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1 Introduction

In soliton theories, tau functions deserve the most fundamental objects. They can be , in
most cases, represented by determinants. For the KP hierarchy their appearance is quite
naturally explained by the Sato theory.
Recently, several discrete equations are proposed which possess such determinantal struc-
ture for their tau functions. Some of them have an interesting property which is claimed
to be a discrete analogue to the Painlev\’e property, and thus often referred to as discrete
Painlev\’e equations $(\mathrm{D}\mathrm{P}\mathrm{E})$ [ $\mathrm{G}\mathrm{R}\mathrm{p}$, RGH,Kaji]. The property, singularity confinement, still
remains as mystery and its relation to determinant representations for tau functions is yet
to be understood.
On the other hand, we proposed, in previous publications, a certain family of discrete
equations ( $\mathrm{T}$-system) which also have determinantal expressions for solutions.
They have a background in solvable lattice models in two dimensions: They come from
functional identities among commuting transfer matrices. The Hirota-Miwa equation is
a specialization to $A_{r}$ type. We will show, moreover, in the section 2 they are discrete
analogues to the Toda field equations based on classical Lie algebras.
We seek a specific solution being pole-free. This demand comes from the origin. The
field variables should be identified with eigenvalues of transfer matrices. They must be
non-singular as the original Boltzmann weights are so. This pole-free condition strongly
restricts the form of solution to $\mathrm{T}$-system so that it takes a determinantal structure. It
must be stressed that this type of discrete Toda field equation yields natural reasoning for
determinantal expressions. The determinantal forms so obtained are of course solutions
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to $\mathrm{T}$-system even if one forgets about pole-free condition (the Bethe ansatz equation,
BAE), although they are no longer analytic. In this sense, BAE is a hidden reason for the
structure. Certain similarities between some sets of DPE and $\mathrm{T}$-systems make us expect
that it would be also possible for the former to unveil a hidden reason.
This paper is organized as follows.
In the next section, we present the $\mathrm{T}$-systems for $A_{r}$ and $B_{r}$ . In passing to the continuum
limit, we will show that they coincide with the Toda field equations. we give the answer
to the $\mathrm{T}$-system by introducing generalized determinantal expressions in section 3. A
“quantum analogue” to Jacobi-Trudi and Giambelli identities will be discussed. Until this
stage, we do not touch our guiding principle in finding such expressions.
In the rest of sections, we will give some elementary backgrounds of solvable lattice models.
The fusion procedure lies in heart of the $\mathrm{T}$-system. We will explain this by adopting simple
examples in section 4. The sections 5 is devoted to the review of a “modified” analytic
Bethe ansatz, which is the main source in obtaining various combinatorial expressions. We
will discuss the equivalence between these combinatorial objects and determinant expres-
sions in section 6.

Acknowledgment I would like to thank A. Kuniba, T. Nakanishi and Y. Ohta. The
contents of this report have been obtained in the collaborations with them. Thanks are
also due to R. Hirota, J. Satsuma and T. Yajima for discussions. I also would like to thank
the organizers of this workshop, K. Kajiwara and $\mathrm{Y}$ Nakamura.

2. $T$-system as a discrete Toda field equation
As remarked in the introduction, $\mathrm{T}$-system is a set of functional relations among transfer
matrices. We present only the resultant equations without referring to their origin. Our
attitude here is to regard them as a kind of discrete evolution equations. We will present
some backgrounds in later sections for reference.
$\mathrm{T}$-system exists for arbitrary Lie algebras. Here we focus on those for $A_{r}$ and $B_{r}$ ,

$A_{r}$ :
$\tau_{m}^{(a)}(u-1)T_{m}^{(}a)(u+1)=T_{m+1}^{()}a(u)\tau_{m-1}^{(}a)(u)+g_{m}^{(a)}(u)T_{m}(a-1)(u)T^{(a+1})(mu)$ (2.1)

$1\leq a\leq r$ ,

$B_{r}$ :
$\tau_{m}^{(a)}(u-1)\tau^{(a)}(mu+1)=T_{m+1}^{()}a(u)\tau_{m-1}^{(}a)(u)+g_{m}^{(a)}(u)T_{m}^{(}a-1)(u)\tau^{(a+}1)(mu)$
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$1\leq a\leq r-2$ , $(2.2a)$

$T_{m}^{(r-1)}(u-1)T_{m}(r-1)(u+1)=\tau_{m+1}^{(_{\Gamma-1})}(u)\tau_{m-1}r-1)(()u+gm((r-1))uT_{m}(r-2)(u)T^{()}r(2mu)(2.2b)$

$T_{2m}^{(r)(r}(u- \frac{1}{2})T_{2m}()u+\frac{1}{2})=T_{2m+}^{(r})1(u)T_{2m-1}^{(}r)(u)$

$+g_{2m}^{(r)}(u)T_{m}^{(}r-1)(u- \frac{1}{2})T^{(1)}mr-(u+\frac{1}{2})$ , $(2.2c)$

$\tau_{2m}^{(r)}(+1u-\frac{1}{2})T_{2}r)((um+1+\frac{1}{2})=T_{2m+}^{(r)(r)}2(u)\tau_{2}(mu)+g_{2m+}^{(r)}1(u)T^{()}mr-1(u)\tau_{m}^{(r-1}+1)(u)(2.2d)$

where $\tau_{m}^{(0)}(u)=T_{0}^{(a)}(u)=1$ and $g_{m}^{(a)}(u)’ \mathrm{S}$ are arbitrary functions satisfying,

