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1 Introduction
Our present aim is to show a linear stability analysis of numerical solution of stochastic
differential equations (SDEs). As in other areas of numerical analysis, $n$umerical $sta$bility
is significant in the case of SDEs which usually require a long (numerical) time-integration.
We will take the viewpoint how the analysis for SDEs is similar to as well as different from
that for ordinary differential equations (ODEs), for the corresponding theory has been well
developed in the ODE case. On the contrary stability analysis for numerical schemes of
SDEs is still in a premature stage, although much work has been devoted to it. Here some
previous trials for analytical and numerical stability, concept in SDEs will be arranged to
clear their interrelationships.

1.1 Stochastic initial-value problems
We are concerned with the initial-value problem (IVP) of SDE of It\^o-type given as follows.

$\{$

$dX(t)=f(t,X(t))dt+g(t,X(\iota))dW(t)$ $(t>0)$ ,
$X(t)=X_{0}$ , initial condition.

(1.1)

Here $W(t)$ stands for the standard Wiener process. Under appropriate assumptions for the
functions $f$ and $g$ , the solution $X(t)$ , as a random process, of IVP (1.1) is known to exist
in the It\^o sense. Since many phenomena in science and engineering can be formulated with
IVP of SDEs and the problems are often not known to have analytical solutions, numerical
solutions turn out $.\mathrm{t}\mathrm{o}$ be practically important, and have.been $\mathrm{d}\mathrm{e}\dot{\mathrm{v}}\mathrm{e}1_{0}\mathrm{p}\mathrm{e}\mathrm{d}$ for the last decade.
Its state-of-the-art can be found in $e.g$ . $[8]$ .
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1.2 Syntax diagram of stability
For the analysis of numerical stability of differential equations, its distinction and relationship
with the stability of the underlying differential equation is considered to be crucial. Hence,
after LAMBERT $([12], \mathrm{P}^{3}8)$ , we introduce a syntax diagram of stability.

Consider IVP of ODEs given by

$\frac{dy}{dt}=f(t, y)$ $(t>0)$ , $y(\mathrm{O})=y_{0}$ , (1.2)

and its numerical (discrete variable) solution $\{y_{n}(n=0,1, \ldots)\}$ with a fixed stepsize $h$ and
step-points $\{t_{n};t_{n}=nh\}$ in the usual manner.

A stability definition can be broken down into the following components:

1. We impose certain conditions $C_{p}$ on (1.2) which force the exact solution $y(t)$ to display
a certain stability property.

2. We apply a numerical method to the problem, assumed to satisfy $C_{p}$ .
3. We ask what conditions $C_{m}$ must be imposed on the method in order that the numerical

solution displays a stability property analogous to that displayed by the exact solution.

The components and the process can be readily understandable through a diagram shown
as in Fig. 1.1.

Figure 1.1: Generic syntax diagram of stability

In this way, the syntax diagram for zero-stability of numerical solution can be written
([12]) as in Fig. 1.2.

More important concept is $A$-stability. When a linear system of ODEs

$\frac{dy}{dt}=Ay$ , (1.3)

is considered with a $d$-dimensional matrix $A$ , the asymptotic stability of the solution, $i.e.$ ,
$||y(t)||arrow 0$ as $tarrow\infty$ , is expected to hold with a certain norm of vectors. Its counterpart
in numerics is absol $\mathrm{u}te$ stability. By introducing the region of absolute stability, $\mathcal{R}$ , of a linear
multistep or Runge-Kutta method ([3]), the syntax diagram of absolute stability is given by
Fig. 1.3. As can be seen, the absolute stability depends on the magnitude of the stepsize
$h$ . A method is called $A$-stable if it is absolutely stable for any $h$ . Taking the asymptotic
stability of the underlying ODE system into account, $A$-stability can be said to be a kind of
ideal concept of stability in numerical ODEs. However, many barriers are known for A-stable
numerical schemes in ODEs ([4]).
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Figure 1.2: Syntax diagram of zero-stability

Figure 1.3: Syntax diagram of absolute stability

1.3 Carrying over to SDE
To carry over the usefulness of $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{C}\mathrm{a}1}\sim$stability analysis to SDE case, the following ques-
tions should be resolved in turn:

”

Ql. What kind of stability concept is adopted in (analytic) SDE?

