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Abstract

In this paper, a new approximation scheme is developed for the solutions of
It6 stochastic differential equations by employing a Runge-Kutta (RK) method.
Both drift and dispersion functions are iteratively evaluated by 4 kinds of terms
to achieve higher order accuracy of approximation than conventional methods.
The proposed RK scheme is organized by an explicit 4-stage structure and is of
order 1.5. The asymptotic efficiency of the proposed scheme is also established.
The simulation results are shown for supporting the validity of the approxima-
tion scheme.

- 1. Introduction

The problem considered in this paper is to develop a numerical method for solutions
of the following stochastic differential equations (SDEs) of It6 type :

dz(t) = f(z)dt + g(z)dw(t), (0) = zo € R (1)

Here w(t) is a one-dimensional standard Wiener process, i.e., (i) P(w(0) = 0) = 1, (ii)
E{w(t)} =0, Yt € [0,00[ and (iii) E{w(t)w(s)} = min(¢, s) where E{-} denotes the mean
value of (-). The functions f and g mapping from R? to R? are assumed to be smooth
enough so that SDE (1) has a unique strong solution, i.e., they satisfy both Lipschitz and
linear growth conditions. The stochastic integral implied on the r.h.s. of Eq.(1) is an It6
integral. The approximation is evaluated at points of regular partitions of the interval
[0, T], namely at points (0, h, 2h,..., Nh) where N is a natural number and h = T/N.
For developing an approximation scheme for SDEs, it is useful to introduce the method
of discretization, which is analogous to the numerical integration for deterministic differ-
ential equations (DDEs), for example, Taylor series schemes and Runge-Kutta (RK) type
schemes [1], [2]. This will enable us to obtain a stronger kind of convergence and precise
information about the error. Thus various kinds of numerical schemes for SDEs have been
proposed based on Taylor series and RK methods. These include [3]-[7] and the references
therein. From practical viewpoints, Taylor schemes have a disadvantage that they need
analytical expressions of the derivatives of the coefficient functions and in general, it is not
easy to evaluate the higher order derivatives of nonlinear functions. On the other hand,
Runge-Kutta schemes require only the evaluations of the coefficient functions. The RK
schemes for SDEs differ from those for DDEs in that they involve the iterative evaluations
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of not only drift function f but also dispersion function g. Riimelin [6] has shown that
it is necessary to choose the coefficients of RK method for SDEs carefully in order that
the resulting approximations converge to the solution of the right equations, and that, for
one-dimensional equations, the traditional RK methods for SDEs of Ito type converge only
semilinearly in h. Newton [8] developed an asymptotically efficient order 1.0 RK scheme
which has explicit form and is organized by 2-stage evaluations of f and 4-stage evaluations
of g. However the order conditions for the scheme in [8] are not clear. Saito and Mitsui [9]
presented a way to improve the accuracy for 3-stage RK scheme. The explicit scheme in
[9] is a stochastic version of Heun’s method and guarantees order 1.5 accuracy. However
to use the order 1.5 RK scheme in [9], the 1st order derivatives of f »and g and the 2nd
order derivative of ¢ must be given analytically. This is the same kind of disadvantage as
Taylor schemes possess.

In this paper, an efficient Runge-Kutta (RK) scheme of order 1.5 accuracy is presented
for Itd SDE (1). The present RK scheme is organized by 4 kinds of terms to avoid the
iterative evaluations of the derivatives of the coefficients functions f and g. This paper
is organized as follows: Section 2 gives order 1.5 approximation of the solution to SDE
(1) and show the structure of RK scheme. Based on the structure, an explicit 4-stage RK
scheme is derived and the analytical results on approximation error are shown in Section
3. Section 4 shows the results of simulation studies for six examples. Finally, Section 5
provides conclusions. '

