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1 Introduction

The concept of Morley rank arose in 1965 when Morley treated a prob-
lem of Lo$ concerning first order theories which have only one model of a
given uncountable cardinality, up to isomorphism, a property known as ¥;-
categoricity. The prototypical example of this is the theory of algebraically
closed fields of specified characteristic, and Morley showed quite generally
that the models of any such theory admits a notion of dimension, to which
he assigned the not entirely felicitous name “rank”, which Baldwin later
showed is finite (Morley defined an ordinal rank which in a more general
context can in fact be infinite) [B].

A first order theory is said to have finite Morley rank if it has a saturated
structure whose definable subsets are endowed with a positive integer in such
a way that these integers behave like the “dimension” of the sets they are
attached to. For example every variety over an algebraically closed field is a
structure of finite Morley rank and in this context the Morley rank coincides
with the Zariski dimension.

The main problem in the subject is the Cherlin-Zil’ber Conjecture: A
simple group of finite Morley rank is an algebraic group over an algebraically
closed field.

In this paper, I will first define the concept of Morley rank and then re-
view some results and open problems on permutation groups of finite Morley
rank. All the results and definitions can be found in [BN].



2 Morley Rank

Let T be a complete theory and let M be a saturated model of . For
a definable set X in M (may be with parameters from M) we attempt
to define the Morley rank of X, an ordinal denoted by rk(X), as follows:
k(X) > 0if X # @. 1k(X) > n+1if X has infinitely many disjoint
definable subsets Y; such that rk(Y;) > n. The theory T is w-stable if and
only if every definable subset of M has an ordinal Morley rank. (Having
a Morley rank is independent of the choice of the saturated model M of
T). The theory T has finite Morley rank if every definable subset of M
has finite Morley rank. A structure M is said to have finite Morley rank if
Th(M) has finite Morley rank. ‘ A

In an w-stable group G, the definable subgroups satisfy the descending
chain condition, so that the intersection of all the definable subgroups of
finite index of G is a definable subgroup of finite index of G. This subgroup
is called the connected component of G and is denoted by G°. We say
that G is connected if G = G°.

3 Permutation Groups

A group G is said to act on a set X if there is a group homomorphism ¢
from G into Sym(X). For ¢ € G and ¢ € X, we write gz for the image
of z under ¢(g). With this notation, we have the following two equalities:
1z = ¢ and g(hz) = (gh)z for all g,k € G and z € X. The pair (G, X) -
without mentioning the homomorphism ¢, but strictly speaking we should
- is called a permutation group. For z4,...,2, € X, we let

Gpyzn =19 €G:gr; =g; fori=1,...,n}.

This is clearly a subgroup of G.

If G is any group and H is any subgroup of G, denote by G/H the
left coset space of H in G. Then the group G acts on the set G/H by
g(zH) = gz H. This permutation group has the property that for all z,y €
G/H, there is a ¢ € G such that gz = y. A permutation group (G, X)
that satisfies this property is called a transitive permutation group. Any
transitive permutation group can be taken to be of the form (G,G/G;) for
any fixed ¢ € G.

More generally, the permutation group (G, X) is said to be n-transitive
if for any distinct z1,...,2, € X and any distinct y1,...,y, € X, there is
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a g € G such that gr; = z; for ¢ = 1,...,n. If further the element g € G is
unique, then (G, X) is said to be sharply n-transitive. One uses the term
regular rather than “sharply 1-transitive”.

A 2-transitive group of finite Morley rank where G, is definable (this
means exactly that the action of G on X may be taken to be interpretable
in G) has involutions [BN].

4 Frobenius Groups

A Frobenius group is a group B with a proper subgroup 7, called Frobe-
nius complement, such that for b € B, T°NT # 1 implies b € T. Equiv-
alently a Frobenius group is a group G acting transitively on a set X of
cardinality > 1 in such a way that G; # 1 and G;, = 1 for all distinct
z,y € G. Note that a sharply 2-transitive group is a Frobenius group.

The phrase “T" < B is a Frobenius group” will mean that B is a Frobenius
group and 7 is a Frobenius complement of B. Note that if T < B is a
Frobenius group, then so is 7® < B for any b € B. Whenever B = U x T
for some normal subgroup U, B is said to be a split Frobenius group. The
subgroup U is called the Frobenius kernel of B.

Finite Frobenius groups are of great importance in the classification of
finite simple groups and for this reason they have been subject to intensive
study. Let T < B stand for a finite Frobenius group for a while. It is
well-known that B splits, say as U xT. The proof of the splitting is quite
easy when T has an involution [P, Proposition 8.3]. But the general proof,
due to Frobenius, is much more involved and uses character theory (see e.g.
[B, page 172], [P, Theorem 17.1] or [S, Chapter 6, Theorem 2.2]). It was
well-known that if U is solvable then it is nilpotent (see [H]). For a long
time the structure of U was unknown and was conjectured to be nilpotent
by Frobenius. In 1959, Thompson proved Frobenius’ Conjecture [T]. The
structure of 7" is investigated by Zassenhaus (see [P, §18]).

We conjecture the following: .