$g_{m}^{(a)}(u+1/t_{a})g_{m}^{(}(a)u-1/ta)=g^{(a}m+1()u)g_{m-}^{(}1(a)u)$ $a=1,$ $\cdots,$ $r$ , (2.3)

in which $t_{a}’ \mathrm{s}$ are given by 1 except for $a=r,$ $B_{r}(t_{r}=2)$ .
Here $m\in Z$ runs over either infinite or finite set which we do not specify here. See the
discussion in section 3 of [KNS 1]
Several “good” properties of these equations have been $\mathrm{o}\mathrm{b}_{\mathrm{S}\mathrm{e}}\mathrm{r}\mathrm{V}\mathrm{e}\mathrm{d}[\mathrm{K}\mathrm{N}\mathrm{s}1]$ .
(1) In $|u|arrow\infty$ , these equations reduce to those for corresponding Yangian characters.
(2) Solving the $\mathrm{T}$-system recursively, we empirically find that $T_{m}^{(a)}(u)$ is a polynomial

in terms of $T_{1}^{(b)}(u+\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}),$

$(b=1, \cdots, r)*$
, and moreover it can be represented as a

determinant of a certain sparse matrix.
We here add on\’e important property in a “continuum $\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}$

”
$[\mathrm{K}\mathrm{o}\mathrm{s}]$ .

One can freely $\mathrm{r}\mathrm{e}$-scale $u\in C$ so that the difference expression above reduces to differential
one w.r.t. $u$ :

$T_{m}^{(a)}(u+n) arrow T_{m}^{(a)}(\frac{u}{\epsilon}+n)arrow(\phi_{m}^{(a)}(u)+n\epsilon\partial_{u}\phi^{(}m(a)u)+\cdots)$ . (2.4)

where $\phi_{m}^{(a)}(u)$ is renormalized $\tau_{m}^{(a)}(u/\epsilon)$ .
We tentatively assume $m’ \mathrm{s}$ to be rational numbers and take a similar limit. As $g_{m}^{(a)}(u)’ \mathrm{S}$

are arbitrary function with one constraint $\mathrm{e}\mathrm{q}(2.3)$ , we can $\mathrm{r}\mathrm{e}$-scale them as $O(\epsilon^{2})$ . The
resultant equations have a unified expression with two continuous “space-time” variables
$u,$ $m$ and one discrete index $a=1,$ $\cdots,$ $r$ .

$( \partial_{u}^{2}-\partial_{m}2)\psi a(u, m)=\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\exp(-\sum_{=b1}A_{ab}\psi b(u))r$ (2.5)

where $\psi_{a}(u, m)$ is a $\mathrm{r}\mathrm{e}$-scaled logarithm of $\phi_{m}^{(a)}(u)$ and $A_{ab}= \frac{2(\alpha_{a}|\alpha_{b})}{(\alpha_{a}|\alpha_{a})}$ is the Cartan matrix.

The prefactor is a $\mathrm{r}\mathrm{e}$-scaled $g_{m}^{(a)}(u)$ which can be either a function of space-time variables

* The conjectured sparse matrix expressions in [KNSI] are now proved in [KNH]
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or mere a constant. This is nothing but the Toda field equation for the Lie algebra
specified by $A_{ab}$ . $\mathrm{T}$-system corresponding to an arbitrary classical Lie algebra reduces to
$\mathrm{e}\mathrm{q}(2.5)$ in appropriate limits. In this sense, we regard $\mathrm{T}$-system as a discre$te$ Toda field
equation. In the next section, we will give the solutions to $\mathrm{T}$-system for given “initial
data” $\tau_{1}^{(a)}(u),$ $a=1,$ $\cdots,$ $r$ . And these will justify our empirical rule (2) above.

3. Solution to T-system

3.1 Non-Commutative Generating Functions

Symmetric functions play an important role in soliton theories. We thus expect certain
analogues in discrete cases. This is indeed the case for $\mathrm{T}$-system as we will see in the
following.
Let us introduce two fundamental quantities $T^{a}(u),$ $(a=1,2, \cdots)$ and $T_{m}(u),$ $(m=$

$1,2,$ $\cdot’\cdot)$ . They are analogues to bases for symmetric functions, and defined by generating
series. We prepare a set of functions, $x_{a}^{A}(u),$ $(a=1, \cdots r)$ and $x_{a}^{B}(u),$ $X(0)Bu,$ $X_{\overline{a}}^{B}(u)(a=$

$1,$ $\cdot*\cdot r)$ for the $A_{r}$ type and the $B_{r}$ type $\mathrm{T}$-system, respectively. Their explicit forms are
not necessary for the time being.
We introduce “non-commutative generating series”:

$\sum_{a=0}^{\infty}\tau^{a}(u+a-1)X^{a}=(1+x_{r}^{A}(u)X)\cdots(1+x_{1}A(u)X)$ (3.1a)

$\sum_{m=0}^{\infty}T_{m}(u+m-1)xm(1-x_{1}(Au)X)^{-}1\ldots(1-x_{r}(=uA)X)^{-}1$ , (3.1b)

for $A_{r}$ ,

$\sum_{a=0}^{\infty}\tau^{a}(u+a-1)x^{a}=(1+x_{\overline{1}}^{B}(u)X)\cdots(1+x\overline{r}B(u)X)(1-x_{0}^{B}(u)x)-1$