Because of its statistical nature, $\mathrm{I}\mathrm{V}.\mathrm{P}$ of SDEs is followed by plenty concepts of stability
([5]).

Q2. What is the condition or criterion of stability?

It corresponds to $C_{p}$ in Fig. 1.1.
’1 it.., $\backslash \triangleright$

Q3. What scheme is to be considered in numerical SDE?
$\mathfrak{t}$

Various numerical schemes have been proposed for SDEs. As we will see later in Section
5, in some cases we must pay attention to the realization means of approximation of
the increment of the Wiener process with respect to the numerical stability.

Q4. What is the stability concept in numerical SDE?

Q5. What is the condition or criterion of numerical stability?

It corresponds to $C_{m}$ in Fig. 1.1.

Q6. How is the analysis confirmed numerically?
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2 Stochastic stability
Here we will briefly describe how the stability concept is introduced into SDEs. Then the
first trial is given for a syntax diagram of stability. However, we will see a nalve\sim introduction
cannot get a success.

2.1 Introduction of stochastic stability

As in (1.1), consider a scalar It\^o-type SDE

$dX(t)=f(t,X(t))dt+g(t,x(t))dW(t)$ $(t>t_{0})$ ,

together with a nonran$dom$ initial value $X(t_{0})=x_{0}$ . We assume that there exists a unique
solution $X$ ( $t;$ to, $x_{0}$ ) of the equation for $t>t_{0}$ . Some sufficient conditions have been estab-
lished for the unique existence of the solution. Moreover, we suppose that the equation
allows a steady solution $X(t)\equiv 0$ . This means the equation $f(t,0)=g(t,0)=0$ holds. A
steady solution is often called an equilibrium position.

$\mathrm{H}\mathrm{A}\mathrm{S}’ \mathrm{M}\mathrm{I}\mathrm{N}\mathrm{s}\mathrm{K}\Pi([5])$ gave the following three definitions of stability.

Definition 2.1 The equilibrium position of the $SDE$ is said to be stochastically stable if for
all positive $\epsilon$ and for all $t_{0}$ the equality

$\lim_{x0arrow 0}P(\sup_{t\geq t\mathrm{o}}|X$ ( $t;$ to, $x_{0}$ ) $|\geq\epsilon)=0$

holds.

Definition 2.2 The equilibrium position is said to be stochastically asymptotically stable if,
in addition to the above condition in Definition 2.1, the equality

$\lim_{x\mathrm{o}arrow 0}P(\lim_{t\vee\infty}|X(t;t_{0,0}x)|=0)=1$

holds.

Definition 2.3 The equilibrium position is said to be stochastically asymptotically stable in
the large if, moreover to the above two conditions, the equality

$P( \lim_{tarrow\infty}|X(t;t0, x_{0^{)1}}=0)=1$ , for all $x_{0}$

holds.

Definitions 2.1, 2.2 and 2.3 can be seen as the counterparts of stability, asymptotic stability
and asymptotic stability in the large, respectively, in the ODE case. Henceforth they can be
a basis of numerical stability consideration.
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Actually we can derive a criterion of the asymptotic stochastic stability for the SDE.
Assume that the functions $f$ and $g$ are uniformly asymptotically linear with respect to $x$ ,
that is to say, for certain real constants $a$ and $b$ the equations

$f(t,x)=ax+\overline{f}(t, x)$ and $g(t,x)=b_{X}+\overline{g}(t,x)$

hold with
$|x| arrow 01\mathrm{i}\mathrm{n}\frac{|\overline{f}(t,X)|+|\overline{g}(t,X)|}{|x|}=0$

uniformly in $t$ . The solution $X(t)$ of the SDE is stochastically asymptotically stable if the
condition

$a- \frac{1}{2}b^{2}<0$ (2.1)

holds (see [2], p139).
This criterion strongly suggests a possibility of analogous linear $st\mathrm{a}$bility analysis for

numerical schemes of SDE to those of ODE. We can consider that the linear parts of $f$ and
$g$ are dominant in the asymptotic behaviour of solutions around the equilibrium position.

