since only the identity element
of $B$ fixes two distinct points, $T<B$ is a Frobenius group. When $B$ splits
as $U_{\aleph}T$ , we say that $G$ is a split Zassenhaus group.

Conjecture 5 An $\dot{\mathrm{t}}nfin\dot{i}te$ Zassenhaus group of fin $\mathrm{i}te$ Morley rank is iso-

$morphi_{C}$ to $\mathrm{P}\mathrm{s}\mathrm{L}_{2}(K)$ for some algebraically closed field K. Furthermore the
$act\dot{i}\mathit{0}n$ of $G\dot{i}S$ isomorphic to the action of $\mathrm{P}\mathrm{S}\mathrm{L}2(K)$ acting naturally on the
projective line.

We know the following about infinite Zassenhaus groups of finite Morley
rank.

1. $G$ is not solvable; $B$ is definable; $\mathrm{i}\mathrm{f}G$ is split then $G^{\mathrm{o}}$ is also a split
Zassenhaus group and in this case $U$ is connected [DN2].

2. Conjecture 5 holds if $G$ is sharply 3-transitive group [N1].
3. If $G$ is split and if $T$ contains an involution then Conjecture 5 holds

[DN2].
4. If $G$ is split and if $U$ contains a central involution then Conjecture 5

holds [DBN].
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