$(1+x_{r}^{B}(u)X)\cdots(1+x_{1}^{B}(u)X)$ (3.2a)

$\sum_{m=0}^{\infty}\tau_{m}(u+m-1)xm(1-x_{1}(Bu)x)-1\ldots(=1-x^{B}(ru)x)^{-1}(1+x_{0}(B)uX)$

$(1-x_{\overline{r}}^{B1}(u)x)^{-}\cdots(1-x_{\overline{1}}^{B1}(u)x)^{-}$ (3.2b)

for $B_{r}$ .
We use same symbol $T^{a}(u)$ for both algebras. There should be no confusion.
In the above $X$ is an operator acting on an arbitrary function $A(u)$ by,

$XA(u)=A(u+2)X$. (3.3)
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$X$ can be given by differential operator, $X=\exp(2\partial_{u})$ . Namely, it exponentiates the
momentum operator conjugate to the coordinate $u$ . Taking a “classical limit”, i.e., com-
mutative limit, the $\mathrm{e}\mathrm{q}\mathrm{s}(3.\mathrm{l}\mathrm{a},\mathrm{b})$ . reduce to the classical generating relations written in many
references, while $\mathrm{e}\mathrm{q}\mathrm{s}(3.2\mathrm{a},\mathrm{b})$ seems novel. See $\mathrm{e}.\mathrm{g}.,[\mathrm{M}\mathrm{a}\mathrm{c}]$ .
We then make the following identification between some quantities in $T$-system and those
in the above series,

$T_{1}^{(a)}(u)=T^{a}(u)$ , $a=1,$ $\cdots,$ $r$ ( for $A_{r}$ ), $r-1$ ( for $B_{r}$ ) $(3.4a)$

$T_{m}^{(1)}(u)=T_{m}(u)$ , $m=1,$ $\cdots$ . $(3.4b)$

For $B_{r}$ case, one further subsidiary condition should be imposed,

$T^{a}(u)+ \tau^{2r-1-a}(u)=\tau_{1}^{(r)}(u-r+a+\frac{1}{2})T_{1}^{(r)}(u+r-a-\frac{1}{2})$ $\forall a\in \mathrm{Z}$ . (3.5)

Note that the relation is invariant under the exchange $arightarrow 2r-1-a$ . If $a<0$ or $a>2r-1$ ,
there is in fact only one term on the LHS. Though the relation seems somewhat strange,
it has a sound ground in solvable lattice models.[Okado, $\mathrm{K}\mathrm{S}$]

3.2 Quantum Jacobi-Tkudi and Giambelli Formulae

Rather than dealing with $\mathrm{T}$-system solution alone, we find it convenient to introduce
slightly generalized $\mathrm{o}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{S}[\mathrm{K}\mathrm{O}\mathrm{S}]$ . Let us prepare notations. Let $\mu=(\mu_{1}, \mu_{2}, \ldots),$ $\mu_{1}\geq$

$\mu_{2}\geq\cdots\geq 0$ be a Young diagram and $\mu’=(\mu_{1}’’, \mu_{2}, \ldots)$ be its transpose. We denote by
$d_{\mu}$ , the length of the main diagonal of $\mu$ . A skew-Young diagram means a pair of Young
diagrams $\lambda\subset\mu$ satisfying $\mu_{i}\geq\lambda_{i}$ for $\forall i$ . We associate a function $T_{\lambda\subset\mu}(u)$ to a skew
Young tableaux $\lambda\subset\mu$ .
At this stage, we have to notice different properties of $A_{r}$ and $B_{r}$ . For the latter algebra, the
most fundamental is the spin representation. Consequently, we have to distinguish between
a representation containing odd-spin representation and one with even-spin representation.
See [KOS] for the detail.
For $A_{r}$ or the spin-even case of $B_{r}$ , the explicit form of $T_{\lambda\subset\mu}(u)$ is given by

$T_{\lambda\subset\mu}(u)=det$ , (3.6a)
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where
$Rij=T_{\mu_{\mathrm{j}}:}-\lambda+i-j(u+\mu’1^{-}\mu_{1}+\mu_{j}+\lambda i-i-j+1)$ ,
$C_{ij}=-T^{\mu’}:^{-}j-i+j(\lambda\prime 1u+\mu_{1}’-\mu 1-\mu_{i}’-\lambda_{j}’+i+j-)$ , (3.6b)

$H_{iji,-}=\tau_{\mu\mu j}’:-j(u+\mu_{1^{-}}^{l}\mu_{1^{-}}\mu’i+\mu j+i-j)$ .

$T_{k,\ell}(u)$ is the function corresponding to a hook, $T_{()}\ell+1,1k$ .
Two particular cases corresponding to the formal choices $\mu_{i}=\lambda_{i}$ or $\mu_{i}’=\lambda_{i}’$ for $1\leq$

$i\leq d_{\lambda}=d_{\mu}$ yield simpler formulae. In these cases, redefining $\mu_{i},$ $\mu’i’\lambda_{i}$ and $\lambda_{i}’$ so that
$\lambda_{\mu_{1}}’=\lambda_{\mu_{1}’}=0$ , we have

$\tau_{\lambda\subset\mu}(u)=det_{1}\leq i,j\leq\mu 1(T^{\mu}:-\lambda_{j}’-i+j(u+\mu^{;}1-\mu 1-\mu_{ij}’-\lambda’+i+j-\prime 1))$, (3.7a)