2.2 Numerical stability along stochastic stability

Following the suggestion in the previous subsection, we introduce a linear test equation
(supermartingale equation)

$dX(t)=\lambda X(t)dt+\mu X(t)dW(t)$ $(t>0)$ (2.2)

with the initial condition $X(\mathrm{O})=1$ to the numerical stability analysis. Here $\lambda$ and $\mu$ are
complex numbers.

Since the exact solution of (2.2) is written as

$X(t)= \exp\{(\lambda-\frac{1}{2}\mu^{2})t+\mu W(t)\}$ ,

it is quite easy to show that the equilibrium position $X(t)\equiv 0$ is stochastically asymptotically
stable if the condition

$\Re(\lambda-\frac{1}{2}\mu^{2})<0$ (2.3)

holds. In our mind we employ the condition which can stand for $C_{p}$ in the syntax diagram.
A typical example of numerical scheme is the Euler-Maruyama scheme given as follows.

Let $h$ be the stepsize of the variable $t,$ $t_{n}=nh,$ $(n=1,2, \cdots)$ the step-points, and

$\triangle W_{n}=W(tn+1)-W(t_{n})$

the increment of the Wiener process at the n-th step-point. For the equation (1.1) the scheme
generates a discrete random process $\{X_{n}\}$ according to the recurrence

$X_{n+1}=X_{n}+f(t_{n},X_{n})h+g(t_{n’ n}X)\Delta W_{n}$. (2.4)
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Figure 2.1: A syntax diagram?

The increment $\Delta W_{n}$ will be realized with certain normal random numbers with mean $0$ and
variance $\sqrt{h}$.

Thus we think of a syntax diagram shown in Fig. 2.1.
However, this syntax diagram does not work well. The reason follows. The criterion

(2.3) for the stochastic asymptotic stability of (2.2) allows the cas$e\Re\lambda>0$ . It implies that
some sample paths of the solution surely decrease to $0$ , whereas their distributions possibly
increase. This can be understood through the fact that when $\Re\lambda>0$ the equation cannot
be asymptotically stable even in the ODE sense. Henceforth it is impossible to carry out
a numerical scheme until all the sample paths of the exact solution diminish to $0$ if two
conditions $\Re\lambda>0$ and $\Re(\lambda-\frac{1}{2}\mu^{2})<0$ are valid simultaneously. Since the numerical
solution by $e.g$ . the Euler-Maruyama scheme would reflect this statistical property, nobody
can expect a numerically stable solution.

This investigation implies the necessity of another stability concept for SDEs. That is,
we try to answer the question what SDE is having all sample paths whose distribution tends
to $0$ as $tarrow\infty$ .

3 MS-stability
Analysis of the previous section suggests an introduction of norm of the SDE solution with
respect to the stability concept.

3.1 Asymptotic stability in $r\mathrm{t}\mathrm{h}$ mean
Return to the general IVP of SDE given in (1.1):

$dX(t)=f(t, X(t))dt+g(t,X(t))dW(t)$ $(t>t_{0})$ , $X(t_{0})=X0$ .

Definition 3.1 The steady solution $X(t)\equiv 0$ is said to be $a\mathit{8}ymptoti_{Cal}ly$ stable in p-th
mean if for all positive $\epsilon$ there exists a positive $\delta$ which satisfies

$\mathrm{E}(|X(t)|^{p})<\epsilon$ for all $t\geq 0$ and $|x_{0}|<\delta$ (3.1)

and, furthermore if there exists a positive $\delta_{0}$ satisfying

$\lim_{tarrow\infty}\mathrm{E}(|X(t)|^{p})=0$ for all $|x_{0}|<\delta_{0}$ . (3.2)
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Here $\mathrm{E}mena\mathit{8}$ the mathematical expectation.

Roughly speaking, by the asymptotic stability in p-th mean we expect the asymptotic di-
minishing of the solution in the p-th moment.

The case of $p=2$ is most frequently used $\mathrm{a}\mathrm{n}\mathrm{d}\wedge$ called the mean-square case. Thus we
introduce the norm of the solution by

$||X||=\{\mathrm{E}|x|^{2}\}^{\frac{1}{2}}$ .

The necessary and sufficient condition is given in the following.