2. Runge-Kutta Approximation for SDEs

In order to discuss numerical approximation methods for stochastic differential equa-
tions, we introduce a notation to formulate It6-Taylor expansion. For a positive integer m,
let @ = (j1,-",jm) where j; = 0,1, ( = 1,---,m), then multiple It6 stochastic integrals
are expressed as follows [3, 9]:

t Tm ) T2 R g . . .
La(yito,£) = / / / y(2(r1))AW D (11) - dW =1 (r_ YAW ) (7,)
to Jto to

where the definitions of dW (s are given by

[ @ G=0)
aw! )(““{dwu) G=1),

In particular, more simple expression I,(tg,t) is used for the case y = 1.
Then the order 1.5 Ito-Taylor expansion of the solution to Eq.(1) is expressed as
follows:

2(tnt1) =2(ta) + 9(2(tn))(1)(tn, tnt1) + f(2(ta))(0)(r, tnt1)
+[Gyl(x(tn))1,1)(tns tns1) + [Fgl(2(tn))(0,1)(Bns tn1) (2)
+ [Gfl(z(tn))(1,0)(tns trs1) +[G?gl(@(ta))(1,1,1)(Erstnt1) + Rltn,h)
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where the differential operators F' and G are defined by
- d d
0 1 0? 1
F(-) = ;fj ;9—1‘—]’(.) + 5}%;91‘%%(') = ()(f) + 5('):7::(9,9),
9
G(-) =Zgj%(')= (+)z(9)-
j=1 J

and the “remainder” p(t,,h) satisfies that E{( R(¢,,h))?} = O(h*). In Eq.(2), we set
t. = nh and then the integrals of the type Iy, jm)(tn, tng1) are calculated as follows:

Iy (tastnt1) = AWa,  I)(tnstng1) = h
Iy (tns 1) = 5(AWE = B)

Iio,1)(tn tnt1) = AWnh — I 0)(tnstn1)
I,y tesr) = %( AW? — 3AW,h)

where AW, denotes the increment of one-dimensional Wiener processes and is simulated by
the sample values of normal random numbers ¢, € N(0,1), i.e., AW, = £,vh. According
to Platen and Wagner [3, Chapter 10.4], the integrals I(g1)(tn,tn+1) and I oy(tn, tnt1)
are set as,

h
Io,1)(tn, tnt1) = 3 (AWn -5

h 1 -
I1,0)(tns tng1) = 5 (AWn + %AWTJ
where AW, = £r'/2, €, € N (0,1) and the random numbers ¢,, and £, are independent
each other.

iAWn)

Thus the order 1.5 Ito-Taylor expansion is expressed as follows:

(tars) =a(te) + o(x(t) AW, + F(z(ta)h + [Cel(a(tn) "
+ (Pal(e(ta) + GA() ) 202
h (3)

+ (I6£)(w(ta)) - [Fg)(a(tn)) ) AW ==

2v/3
AW3S — 3AW,h

+[6Pg)((ta) =—25"="2 + R(ta, b)

As shown in Eq.(3), the order 1.5 expansion contains the “bias” terms and the terms in
the increments of two kinds of Wiener processes. In this paper, the maximum order of
convergence is achieved by introducing the following s-stage Runge-Kutta approximation
structure:

nts = T+ 3 bk + AW, DBk + —A—%—Zbk+\/—hzbk (4a)
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Here Z, is the numerical solution at the point ¢ = nh, and the parameters k;, k;, k; and
k; are the function values such that

VB 2

J

i~1 i—1 zr 1—1
k; = f(:fn—{—hZai]‘kj—l—Aanaij%j‘{‘ AW, az'j’:?j)
=1

j=1

—

—1 i—1 i—
ki = g(in + hzaijkj + AWnZ(—Li]’E‘j + \/V—i; (Alijicj)
J=1 j=1 j=1
i—1 i-1 (4b)
]::z' = g<:_cn + hzaijkj + \/—V_hz &”iﬂ])
J=1 j=1
(2

1—1
l;i = g(Zn + \/;];Z a,jjl;])
j=1

where v is a positive constant. The parameters {b;}, {b;}, {b;} and {b;} for i =1,---,s,
in (4a), and {a;;}, {a:;}, {a;;} and {a;;} for i =1,---,s (j =1,---,i — 1) in (4b), are
determined so that the numerical solution obtained by the scheme (7) has the assigned
accuracy.