$=det_{1\leq i},j\leq\mu\prime 1(\tau-\lambda_{i}+i-j(\mu_{\mathrm{j}}+\mu_{1}-’\mu 1+\mu_{j}+\lambda i-i-j+1)u)$. (3.7b)

The hook function in $\mathrm{e}\mathrm{q}(3.6)$ is thus expressible in $T^{a}$ and $T_{m}$ .
The above relations are quantum analogues to Jacobi-Trudi or Giambelli formulae for Schur
functions, in the sense that they reduce to “classical” ones dropping $u$ -dependency. They

admit a unified description for $A_{r}$ and $B_{r}$ with spin-even cases, although their fundamental

elements , $T^{a}(u),$ $T_{m}(u)$ are defined by different generating series.
Next we consider the spin-odd case of $B_{r}$ . An element in the spin representation can

be also labeled by a column of $\mathrm{r}$-boxes with appropriate letters in them. We only treat

the case where Young diagram $\mu$ has spin representation in the left most column. Let us

denote the corresponding function by $S_{\lambda\subset\mu}^{L}(u)$ ,

$s_{\lambda\subset\mu}^{L}(u)=det1\leq i,j\leq\mu_{1}(s_{ij}^{L})$ (3.8a)

$=det_{1\leq i},j\leq\mu_{2}’(\overline{S}_{ij}^{L})$ , (3.8b)

where

$S_{ij}^{L}=\{$

$T^{\mu_{j}’i-}- \lambda’+j(:u+2\mu’1-\mu j-\lambda\prime\prime+i+ij-r-\frac{5}{2})j\geq 2$

$T_{1}^{(r)}(u+2i-2+2(\mu_{1^{-}}’\lambda_{i}’-r))j=1$
(3.9a)

$\overline{S}_{ij}^{L}=\{$

$T_{\mu_{i}-\lambda_{j}}-i+j(u+2 \mu_{1}’+\mu i+\lambda_{j}-i-j-r-\frac{1}{2})1\leq j\leq\lambda_{1}’$

$\mathcal{H}_{\mu.1-i}^{L}.(+\lambda’+2\mu 1-\prime 2\lambda_{1}’-u2r)j=\lambda_{1}’+1$

$T_{\mu:-i+}j-1(u+2 \mu’1+\mu_{ij-}-\dot{i}-r+\frac{1}{2})j>\lambda_{1}’+1$

(3.9b)

$\mathcal{H}_{m}^{L}(u)=\sum_{=\iota 0}^{m}(-1)^{l(_{\Gamma)}}\tau_{1}(u+2l)\tau_{m}-\iota(u+m+r+l-\frac{1}{2})$ . (3.9c)

We also have its “dual” where a Young diagram has a spin representation in its rightmost
column, which might as well be skipped here.
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3.3 Outline of Proof

The functions $T_{\lambda\subset\mu}(u)(3.6)$ and $S_{\lambda\subset\mu}^{L}(u)(3.8)$ provide solutions to the $T$-system for $A_{r}$

or $B_{r}$ . For $m\in \mathrm{z}_{\geq 0}$ , put
$T_{m}^{(a)}(u)=T_{(}a)(mu)$ (3.10)

for $1\leq a\leq r(A_{r})$ and for $1\leq a\leq r-1(B_{r})$ . We have two further identifications for $B_{r}$

$T_{2m}^{(r)}(u)=T_{(}r)(mu)$ , (3.11a)
$T_{2+}^{(r)}(m1u)=^{s}((L(m+1)^{r})u-m)$ . (3.11b)

Then $\mathrm{e}\mathrm{q}\mathrm{s}(2.1),(2.2\mathrm{a},\mathrm{b})$ reduce to the Jacobi equality, as discussed in [KNSI] for only $A_{r}$

models. $\mathrm{E}\mathrm{q}\mathrm{s}(2.2\mathrm{C}, \mathrm{d})$ need novel insights because of spin-odd terms. We sketch the proof
for $\mathrm{e}\mathrm{q}(2.2\mathrm{C})$ , and leave the proof of $\mathrm{e}\mathrm{q}(2.2\mathrm{d})$ to readers.
Proof of $e\mathrm{q}(\mathit{2}.\mathit{2}C)$

Let us slightly deform $\mathrm{e}\mathrm{q}(2.2_{\mathrm{C}})$ into,

$T_{2m}^{(\Gamma}()u)+12(r \tau)(m-1u)=T_{2m}(r)(u-\frac{1}{2})\tau_{2}r)((\frac{1}{2}m-T(r-1)u+)m(u-\frac{1}{2})\tau(r-1)(m+u\frac{1}{2})$ . $(2.2C^{l})$

By specializing formula (3.8) to the case, $\lambda=\phi,$ $\mu=((\ell+1)^{r})$ , we find the $(\ell+1)\cross(P+1)$

matrix determinant expression,

$\tau_{2l+}^{(r)}(1u)=\det$ .

$= \sum_{j=0}(-1)jT_{1})(_{\Gamma}(up-\ell+2j)R^{()}(j)\ell u$ , (3.12)

where $R_{j}^{(\ell)}(u)$ signifies the determinant of the $(j, 1)$-minor. With use of this form for $T_{2m\pm}^{(r)}1$

and applying eq. (3.5), we can rewrite the lhs of (2.2c’) as

$lh_{S=} \sum_{0i=}^{m}-1j=\sum_{0}^{m}(-1)i+jR_{i}(m-1\rangle(u)R_{j}(m)(u)$

$\{T^{r+}j-i-1(u-m+i+j+\frac{1}{2})+T^{r+i-j}(u-m+i+j+\frac{1}{2})\}$ . (3.13)

One sums up the first (second) term in the rhs of$(3.13)$ w.r.t. $j(i)$ . The result can be
rewritten as the sums of determinants.