Lemma 3.1 The linear test equation (supermartingale equation) (2.2) with the unit initial
value is $a\mathit{8}ympt_{\mathit{0}}tiCally$ stable in the mean-square sense iff the inequality

$2\Re\lambda+|\mu|^{2}<0$

holds.

Proof. For the solution $X(t)$ of (2.2) with the unit initial condition, its mean-square $\mathrm{Y}(t)=$

$\mathrm{E}|X(t)|^{2}$ satisfies an IVP of ODE

$dY=(2\Re\lambda+|\mu|^{2})Ydt$ $(t>0)$ , $\mathrm{Y}(\mathrm{O})=1$ .

The solution is obviously asymptotically stable when the inequality holds, and vice versa. $\square$

Note that since the $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}.\Re(2\lambda-\mu)2\leq 2\Re\lambda+|\mu|^{2}$ is always valid, the asymptotic
stability in the mean-square sense implies the stochastic stability.

In the sequel, the stability in the mean-square sense will be abbreviated as $MS- \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}1_{\hat{1}\mathrm{t}\mathrm{y}}$.

3.2 Numerical MS-stability
For asymptotically $MS$-stable problems of SDEs, what conditions are imposed to derive
numerically asymptotically $MS$-stable solutions? That is to say, what conditions should be
for the numerical solution $\{X_{n}\}$ of the linear test equation (2.2) to achieve

$||X_{n}||arrow 0$ as $narrow\infty$ .

Denote $\mathrm{E}|X_{n}|^{2}$ by $\mathrm{Y}_{n}$ . When we apply a numerical schenie to the linear test equation and
take the mean-square norm, we obtain a one-step difference equation of the form

$\mathrm{Y}_{n+1}=R(\overline{h}, k)Y_{n}$ (3.3)

where two scalars $\overline{h}$ and $k$ stand for $h\lambda$ and $\mu^{2}/\lambda$ , respectively. We can call $R(\overline{h}, k)$ the
stability function of the scheme, for the $MS$-stability of the numerical scheme is subject to
its magnitude. That is, the equivalence

$\mathrm{Y}_{n}arrow 0$ as $narrow\infty\Leftrightarrow|R(\overline{h}, k)|<1$

holds.
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Figure 3.1: Syntax diagram of MS-stability

Definition 3.2 ([14]) The scheme is said to be $MS$-stable for $\overline{h}$ and $k$ if its stability func-
tion $R(\overline{h}, k)$ is less than unity in magnitude. The set in $C^{2}$ given by

$\mathcal{R}=$ { $(\overline{h},$ $k);|R(\overline{h},$ $k)|<1$ holds}
is called the domain of $MS$-stability of the scheme.

The syntax diagram of $MS$-stability is in Fig. 3.1.
To compare the stability performance of various numerical schemes, we are to draw their

figures. However, the complex values $\lambda$ and $\mu$ yield the pair $(\overline{h}, k)$ in four dimensions! We
have to restrict ourselves to the case of real values of $\lambda \mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}\mu$ for viewing the figures.

In addition, we can say that a numerical scheme is $A$-stable if it is $MS$-stable for any $h$ .

3.3 Stability function of some schemes
We will derive the stability function of some numerical schemes known in the literature.
Details with figures will appear in [14].

First is the Euler-Maruyama scheme (2.4), whose application to (2.2) implies

$X_{n+1}=X_{n}+h\lambda X_{n}+\mu X_{n}\Delta W_{n}$ .

We obtain the stability function as

$R(\overline{h}, k)=|1+\overline{h}|2+|k\overline{h}|$ .

Fortunately the function depends on $\overline{h}$ and $|k|$ , not on $k$ . Therefore we can get the feature
of the domain of $MS$-stability in the three-dimensional space of $(\overline{h}, |k|)$ .

Next is the semi-implicit Euler scheme given by

$X_{n+1}=X_{n}+\{\alpha f(tn+1,xn+1)+(1-\alpha)f(t_{n},x_{n})\}h+g(t_{n’ n}X)\Delta W_{n}$ , (3.4)

where $\alpha$ is a parameter representing its implicitness. Note we assume the implicitness only
on the drift term $f$ . A calculation leads to the stability function

$R( \overline{h}, k, \alpha)=\frac{|1+(1-\alpha)\overline{h}|^{2}+|k\overline{h}|}{|1-\alpha\overline{h}|^{2}}$ .