3. Order 1.5 Runge-Kutta Scheme for Ito SDEs

In the previous section, a new framework of the numerical scheme described by (4)
is proposed for It6 stochastic equations to achieve higher order accuracy. The goal of this
section is to develop an explicit order 1.5 Runge-Kutta scheme by using the approxima-
tion structure (4). Then the conditions on the parameters in (4) are summarized by the
following lemma.

Lemma 1. (order conditions) In order to achieve order 1.5 accuracy by approximation

structure (4), the constants {b;}, {b;}, {b:}, {bs} (i = 1,...,s) and {as;}, {ai;}, {@;},
{aij} (=1,...,8, y=1,...,1—1) in (4) are constrained by the following 22 conditions:

el)  Th=1,  (c2) ke = %

5, 1
(03) Ez bzcz = —5, (C4) Zl bi pros 1’
(e8) Tihd =3 (6  Thd =5,
v
- 1 — 1
(0.7) E” biazJC] = -6, (C.8) ZU biaijcj = —-—5;,
— 1 1
(Cg) Ez bici = 57 (C].O) Zz szz = 57
(C].]-) Ez biéi = %7 (612) Ez Zici = — -;—
~ 1 _
(c13) > bie? = — —, (c.14) Zij b;a;jé; =0

[\
A

(c15)  .bié; =0,  (c.16) Y bicié = 0,
(e17)  ¥,b; =0, (c.18) S biéi = 0,
(C.19) Eij g,’&,‘jé]‘ = O, (020) Ez ?), = 0,

(c21) ¥, bitijé; = 0, (c.22) > 58 = 0.
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where ¢; = Z; 11a,] , G = E; llfz” , G = 2;:[ a;j and & = 23;11 aij. In (c.1) ~

(c.22), Y5, and 3, denote 3, = 370, and 3_, = >0, Z;;ll

The conditions in Lemma 1 are easily derived by comparing the coeflicients of terms
in the Ito-Taylor expansion of order 1.5 (Eq.(2)) and the Taylor expansion of the numerical
scheme (4) (see Appendix).

Thus, the parameters in (4) must be determined by solving the order conditions in
Lemma 1 algebraically and will be described below.

3.1. Explicit 4-Stage Runge-Kutta Scheme of Order 1.5

Since the order conditions are simultaneous nonlinear algebraic equations, the solution
in general is not unique. Here we propose the following 4-stage scheme as an example that
satisfies the order conditions in Lemma 1. This scheme is first summarized below and will
be derived in detail in Section 3.2.

The numerical solution of (1) is obtained by

1 2 8 1 1. 2- 8- 1-
Tpt1 = Tnt <6k1 - §k2 + 'g'ks + 6k4) h + ('6-161 - §k2 + §k3 + 6k4> AW,
1 (1, 2, 8. 5 8, 5 (5)
| Zky — Zky+ ks — kg ) AW, + [ —=k ks — =ky ) V3h,
+\/§<61 g2t ghs 64>W+< Tghe T ghs 64>3

where k;, k;, k; and k; (i = 1 ~ 4) are obtained from (4b) by using the following parameters:

0o 0 0 O
== (120 18]
0 01/(?; 0_2 o0 0 o 0 0 (5b)
ta) = 1(/)2 132 8 8 o )= _13}32 5/032 g 8
o 01 ~7/24 1/8 1/6 0

3.2. Derivation Procedure of Scheme (5)

We now find parameters satisfying the order conditions in Lemma 1. Taking into
account the conditions (c.1), (c.2), (c.4), (c.9), (c.10) and (c.11), we set b; = b;, a;j = a;;
and ¢; = ¢;. Then the number of the conditions on the parameters decreases to 18. If we
set the stage number of the RK scheme as s = 4, the number of parameters which must be
chosen, b; = bs, bz, b,, ¢ = ¢ = &, &, a;j = @;j, G;; and a;;, becomes 27. Then there are
9 degree of freedom in the choice of the parameters which is possible to choose arbitrarily
(certain choices of these parameters have to be excluded if they cause any later steps to
be impossible because of zero divisors). Notice that if s = 3, the number of parameters to
be chosen becomes 16 and it is impossible to choose 16 parameters so that 18 conditions
on parameters are satisfied.