Conjecture 1 A Frobenius group T < B of finite Morley rank splits as
U xT for some nilpotent group U,

It is known that if T < B is a Frobenius group of finite Morley rank,
then the following hold:

1) The Frobenius complement T is necessarily definable in the pure group
structure of B [N3].
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2) If B = UxT is split, then U is also definable in the pure group
structure of B. Furthermore if U is solvable then U is nilpotent [N3].

3) If B is solvable, then B = U % T is split. If, further, B is connected,
then B = B'xT [N3].

4) The subgroup T has finitely many involutions and if T is connected
then it has at most one involution [DN1].

5) I T is finite, then B splits [EN].

6) A minimal counterexample to the splitting of Frobenius groups of
finite Morley rank is a counterexample to the Cherlin-Zil’ber conjecture
[EN].
7Ty If B = U % T with nonnilpotent U and if B has smallest Morley rank
with this property, then U is simple and a counterexample to the Cherlin-
Zil’ber Conjecture [EN].

5 Sharply 2-Transitive Groups

Let K be a field and consider the affine group

G=_{(; ?):tGK*,ueK}:K"'xK*.

The group G acts on the set

x={(5) wen)

sharply 2-transitively. We will call a permutation group of this kind a stan-
dard sharply 2-transitive group.

We make the following conjecture about sharply 2-transitive group of
finite Morley rank:

Conjecture 2 An infinite sharply 2-transitive group G of finite Morley rank
is a standard sharply 2-transitive group.

A sharply 2-transitive group where a one point stabilizer has a normal
complement is called split. It is well-known such a complement is neces-
sarily abelian. It is not known whether or not there are nonsplit sharply
2-transitive groups. The following problem is one of the main obstacles to
Conjecture 2:
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Conjecture 3 A sharply 2-transitive group G of finite Morley rank splits,
i.e. G =N xH for some normal subgroup N where H is a one-point stabi-
lizer.

The reader should note that Conjecture 3 is a special case of Conjec-
ture 1. Even the split sharply 2-transitive groups of finite Morley rank do
not allow an easy treatment and it is worth while to restate Conjecture 2
for this particular case:

Conjecture 4 An infinite split sharply 2-transitive group of finite Morley
rank 1s isomorphic to a standard sharply 2-transitive.

Till the end of this section we assume that G is an infinite sharply 2-
transitive group of finite Morley rank. We let H to be a one-point stabilizer.
Since H < G is a Frobenius group, H is definable. and if G splits as U x H,
then we know that U is also definable. Therefore, replacing X by G/H, we
may assume that the action of G on X is interpretable. The subgroup H
is known to have at most one involution and if it does have one, then for
two distinct involutions 1, j of G, the order of the element ij is independent
of the choice of ¢ and j and either is a prime p or is infinite. When H
has no involution, one says that the characteristic of G is 2. If H has an
involution, then characteristic of G is defined to be the order of 15 for two
distinct involutions 3, j of G.

We know the following about G:

1. G and H are connected [N1].

2. If H is abelian, then G is standard [K]. (This is a general result that
does not need any model theoretic assumption on G).

3. If G is split and H has an infinite normal solvable subgroup, then G
is standard [BN].

4. Assume G = U x H is split and Cgugep)(H) is infinite. Then G is
standard [CGNV].

5 If G = U x H is split and has characteristic co, then G is standard
[CGNV].

6. If G = U x H is split and Z(H ) is infinite then G is standard [CGNV].

7. If G is split, then the connected solvable subgroups of A are abelian
[BN].

8. Assume the characteristic of G is not 2. Let ¢ € H be the unique
involution and let w be another involution. Assume that for some nilpotent
subgroup Hi, we have NyCg(wi) < Hy <4 H. Then G is standard [N2,
DN1].
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9. In particular, if char(G) # 2 and H is nilpotent, then G is standard
[N2, DN1].

6 Zassenhaus Groups

A doubly transitive permutation group is called a Zassenhaus group if
the stabilizer of two distinct points is nontrivial and if the stabilizer of any
three distinct points is trivial. In particular, a sharply 3-transitive group
is a Zassenhaus group. Let G be a Zassenhaus group acting on a set X
of cardinality > 3. Set B = G, the stabilizer of the point z € X, and
T = G,,, the pointwise stabilizer of the two distinct points z,y € X. Since
B acts transitively on the set X \ {z}, and since only the identity element
of B fixes two distinct points, T < B is a Frobenius group. When B splits
as U x T, we say that GG is a split Zassenhaus group.

Conjecture 5 An infinite Zassenhaus group of finite Morley rank is iso-
morphic to PSLy(K) for some algebraically closed field K. Furthermore the
action of G is isomorphic to the action of PSLy(K) acting naturally on the
projective line.

We know the following about infinite Zassenhaus groups of finite Morley
rank.

1. G is not solvable; B is definable; ifG is split then G° is also a split
Zassenhaus group and in this case U is connected [DN2].

2. Conjecture 5 holds if G is sharply 3-transitive group [N1].

3. If G is split and if 7 contains an involution then Conjecture 5 holds
[DN2].

4. If G is split and if U contains a central involution then Conjecture 5
holds [DBN].
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