By comparing the regions of $MS$-stability of the Euler-Maruyama and the semi-implicit
Euler schemes under the restriction of real $\overline{h}$ and $k$ we can see that the latter is superior to
the former with respect to the stability.

8



4Extension to multi-dimensional case
Different from the ODE case, the extension of linear stability analysis from the scalar to
the multi-dimensional equation is not straightforward in the SDE case. Recall the syntax
diagram of absolute stability of the ODE case shown in Fig. 1.3. There the product of the
stepsize $h$ and an eigenvalue of the coefficient matrix discriminates the absolute stability of
the numerical solution. This is due to the linearity of the numerical schemes.

On the analogy of this, we try to consider the linear multi-dimensional test system of
SDEs

$dX(t)=AX(t)dt+BX(t)dW(t)$ $(t>0)$ (4.1)

with the initial condition $X(\mathrm{O})=X_{0}$ , where $X\in R^{d},$ $A$ and $B\in R^{d\mathrm{x}d}$ . Furthermore we
assume that $W(t)$ is a scalar.

Even though, a linear stability analysis is still too difficult for (4.1), because the second
moment $\mathrm{Y}(t)=\mathrm{E}(X(t)X(t)T)$ obeys the following IVP of the matrix ODE

$\frac{dY}{dt}=A\mathrm{Y}+\mathrm{Y}A^{T}+B\mathrm{Y}B^{T}$ $(t>0)$ , Y(0)
-

$=\mathrm{x}_{0}\mathrm{x}_{0}^{\tau}$ . (4.2)

This IVP is hard to handle.

4.1 Simultaneously diagonalizable case
For a simpler case, we assume that the matrices $A$ and $B$ in (4.1) are simultaneously di-
agonalizable. That is to say, there exists a nonsingular matrix $T\in g^{d\mathrm{x}d}$ satisfying the
equations

$\Lambda=T^{-1}AT$ and $M=T^{-1}BT$,

where
$\Lambda=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\lambda_{1}, \cdots, \lambda_{d})$ and $M=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\mu_{1}, \cdots, \mu_{d})$

with $\lambda_{j,\mu j}\in C$ .
The transformed second moment $Z(t)=T^{-1}\mathrm{Y}(t)T^{-H}$ (hereafter $T^{H}$ stands for the

Hermitian conjugate of $T$) fulfills the IVP of ODEs

$\frac{dZ}{dt}=\Lambda Z+Z\Lambda^{H}+MZM^{H}$ , $Z(\mathrm{O})=\tau^{-1}\mathrm{x}_{0}\mathrm{x}_{0}H\tau-H$ . (4.3)

Denoting the $(i,j)$-component of $Z(t)$ by $z_{ij}(t)$ , we can show that the asymptotic stability
of all the diagonal component $\{z_{ii}(t)\}$ is equivalent to the $MS$-stability of linear multi-
dimensional test equation (4.1). Due to the diagonality of A and $M$ , we obtain ODE

$\frac{dz_{i}}{dt}.\cdot=(\lambda_{i}+\overline{\lambda}.\cdot+|\mu_{i}|2)zii$,

which yields the criterion of asymptotic stability so that the inequality

$2\Re\lambda.\cdot+|\mu i|^{2}<0$

holds for all $i$ .
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Henceforth we can conclude that the $MS$-stability of linear multi-dimensional test equa-
tion (4.2) is eventually equivalent to that of the scalar equation

$dX(t)=\tilde{\lambda}X(t)dt+\tilde{\mu}X(t)dW(t)(t>0)$ (4.4)

where $\tilde{\lambda}$ and $\tilde{\mu}$ are constants so that the equality

$2 \Re\tilde{\lambda}+|\tilde{\mu}|^{2}=\max\{2\Re\lambda:+|\mu.\cdot|2\}$

holds.

4.2 Proposed test equation and an ROW-type scheme

From the viewpoint described above, we have proposed a 2-dimensional linear SDE given in
the following to analyse numerical stabilities in the multidimensional case ([9]).