Thus we set as s = 4. Comparing (c.19) and (c.21), we also set by = by and by = by.
Then the number of the conditions on the parameters decreases to 17, and the number of
parameters which must be chosen becomes 25 (there are 8 degree of freedom in the choice
of the parameters). With the above procedures, the following steps are carried out:
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Step 1 Solve (c.2), (c.5) and (c.16) with respect to bycz, bscs and bycy. (the solutions
bycs, bycs and bycy are described by the parameters ¢y, c3, ¢4, C2, €3 and &)

Step 2 Solve (¢.6), (c.15) and (c.16) with respect to byé;, b3é3 and byéy. (the solutions
byCy, byés and bycy are described by the parameters €2, C3, Ca, cz, ¢é3 and ¢&4)

Step 3  Solve (c.12), (c.13) and (c.18) with respect to by, by and by. (the solutions by,
bs and by are described by the parameters ¢z, €3, C4, ¢2, ¢3 and é4)

Step 4 Solve (c.3) with respect to bs. (let b' be the solution described by the parameters
C2, C3, C4, 62, 63 and 64)

Step 5 Solve (c.22) with respect to by. (let b be the solution described by the parameters
ca, €3, C4, C3, C3 and ¢4) ’

Step 6 Solve b’ - b'2' = () with respect to é;. By setting the free parameter vasv =23,
we have ¢ = —1

Step 7 Solve (bscs) x & — (by¢3) X ¢3 = 0 with respect to c3 and substitute the solution
C3 into szz, b363, b4C4, 626’2 and 646'4.

Step 8 Solve (bycy) x & — (bss) X c4 = 0 with respect to ¢ and substitute the solution
¢3 into bycy, bacs, bycy, baéy and byéy.

Step 9 Obtain by, b3 and by by be := (bzcz)/cz, by := (6303)/03 and b4 = (b4c4)/c4

Step 10 Substitute é; = —1 into bg, b3, by, by, bo, b3( 63) and b4( b4)

Step 11 Solve (c.1), (¢.17) and (c.20) with respect to by, by and b;.

As the results of the above steps, we obtain 13 parameters by solving 13 equations in
(c.1), (¢.2), (c.3), (c.B), (c.6), (c.12), (c.13), (c.14), (c.15), (c.16), (c.17), (c.20) and (c.22),
i.e., ¢ is determined as é& = —1 and the 12 parameters by, by, b3, by, l~)1, ?)1, 52, 52, l~)3(= 2)3)
54(: 84) c3(= &) and ¢; are described by the 3 parameters cz, ¢4 and ¢é4. Since there are
8 degree of freedom in the choice of parameter, we make the following choice:

czz%, cy =1, ¢4 =0. '
by using 3 degree of freedom. Substituting these parameters into the solutions for 13
equations, we have '

by =5, =1/6, by =1/6, b =0,by =by=-2/9, by=-2/9, by=-1/18,
by = by =8/9, by=by=8/9,by=by=1/6, b,=>by=—5/6, |
a2y = g1 = Qg1 = 1/2, @ = —1,

c3=e3=0C=1/2, é&=-1/4ca=¢Ca=8 =1, ¢ =0

Now we must choose 9 parameters asy = d3z, Qa2 = G42, 043 = G43, 32, (42, G43, 032,
G4z and @s3 by using the 4 conditions (c.7), (c.8), (c.14) and (c.19), i.e., there are 5 degrees
of freedom in the choice of 9 parameters.
Step 12 Solve (c.7) and (c.14) with respect to a; = b4a42 + b3a32 and (1 = byays.
Then we have a43 = 8/3.
Step 13 Solve (c.8) and (c.19) with respect to o = G328 and [y = 4363 + a42cz
Then we have dzo = 5/32. By using 2 degrees of freedom, we set as az; =1 /4 and
d43 = 1/6. Then we have a3y = 1/4, d42 = 1/8. Finally, by using the remaining 3 degrees
of freedom we set d3; = @41 = @42 = 0. Then we have Gz = 1/2 and a3 = 1.

3.3. Error Evaluations

This section is devoted to show the statistical properties of errors resulting from the
proposed RK scheme.