$m-1 \sum(-1)^{i}R^{(m}-1)(iu)\det$

$i=0$

$T_{1}^{r-i}(u-m+i+ \frac{3}{2})$ $T^{r}(u-m+ \frac{3}{2})$$T_{1}^{\Gamma-}.. \cdot i-1(u-m+i+\frac{1}{2})$

$T^{r-1}. \cdot.(uT^{r+}m-1(u+\frac{1}{2})-m+\frac{1}{2})$ $T^{r}. \cdot.(uT\tau^{r-m}r-m+m+(u-\frac{1}{2}1(u+\frac{1)}{2}-\frac{1}{2}))|$

$T_{1}^{r-im}+-1(u+i+ \frac{1}{2})$
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$+ \sum_{j=0}^{m}(-1)jR_{i}(m-1)(u)\det|T_{1}^{r}.\cdot.+(u-mT_{1^{-j1}}^{r}-j+m-1(u+j-\frac{1}{2})\tau_{1}^{r-j}(u-.m++j+\frac{3)}{2})j+\frac{1}{2}$
$\tau_{T^{\Gamma}}^{\Gamma}..\cdot.-1(u-m+\frac{3}{2,)}T^{r}(u-+m-2(m+\frac{5}{2})u+\frac{1}{2})$

. ..
$T^{r}. \cdot.(u+m-T^{r-m+1}(u+\frac{1)}{2}\tau r-m(u-\frac{1}{2}\frac{3}{2}))|$ .

(3.14)

Apparently, the first summation vanishes whereas $j=0$ and $j=m$ terms in the second
summation contribute. By noticing $R_{0}^{(m)}= \tau_{(m^{f})}(u+\frac{1}{2})=T_{2m}^{(r)}(u+\frac{1}{2}),$ $R_{m}^{()}m=T_{m}^{r-1}(u- \frac{1}{2})$,
and using the above explicit forms, we can easily establish that $\mathrm{e}\mathrm{q}(3.14)$ coincides with the
rhs of (2.2c’). $\square$

We remark that the above proof does not utilize any properties of underlying solvable
models except for (3.5). The determinantal structure of solution seems to be accidental just
like in the other discrete equations, if one does not have any knowledge on the background.
The rest of this paper will be devoted to present reasoning from solvable lattice models in
two dimensions.

4 Fusion hierarchy of vertex models

We consider vertex models on a square lattice. Physical degrees of freedom are assigned
to horizontal and vertical edges. To each vertex, we associate a Boltzmann weight , or
an element in $R$-matrix according to four physical variables on edges surrounding the
vertex. To define a vertex model, therefore, we need to specify what kind of space physical
variables belong to. Fusion procedure is the most fundamental technique in obtaining
models defined on “composite” spaces out of “fundamental” ones. Roughly speaking, the
two indices $a,$ $m$ appeared in the field variable $T$ indicate how many times one employs
fusion procedure for defining the model. And $T$-system itself might be a consequence
of this. Thus it might be meaningful to present an elemantary explanation to the fusion
procedure here.
Let us take a $A_{r}$ vertex model as an example. For this model, the space of vector represen-
tation, $V_{\Lambda_{1}}$ deserves most fundamental. lts elements,i.e.,physical variables in that space
can be labeled by integers 1, $\cdots,$ $r$ . The $R$-matrix acting on $V_{\Lambda_{1}}\otimes V_{\Lambda_{1}}$ is given by

$R_{V_{\mathrm{A}_{1}},V_{\mathrm{A}_{1}}}(u)= \alpha=1,\cdot\cdot r\sum.,(1+u/2)E_{\alpha}\alpha\otimes E_{\alpha}\alpha+\sum_{\beta\alpha\neq}E_{\alpha\beta}\otimes E\beta\alpha+\alpha\sum\neq\rho u/2E\alpha\alpha\otimes E_{\beta}\rho$
(4.1)

where $E_{\alpha\beta}$ is a matrix element, $(E_{\alpha}\rho)_{i,j}=\delta_{\alpha,i}\delta_{\beta,j}$ . We regard $\mathrm{R}$-matrix as an operator
sending the “bottom” ( $‘(\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}")$ state to the “upper” $(” \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}")$ state, graphically.
This $\mathrm{R}$-matrix satisfies the Yang-Baxter relation:

$R_{V_{2}V_{3}}(u)RV1V_{3}(u+v)Rv_{1}V_{2}(v)=R_{V_{1}V_{2}}(v)R_{Vv_{3}}1(u+v)Rv_{2}V_{3}(u)$. (4.2)
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Let $P$ be a permutation operator in $V_{\Lambda_{1}}\otimes V_{\Lambda_{1}},$ $P(a\otimes b)=b\otimes a$ . We define $R^{\vee}(u)=PR(u)$ .
It yields decomposition of the tensorial space as,