$dX(t)=AX(t)dt+BX(t)dW(t)$ ,

with the matrices

$A=$ , $B=$ , (4.5)

and the scalar Wiener process $W(t)$ . The exact solution of this equation is given analytically
as follows. Denoting the time-increment $t-t_{0}$ and the increment of the Wiener process
$W(t,\omega)-W(t_{\mathrm{o}},\omega)$ by $\triangle$ and $\triangle W$ , respectively, and introducing the notations

$p=- \frac{\alpha^{2}}{2}\Delta+\alpha\triangle\nu V$, $S_{q}=\sqrt{\gamma^{2}+4\beta}$, $\lambda_{1}=p+\frac{\gamma\triangle+S_{q}\Delta}{2}$ , $\lambda_{2}=p+\frac{\gamma\Delta-S_{q}\Delta}{2}$ ,

$\Lambda^{+}=e^{\lambda_{1}\Delta}+e^{\lambda_{2}}\Delta$ , $\Lambda^{-}=e^{\lambda\Delta}-1e^{\lambda\Delta}2$ ,

we can express the exact solution as

$X(t)=- \frac{1}{4S_{q}}X(t\mathrm{o})$ . (4.6)

Note that the solution depends on the increments, not on the intermediate values between
$t_{0}$ and $t$ .

As an example of linear stability analysis, let us analyse PLATEN’S scheme of weak order
two ([8], p485). The scheme applied to the scalar linear test equation (4.4) with $\tilde{\lambda}$ and $\tilde{\mu}$

yields the linear recurrence

$X_{n+1}= \{1+\tilde{\lambda}h+\tilde{\mu}\triangle\nu V_{n}+\tilde{\lambda}\tilde{\mu}h\triangle\nu Vn+\frac{1}{2}\tilde{\mu}2\{(\triangle\nu V_{n})^{2}-h\}+\frac{1}{2}\tilde{\lambda}^{2}h^{2}\}xn$
’ (4.7)

the multiplying factor of whose right-hand side is denoted by $P(h, \triangle W_{n})$ . By the definition,

$\mathrm{E}|P(h, \cdot)|^{2}$ will give the region of $MS$-stability of the scheme, while $\mathrm{E}P(h, \cdot)=1+\tilde{\lambda}h+\frac{1}{2}\tilde{\lambda}^{2}h^{2}$

leads to the condition of asymptotic stability of the mean-value.
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However, we can observe that an application of PLATEN’S scheme to the 2-dimensional
test equation with the parameter values

$\alpha=3$ , $\beta=-93$ , $\gamma=-25$

and the initial values
$X^{(1)}(0)=1$ , $X^{\langle 2)}(\mathrm{o})=0$

brings a numerically $MS$-unstable solution even for the stepsize $h=2^{-3}$ . This can be
considered so that the stepsize still falls into the instability region of t.he mean-value.

Based on the observation, we try to design an ROW-type scheme with suitable stability
features. Order conditions of the ROW-type scheme in the weak sense can be derived by
using rooted tree analysis ([10]). Taking advantage of the result, we obtain a 4-stage second-
order scheme of ROW-type, which is $\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}:\mathrm{y}$ appicable to the Stratonovich-type SDEs, with
A- and other desired stability properties when assuming $\tilde{\mu}$ is real. Details will be found in
[11].

5 T-stability

We have described in Sections 3 and 4 the analytical and numerical $MS$-stability. From the
viewpoint of computer implementation, $MS$-stability may still cause difficulty. The reason
follows.

To evaluate the quantity of the expectation
$Y_{n}=\mathrm{E}(|X_{n}|^{2})$

where $X_{n}$ is an approximating sequence of the solution sample path, in a certain probability
$X_{n}$ happens to overflow in computer simulations. This actually violates the evaluation of
$\mathrm{Y}_{n}$ .