52

Theorem 1. Assume that the following conditions hold: (A.l) f is Lipschitz
continuous with all derivatives of f up to order 3 inclusive polynomial growth. (A.2) g is
Lipschitz continuous with all derivatives of g up to order 4 inclusive polynomial growth.
Then the error evaluation for the proposed numerical scheme (5) is given by

E{ |20 — Zn H2 |Zp—1 = Tn-1 = Xn-l} = O(h4)a (6)
and
SN E{fzn—za|*} = O, (7)

where z, = z(ty) is the true value and Z, is the numerical solution at the point t = t,.

proof From the assumptions (A.1), (A.2) and the order conditions (c.1) to (c.22), the
terms in (5) are evaluated as follows:
(i) The term of the parameters k; (1 <@ < 4):

1 2 8 1
h (6k1 — —ko + —k3 + —k4)

9 9 6 ) (8a)
= h(f@0) + SAWl (@) — 3 S falo)@n) +
where the remainder p satisfies
E{||[h"2p||’} <M, (M : bounded constant). (8b)
(ii) The term of the parameters k; (1 < i < 4):
AW, (é—l_cl - %Ez + gl‘cg + 11?:4)
= AW 9(@0) + Lo PER) + 25 Plox(0)) (@) 50
+ AT o, (0 0)N(0) ~ Mlouel0,9)(En)
A0 - -’;[gz<gz<g>>]<:en>) +
where the remainder j satisfies
| E{|h7%p|?} < M, (M : bounded constant). (95)
(iii) The term of the parameter k; (1 <7 < 4):
A\/W; (6k oy + ok - -2—1%) "

- - S (5o NNE) + Floes(a (@) +

where the remainder p satisfies

CE{|[n7%p|1P} < M, (M : bounded constant). (100)
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(iv) The term of the parameters ki (1<i<4):

1. 8- 5. h
A/ L —hy — — = = z.,)+ p 1
3h ( 18k2 9k3 6k4) 2[91:(9)](3771) Py ( 1a)

where the remainder p satisfies

E{l|r7%p||P} < M, (M : bounded constant).

(11b)
Substituting the evaluations (8), (9), (10) and (11) into (5), it follows that
Futs = B0t [0(E) AW, + 1@+ 0(@)E) 252 ~ l02(0)(7n)
U@ S5 h + [gx(f)](fn)-%h
h -
+ (1£0))@) = 9 Pl(En) = 3locs(0: (@) 5= A )
9029, () S5 &~ [922(0,0))(0) 2
+loelos (g))](azn>AZV“ ~lgelgele))(@n) 52"
+po+ptp+p |
In order to evaluate the local error, we set z, = Z,. By subtracting (12) from (2),
“the local error z,41 — Z, is given by

Tnt1 = Tnt1 = R(tn, k) + p(ta, h),

where p(tn,h) = —p — p— p— p ~ O(h?*). Thus the local error is evaluated by (6)

On the other hand, the recursive equation of approximation error is obtained by
subtracting (12) from (2):

Tptl — Tpt1 = Tp — Tp + (g(ﬂfn)’“ g(jn)>AWn + (f(-'”n) - f(fn))h

+ ( [Ggl(zn) - Gg](“’"))%}i
+ ([Fg] (zn) — Fg](rcn))( é\%ﬁ)g (13) -
+ ((6f)@n) - 1651z (AW, +A¢W;>Z |

+ ([ng](ftn) - [GZQ](fﬁn)) AW, _63Ath
+ R(tn, k) + p(ta, h)-

Along the similar way to Mil’shtein (1985), it is easy to show that

E{ll (tn, B)|I* } = O(h*).
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Squaring both sides of (13), taking expectation and using the conditions (A.1) and
(A.2), we have :
€n+1 S (1+M1h+M2h2 +M3h3)6n + M4h4, (14)

where e, = E{||z,, — Z,||*} and My, Ms, M3 and M, are bounded positive constants.
Now we set as

1+M1h+M2h2 +M3h3 = 1+hL

Then taking into account zy = Zg, it follows that

ey < Myh*,
ez < (1 + hL)e; + M h*,
es < (14 hL)ey + Myh*
< {(1+hL)?*+(1+hL)+ 1} MR

Thus we have

< (14 hL)™ — 1M4h4 < exp(nhL) — 1

—————————————ee 3 - LY
€n %3 7 Myh®, for n=0,1,2,---, N. (15)

The evaluation (15) shows that the global error is evaluated by (7).