$R^{\vee}(u)=(1+u/2)P_{2\Lambda_{1}}+(1-u/2)P_{\Lambda_{2}}$ . (4.3)

where $P_{\Lambda}$ denotes the projector to the highest weight module $V_{\Lambda}$ . Here we see two singular
points in $R^{\vee}(u),$ $u=-2$ and 2 where it reduces to a projector to a subspace in $V_{\Lambda_{1}}\otimes V_{\Lambda_{1}}$ .
We introduce operators $R_{<V_{1},V_{2}>,V()}3u,$ $R_{(V_{1},V_{2}}$ ), $V\epsilon(u)$ acting on $V_{1}\otimes V_{2}\otimes V_{3}$ where $V_{i}=$

$V_{\Lambda_{1}}$ ,

$R_{<V_{1},V_{2}}>,V_{3}(u)= \frac{1}{2}R_{V_{1},V(-2)}^{\vee}2R_{V}1,V3(u+1)R_{V_{1},V_{2}}(u-1)$ $(4.4a)$

$,R_{(V_{1},V_{2}}),V_{3}(u)= \frac{1}{2}R_{VV_{2}}^{\vee}(\iota,2)RV_{1,3}V(u-1)RV1,V2(u+1)$ . $(4.4b)$

Pictorially, we regard the third space as the vertical one, and the first and second as
horizontal ones. Thanks to the Yang Baxter relation and $( \frac{1}{2}R^{\vee}(\pm 2))2=\frac{1}{2}R^{\vee}(\pm 2)$ , we
have

$R_{<V_{1},V_{2}V_{3}}>,(u)= \frac{1}{2}R_{VV}^{\mathrm{v}_{1,2}}(-2)R_{V_{1}},V3(u-1)RV1,V_{2}(u+1)\frac{1}{2}R_{V_{1},V_{2}}^{\vee}(-2)$ $(4.5a)$

$R_{(V_{1},V_{2}}),V3(u)= \frac{1}{2}R_{VV(2)}^{\mathrm{v}_{1,2}}R_{V_{1}},V_{3}(u+1)R_{V_{1},V_{2}}(u-1)\frac{1}{2}R_{V_{1}}^{\vee},V_{2}(2)$. $(4.5b)$

Now that they have projectors in both horizontal ends, we can regard $R_{<V_{1},V_{2}V()}>,3u$ ,
$R_{(V_{1},V_{2}),V(}\epsilon u)$ as operators acting on $V_{\Lambda_{2}}\otimes V_{\Lambda_{1}}$ and $V_{2\Lambda_{1}}\otimes V_{\Lambda_{1}}$ , respectively. Similarly
one can build $R$-matrix acting on far more composite spaces labeled by skew Young
diagrams, in principle. We will not go into details. We content ourselves by demonstrating
the first equation of the $T$-system can be easily derived from the above argument. Let
the monodromy matrix $J_{V_{0}}(u)$ acting on space $\mathcal{V}=(V_{1}\otimes V_{2}\otimes\cdots\otimes V_{N-1}\otimes V_{N})$ be

$Jv_{0}(u)=Rv0,V_{1}(u)Rv_{0},v2(u)\cdots Rv_{0,N}v-1(u)Rv0,vN(u)$ . (4.6)

$\mathcal{V}$ is referred to as a quantum space.
The transfer matrix $T_{V_{0}}(u)\mathrm{i}\mathrm{s}$ given by the trace:

$\tau_{V_{0}}(u)=^{\tau_{r}J_{V(u}}V00)$ . (4.7)

Note that we label the transfer matrix by its horizontal space. We adopt this convention
hereafter.
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Let $V_{0}=V_{0}’=V_{\Lambda_{1}}$ and prepare two transfer matrices stacked vertically. We use the fact
that the identity operator in $V_{\Lambda_{1}}\otimes V_{\Lambda_{1}}$ is $\frac{1}{2}(R^{\vee}(2)+R^{\vee}(-2))$ . Inserting this, we have

$T_{\Lambda_{1}}(u+1)T \Lambda_{1}(u-1)=TrV0\otimes V_{00^{\prime(})}’\frac{1}{2}(R_{VV}\vee 0,2)+R^{\vee}V0^{V_{0}}’(-2))JV0(u+1)JV0’(u-1)$

$=Tr_{V_{0}\otimes}V_{0}’( \frac{1}{2}R_{V0,00}^{\vee}2)J_{V_{0}}(u+1)J_{V}’(u-1)+JV0(u+1)J_{V_{0}}’(u-1)\frac{1}{2}R^{\mathrm{v}}’(v_{0^{\prime(-}}V0,v2))$

$=\tau_{r_{V_{0}\otimes}}V_{0}’(R_{<VV_{00^{>}0}^{\prime(}}>V1<V0^{V’}V2)0,R_{<}u)R,(u\cdots V0,V’>VN(u)$

$+R_{(V_{0},V_{0})}\prime V1(u)R_{(}V0,V_{0}’)V2(u)\cdots R(V0,V_{0}’)V_{N}(u))$

$=T_{V_{\mathrm{A}_{2}}}(u)+^{\tau_{V}}2\mathrm{A}_{1}(u)$ (4.8)

where we use the cyclic property of trace and the Yang Baxter relation repeatedly. Note
that the above modules can be labeled by boxes such that $T_{\Lambda_{1}}=T_{(1)},$ $T_{\Lambda}2=T_{(1^{2})}$ and
$T_{2\Lambda_{1}}=T_{(2)}$ . Then $\mathrm{e}\mathrm{q}.(4.8)$ is nothing but the first of $\mathrm{T}$-system of $A_{r}$ type under the

identification (3.10) and our convention, $T_{m}^{(0)(a)}(u)=^{\tau_{0}}=1$ . $\mathrm{T}$-system may be derived in
this way in principle, although it was proposed via different route.[KNSI]

Before closing this section, we make an important remark. We call a set of models a

fusion hierarchy if they are off-springs of a fundamental model. As a consequence of fusion

procedure, transfer matrices belonging to a hierarchy and sharing a same quantum space
commute with each other:

[$T_{\mu}(u),$ $T\mu^{\prime()]0}u;=$ . (4.9)

Consequently, they can be treated as scalars on the space of their common eigenstates.
We do not, in what follows, distinguish a transfer matrix from its eigenvalue in this sense.