The above situation suggests an introduction of another stability notion with respect to
the approximate sequence of sample path (trajectory). It must take into account the driving
process, whose way of realization a numerical scheme for SDE requires for the increment
$\Delta W_{n}$ of the Wiener process. For example, in the Euler-Maruyama scheme given in (2.4) as

$X_{n+1}=X_{n}+f(tn’ xn)h+g(tn’ xn)\Delta W_{n}$ ,

$\Delta W_{n}$ which stands for $W(t_{n+1})-W(t_{n})$ can be exactly realized with $\xi_{n}\sqrt{h}$ where $\xi_{n}$ is a
normal random variable with zero mean and unit variance. More sophisticated schemes
need more complicated normal random variables. And these random variables are to be re-
alized through an approximation with pseudo-random numbers on computer, for the normal
random number requires infinitely many trials.

Therefore, we arrive at the following.
Definition 5.1 Assume that the inequality $\Re(\lambda-\frac{1}{2}\mu^{2)}<0$ holds for the scalar linear test
equation (2.2), that is, the test equation is stochastically asymptotically stable in the large.
Denote by $\{X_{n}\}(n=1,2, \ldots)$ the sequece of approximate solutions of the equation by a
certain numerical scheme.

The numerical scheme equipped with a specified driving process said to be $T$ -stable if
$|X_{n}|arrow 0(narrow\infty)$ holds for the driving process.
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5.1 How to get a criterion
The above definition looks appropriate for numerical simulations. However we meet another
problem: A criterion of $T$-stability depends not only on the scheme but also on the driving
process. It causes our analysis more difficult. At present available simple results are only
for the Euler-Maruyama scheme with two- or three-point random variables.

This approximation means as follows. The increment $\triangle W_{n}$ is appr.oximated with $U_{n}\sqrt{h}$,
where $U_{n}$ is either of the following probability distributions.
i) Two-point random variables

$P(U_{n}=\pm 1)=1/2$

ii) Three-point random variables

$P(U_{n}=\pm\sqrt{3})=1/6$ , $P(U_{n}=0)=2/3$

Applying the Euler-Maruyama scheme to the scalar test equation (2.2) yields

$X_{n+1}$ $=$ $(1+\lambda h+\mu U_{n}\sqrt{h})X_{n}$

$= \prod_{i=^{0}}^{n}(1+\lambda h+\mu U_{i^{\sqrt{h})}}X_{0}$. (5.1)

Taking the mean with respect to $(n+1)$ time-steps, we obtain an averaged one-step difference
equation

$X_{n+1}=A(h;\lambda,\mu)Xn$ . (5.2)

The quantity $A(h;\lambda, \mu)$ is called the. averaged stability $fu\mathrm{n}$ ction of the scheme. Since the
equivalence

$X_{n}arrow 0$ as $narrow\infty\Leftrightarrow|A(h;\lambda, \mu)|<1$

holds, we can call the set
$A=\{(h;\lambda, \mu);|A(h;\lambda,\mu)|<1\}$

the region of $T$-stability of the scheme.
The syntax diagram of $T$-stability is in Fig. 5.1.

Figure 5.1: Syntax diagram of T-stability
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Actual calculation shows the following averaged stability functions.
i) The Euler-Maruyama scheme with the two-point random variables.

$A^{2}(h;\lambda, \mu)$ $=$ $(1+\lambda h+\mu^{\sqrt{h})}(1+\lambda h-\mu^{\sqrt{h})}$

$=$ $(1+\lambda h)2-\mu^{2}h$

ii) The Euler-Maruyama scheme with the three-point random variables.

$A^{6}(h;\lambda, \mu)$ $=$ $(1+\lambda h+\mu^{\sqrt{3h}})(1+\lambda h)^{4}(1+\lambda h-\mu^{\sqrt{3h}})$

$=$ $(1+\lambda h)^{4}\{(1+\lambda h)^{2}-3\mu h2\}$

The regions of $T$-stability of the above cases can be found in [13]. More generally, due to the
law of large numbers and utilizing the distribution function of the normal random variable,
we obtain the formula

$\log A(h;\lambda, \mu)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\log|1+\lambda h+\mu^{\sqrt{h}}x|\exp(-X/22)d_{X}$,

which shows the $T$-stability of the Euler-Maruyama sch$e$me in the ideal case (with the normal
random variable as the driving force). As the integral in the right-hand side does not seem
to have a closed form of expression, it is still hard to get the region.

As seen, many problems are still remained unsolved in numerical schemes for SDEs.
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