Corollary 1. Under the conditions in Theorem 1, for any ¢ < 3/2,

PR (2r—an) |2 — 0) = 1. (16)

This Corollary is obtained as a direct consequence of Theorem 1.

Theorem 2. If the conditions in Theorem 1 hold, then {Z,} given by (5) is order
1.5 asymptotically efficient approximation in the sense that for any Py, -adapted sequence
{zn},

E{| A% (@r — 2N )| | PN} +1

lim inf - > 1, w.p.1, 17
1—00 E{H h_3/2($T_-'L'N,-)“2 |pN;} +1 ( )
where Py = o(wp, Wap -+, WNp, Wh, Wap, -+, WNk) and {N;} is a sequence of natural num-

bers with the property that N,y;/N; is a natural number greater than 1.

proof Let n, = h™%/%|z, — %, |, then from the approximation error equation (16),
M1 < (1+ Cy)np + Coh'? + Csh™V2AW,,  ng =0 (18)

is derived, where C; (2 = 1,2, 3) are bounded positive constants.
Now we consider an equation

Cotr1 =1+ C1)Cn + Czh1/2 + C3h_1/?AWna Co = mo- (19)

Comparing (18) and (19), it is easy to see that n, < {,. Moreover let (n be the approxi-
mation for (, as follows: ,

b1 = (14 C1)ln + Csh™Y2AW,, o = no. (20)
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Then the error between (,, and én is given by

Cnt1 — én+1 =(14+C1)((n — én) + Cyh'/2. (21)
Then it follows that )
sup By {||h7/2(¢n — ()} < o0, (22)
1<n<N

where E,, is expectation with respect to Wiener measure on (C(0,T'), Fr). This shows
that
Euw{ll¢n = Call PN} — O, w.p.1. (23)

According to the evaluation (23), (,, converges to g:n with zero mean. This also shows that
N, converges to nominal distribution with zero mean.
In order to prove Theorem 2, it suffices to show that

E{h‘3/2(xT — in) | Py } 50,  wp.l (24)
But, this is the direct consequence of the convergence of (. -

4. Simulation Results

The numerical scheme developed here (JK95) are tested along with Euler-Maruyama
scheme (EM) [10], FRKI scheme [8], ERKI scheme [8] and improved 3-stage RK scheme
(SM92) [9] on the following six examples:

Example 1.
dz(t) = 0.5z(t)dt + 0.5z(t)dw(t) with z(0) = 0.5. (25)

The exact solution of Eq.(25) is given by
z(t) = 0.5exp(0.375t + 0.5w(t)).

Example 2.
dz(t) = —x(t)dt + 0.5z(t)dw(t) with z(0)=0.5 (26)

The exact solution of Eq.(26) is given by
() = exp(—1.125t —|—»0.5w(t)).
Example 3.
dz(t) = a’sinz cos® zdt + acos® zdw(t) With z(0) = zo. (27)
The exact solution of Eq.(27) is given by
z(t) = arctan( tan zg + aw(t))

Here the constants are set as x¢ = 1 and a = 0.5.
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Example 4.

dz(t) = %a2mx(2m;l)dt + az™dw(t) with z(0) =29 and m # 1. (28)

The exact solution of Eq.(28) is given by

1/(m—1)

z(t) = (:z:(()l_m) —a(m — 1)w(t)>

Here the constants are set as z¢g = 0.55, a = 0.175 and m = 3.

Example 5.
1
dz(t) = — —2-a2;vdt + av1—2%2dw(t) with z(0) = z,.

The exact solution of Eq.(29) is given by
z(t) = sin( arcsinzy + aw(t))

Here the constants are set as g = 0.5 and a = 0.1.