5 “Bethe-strap procedure” and Yangian analogue of Young tableaux

To solve an eigenvalue equation analytically, one usually $\mathrm{b}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{d}\triangleright \mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ at the same
time. The latters are generally involved and irrelevant if only eigenvalues are of interest.
Lanczos method would be a good example. In the content of solvable lattice models, this

is first noticed by $\mathrm{B}\mathrm{a}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{r}[\mathrm{B}\mathrm{a}\mathrm{x}]$ and emphasized by $\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{k}\mathrm{h}\mathrm{i}\mathrm{n}[{\rm Res}]$ as the analytic Bethe

ansatz method. Here we further proceed and propose a modified version of their ansatz so

that it can be applied to wider range of $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{S}[\mathrm{K}\mathrm{s}]$ . Let us take the six vertex model as the

simplest example. The $R$-matrix is $r=2$ specialization in $\mathrm{e}\mathrm{q}(4.1)$ . The transfer matrix
for this case was diagonalized long ago by $\mathrm{L}\mathrm{i}\mathrm{e}\mathrm{b}[\mathrm{E}\mathrm{L}]$ constructing explicit eigenfunctions.
His result reads,

$T_{1}(u)=( \frac{(2+u)}{2})^{N}\frac{Q(u-1)}{Q(u+1)}+(\frac{u}{2})^{N}\frac{Q(u+3)}{Q(u+1)}$ . (5.1)
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where

$Q(u)=\square (uj=m1-iu_{j})$

and $u_{j}’ \mathrm{s}$ are parameters which label different eigenvalues.
From the original $R$-matrix , the resultant eigenvalue should be obviously pole-free. How-
ever the first and second terms in $\mathrm{e}\mathrm{q}.(5.2)$ seem to have poles at $u=-1+iu_{k}(k=1, \cdots, m)$ .
These singularities must cancel with each other. Therefore we demand the residues at these
point should be zero, i.e.,

$(. \frac{(_{iu_{k}+1})}{(iu_{k}-1)})^{N}=-\frac{Q(iu_{k}+2)}{Q(iu_{k}-2)}$

$=- \prod_{j=1}^{m}\frac{(iu_{k}-iu_{j}+2)}{(iu_{k}-iu_{j}-2)}$ . (5.2)

or
$-1= \frac{Q(iu_{k}+2)}{Q(iu_{k}-2)}(\frac{(iu_{k}-1)}{(iu_{k}+1)})^{N}$ (5.2)

This is nothing but the Bethe Ansatz equation.
We express this results graphically. Let two boxes correspond to the first and second term
in $\mathrm{e}\mathrm{q}.(5.2)$ ,

1 $u=( \frac{(2+u)}{2})^{N}\frac{Q(u-1)}{Q(u+1)}$ $(5.3a)$

2 $u=( \frac{u}{2})^{N}\frac{Q(u+3)}{Q(u+1)}$ , $(5.3b)$

where the lower index $u$ stresses the $u$ dependendencies of $\mathrm{l}\mathrm{h}\mathrm{s}’$ . We call them “Yangian
analogue” to Young $\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{u}\mathrm{x}[\mathrm{K}\mathrm{s},\mathrm{s}\mathrm{u}\mathrm{z}]$ . The meaning will become apparent in the following.
We draw an arrow to indicate the singularity cancellation,

1 $uarrow 2u$ . (5.4)

One finds the similarity between the above graph and the structure of $A_{1}$ spin 1/2 module;
the arrow looks like the action of $S^{-}$ . In terms of expressions, it means the multiplication
by the “

$\mathrm{l}\mathrm{h}\mathrm{s}$
” of the Bethe Ansatz equation (5.2’) at the singularity points $u=-1+iu_{k}$ .

The $u$ -dependency is easily retrieved by the identification.
We reinterpret the figure as follows. Given the “top” term 1

$u$ ’ we like to find the “minimal
pole-free set”. The rule to generate its descendants is to multiply the expressions by the
lhs of Bethe ansatz equation. The resultant expression coincides with $T_{1}(u)=1+2$
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We call this procedure, finding a pole-free set with successive multiplication of the “
$\mathrm{l}\mathrm{h}\mathrm{s}$

” of

the BAE, as the “Bethe-strap”. Up to now, we do not have a proof to justify the “Bethe-
strap” method. It, however, gives us correct solutions as far as we can compare with known

results. We will see some examples in the following. Moreover, the “Bethe-strap” method

gives us the conjectures for the cases with which other methods can not deal.
Let us consider a less trivial example, a model of which the quantum space is again $N$ fold

tensor product of two dimensional spaces while the auxiliary space is three dimensional.
We know from the item 3 in the section 5,

$T_{2}(u)\in T_{1}(u-1)T_{1}(u+1)$ . (6.5)