Example 6.

dz(t) = —(a+ bz )(1 — 2?)dt + b(1 — 2?)dw(t) with z(0) = z. (31)
The exact solution of Eq.(30) is given by

2(t) = 1 -2+ (1 + zo) exp(—2at + 2bw(t))
~ =14z + (1 + z9) exp(—2at + 2bw(t))

Here the constants are set as z¢ = 0.5, a = 0.01 and b = 0.5.

In each case the mean square error at the final time (T = 1) is estimated in the

following way.
10000

e= 10(1)_00; (3356\7'3_7?\7)2

where superscript k is the k-th trajectory of each solution.
The results of the simulations for for Example 1 to 5 are shown in Tables 1-5 or
Figs.1-5 (with corresponding numbers).

(32)

Table 1. mean square error (32) for Example 1

step size Maruyama FRKI ERKI SM92 JK95
2-%  2.79730D-01 1.33581D—02 6.59533D—04 1.91705D—04 8.53110D—05
2%  2.58327D—-01 3.76326D—03 1.51947D—-04 3.85904D—05 1.90340D—05
276  242182D-01 1.21037D—03 3.48999D—05 8.49142D—06 4.00875D—06
2=7  2.38207D—-01 3.29701D—04 8.74286D—06 2.02393D—06 1.04901D—06
2-%  2.19879D—-01 7.75466D—05 1.98311D-06 4.45569D—-07 2.59120D—07




Table 2. mean square error (32) for Example 2
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step size Maruyama FRKI ERKI SM92 JK95 .
274 4.26720D—-02 7.42069D—04 1.62883D—04 2.90636D—05 6.32108D—05
275 3.95724D—-02 3.75553D-04 3.81603D-05 5.73658D—06 7.88483D—06
276  3.56530D—02 3.49930D—-05 8.43144D—-06 1.25503D—06 8.49554D—07
277 3.30714D—02 1.41883D-05 2.26138D—06 3.12478D—07 1.50958D—07
2-% 3.03934D—-02 4.87565D—06 5.95255D—07 8.14165D—-08 2.56973D—-08
‘Table 3. mean square error (32) for Example 3
step size Maruyama FRKI ERKI SM92 JK95 -
2-4  147861D—02 1.19161D—04 1.83534D—05 4.38800D—06 2.97771D—06
275 1 1.40227D—-02 3.34161D—05 3.11974D-06 9.13093D—07 5.86901D—07
276  1.38596D—02 1.02832D—-05 6.42669D—07 2.19538D-07 1.20125D-07
277 1.33299D-02 3.18002D-06 1.29582D—07 5.09370D—08 2.53636D—08
278 1.31645D—-02 1.05660D—06 2.98921D-08 1.23156D-08 5.94687D—09
Table 4. mean square error (32) for Example 4
step size Maruyama FRKI ERKI SM92 JK95
2-%  7.53823D-05 4.73792D—-07 4.90029D—-08 8.87116D—09 1.27805D—09
275  6.73521D—05 1.43911D-07 1.09741D—08 1.72453D—-09 2.58817D—10
27  5.78771D—-05 2.42528D—08 8.14532D—10 1.29275D-10 - 5.77899D—11
277 5.73209D—-05 8.27717D—-09 2.61677D—10. 4.26315D—-11 1.41254D-11
278  5.55686D—05 3.21024D-09 6.66556D—11 1.01614D—11 3.86335D—12
Table 5. mean sqﬁare error (32) for Example 5
step size Maruyama FRKI ERKI SM92 JK95
2=t 3.41768D—08 9.82386D—09 1.76210D-11  7.19488D-10
275  1.10586D—04 1.57038D—08 2.04421D—-09 5.51404D-12 1.32852D-10
276 1.03636D—04 7.56102D—09 3.89050D—10  9.66021D—-13 2.42808D-11
27  1.00782D—-04 3.73031D—09 8.67985D—11 2.18475D—13 4.87471D-12
278 9.90067D—05 1.89540D-09 1.95806D—11 4.12100D—14 9.67551D—13
Table 6. mean square error (32) for Example 6
step size Maruyama FRKI ERKI SM92 JK95
274 4.32409D-02 6.59613D—-04 4.71199D—04 6.66800D—05  1.34709D—04
275 3.58256D—02 1.51500D—04 5.92752D—-05 8.48084D—-06 1.43696D—05
276  3.35928D-02 4.48836D—05 1.11286D—05 1.61323D—06 1.62352D—06
277 3.07276D—02 1.52125D—-05 2.21840D—-06 2.85247D—07 2.09213D-—07
278 3.04019D—-02 6.40606D—06 5.09955D—07 6.75905D—08 3.08444D—08

From the results in the simulations, we can conclude that in many cases the 4-stage
order 1.5 RK scheme developed here is worth the extra computation burden that it involve.
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5. Conclusions

For Ito stochastic differential equation (1), an efficient Runge-Kutta (RK) type ap-
proximation scheme has been developed. In the proposed RK scheme, both drift and
dispersion functions are evaluated by 4 kinds of terms to achieve order 1.5 accuracy with-
out using the derivatives of the coefficients functions. The results on the error evaluation
are as follows: Theorem 1 gives the evaluations of local and global errors of the RK scheme.
This theorem guarantees that the RK scheme is of order 1.5 accuracy. The asymptotic
efficiency of the numerical solution is also established in Theorem 2. The validity of this
numerical approximation scheme was verified through the simulation results.

Appendix. (derivation of the order conditions in Lemma 1)

The conditions in Lemma 1 are derived by comparing the coefficients of terms in the
It6-Taylor expansion (3) and the Taylor expansion of the numerical scheme (4). The order
1.5 Taylor expansion of the numerical solution Z, around Z, at the point t = ¢, is given
as follows:

Tnt1 = Tn + AWy|gln Z b + AW, [g]. Z b;
+VUhlgla Y b+ hlfln Y bi + AW2[ga(9)]n Y bic

+ AW, Vihlga(9) 3 bt + = 2ol (o)) 3 bt

+ (Vo) [oa@)ln 3 it + hAWa[ ()] Y bic
hA—\;gﬁ[fz(g)ln Y biti + hAW[go(f)ln Y bici
+ AWE1g2(92(9))]n D i€ + AWV vhlg,(92(9))]n ) | bitisjé;
+ AW (VIR 05 (020l 3 Bty + 20 g1 (g, )l Y52
n AW"(;/;W [922(9, 9) Zb & + AW2Vh|gar(g,9)ln Y _ bitié

(33)

AWn ¥ n 2 L.~ A
h—\/—?_)-—[gz(f)]n E bici + *J—g‘(m) [92(92(9))]n Z biai;c;

ﬁ%”—f‘)—z[gu(g,g) W Y0biE + (VIR [oe(ge()le 3 ity

Yoz,

[gacz(ga g)]n Z Bzéf +,r(tna jn),

where the term r(t,, Z,) is the remainder such that E{||h7%r||? } < M, < oo.

Then the order conditions in Lemma 1 are derived as follows, where AW, [g], — (c.1),
for example, should be read as follows : Comparing the coefficients of AW,[g], in (3) and
(33) yields the condition (c.1).

AWZ{ga(0)ln — (c2), (VIR [ga(@)ln — (¢3),  Alfln = (c4),

AW 922(9,9)In/2 — (c.5), AWn(\/z—/—E)Z[g”(%g)]n/Q — (c.6),

AWE 02 (92(0)ln — (€T), AWV [92(32(0))]n — (c:8),

hAWa[g:(fln = (c9),  hAWL[fo(g)ln — (c10),
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RAWA[£o(g)]n/ V3 = (c.11),  hAWa[go(f)la/v3 — (c.12),

AW, (VVh)[9:4(9,9)ln — (c13),  AW2Vvh[g:(g:(9))]n — (c.14),
AWn\/V—E[gz(g)]n — (c. 15) AW2\/_[gZI(g 9l — (c.16),
AWalgln = (¢17),  AWnvVvhiga(9)]n/V3 = (c.18),

AW, (VVh)?[g:(9:(9))]n/V3 = (¢.19),  Vvh[gln — (c.20),
(VVR)P190(9:(9))]n — (c:21),  (Vvh)?[gee(g,9)In/2 — (c.22).
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