Thus we identify the “top” term of the lhs as

$1$ $1$1 $\cross$ 1 $\equiv$ . (6.6)
$u-1$ $u+1$

The Bethe-strap procedure gives the minimal pole-free set,

$arrow$, (6.7)$1$ $1$

which agrees with the result in $\mathrm{r}\mathrm{e}\mathrm{f}[\mathrm{K}\mathrm{R}]$ . The figure coincides with that for three dimensional
representation of $A_{1}$ , except for the $u$ -dependency. Indeed, one proceeds further to $m+1$

dimensional case, $m$ arbitrary. The resultant tableaux are exactly those for $A_{1}m+1$

dimensional representation with shifts in spectral parameters, $u-m+1,$ $u-m+3,$ $\cdots u+$

$m-1$ from left to right. This coincidence comes from only the condition of singularity
cancellation.
The situation holds also good for $A_{r}$ vertex models, $r$ general. For definiteness we assume
the quantum space is given by the $N$ fold tensor of $V_{\Lambda_{p}}$ . We prepare some symbols. Let
$r+1$ boxes be

$a= \psi_{a}(u)\frac{Q_{a-1}(u+a+1)Qa(u+a-2)}{Q_{a-1}(u+a-1)Qa(u+a)}$ $1\leq a\leq r+1$

$\psi_{a}(u)=\{$
$((u+2)/2)^{N}$ for $a\leq p$

$(u/2)^{N}$ for $a>p$
(6.8)

where $Q_{0}(u)=Q_{r+}1(u)=1$ , while $Q_{a}(u) \equiv\prod_{j}(u-iu_{j}^{(a)}),$ $(a=1, \cdots, r)$ solves the nested

Bethe ansatz equation:

$-1= \frac{(iu_{k}^{(a}-)\delta ap)}{(iu_{k}^{(a)}+\delta ap)}\prod_{b=1}^{r}.\frac{Q_{b}(iu+(ak)(\alpha_{a}|\alpha_{b}))}{Q_{b}(iu_{k}^{(a}-)(\alpha a|\alpha_{b}))}$, $a=1,$ $\cdots,$ $r$ . (6.9)

The upper index $a$ is referred to as a “color”.
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As before, we start from the model of which the auxiliary space is the most fundamental
one, $V_{\Lambda_{1}}$ . The minimal pole-free set is,

$\tau_{\Lambda_{1}}^{l}(u)=a=\sum^{+1}r1a$ . (6.10)

Comparing the result with that from the algebraic Bethe ansatz, we find $\mathrm{e}\mathrm{q}(6.10)$ is nothing
but the eigenvalue of the transfer matrix, i.e., $T_{\Lambda_{1}}’(u)=T_{\Lambda_{1}}(u)$ . Here we put a prime to
distinguish the combinatorial quantity from “true” eigenvalues of transfer matrix.
The singularity cancellation can be depicted as,

1 $-^{1}2-^{2}$ $-^{r}r+1$ . (6.11)

A letter on an arrow signifies which color of singularities two boxes cancel each other.
Now we consider “two” box cases. $\mathrm{E}\mathrm{q}(4.8)$ suggests that any pair of boxes with spectral
parameter $u\pm 1$ may be devided into two groups, $T_{2\Lambda_{1}}’$ and $T_{\Lambda_{2}}’$ . Again, primes stress that
they will be defined by box combinatorics. As in $A_{1}^{(1)}$ case, we expect that any element in
$T_{2\Lambda_{1}}’$ is expressible in a form;

$i$ $j$ . (6.12)$i$ $j$

Similarly, we describe elements in $T_{\Lambda_{2}}’$ by two boxes arranged vertically,

$\mathrm{H}_{i}^{j}$. (6.13)

Here the upper (lower) box carries the spectral parameter $u+1,$ $(u-1)$ .
Now we start the Bethe-strap procedure assuming the top term
minimal pole free set is given by $\mathrm{e}\mathrm{q}(6.12)$ with $i\leq j$ . This means that any table in eq
(6.13) should satisfy $j<\dot{i}$ .
We can also reach the same result starting from the top term,

$\mathrm{H}_{2}^{1}$. (6.14)

Note two important ingredients,
1 a box with letter $i$ has singularities of colors $i-1$ and $i$ .
2 Thus the table like (6.13) contains singularities in colors $i-1,$ $i,j-1,j$ in general.

There are, however, some exceptions: when $j=i-1$ , it possesses $j-1,j+1$ color
singularities only.

Then it is obvious that the figure for the Bethe-strap procedure coincides with the weight
space figure for the highest weight module $V_{\Lambda_{2}}$ . The situation is quite the same for $V_{\Lambda_{a}}$

for $a\leq r$ for $A_{r}^{(1)}$ . We summarize the Bethe-strap result for the tableaux description for
$A_{r}^{(1)}$ .
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Rule for the $A_{r}$ model. Prepare semi-standard tableaux for $m\Lambda_{1}$ . We assign spect$r\mathrm{a}l$

parameters $u-m+1,$ $\cdots,$ $u+m-1$ from the left to the right. We regard each boxes as
expressions under the identification (5.7) and take the product of them. After summing
the resultant expressions over all semi-standard tablea$ux$, we have, say, $\tau_{m\Lambda 1}^{l}(u)$ . Similarly
for $\tau_{\Lambda_{a}}’(u)$ we prepare a set of tableaux made of boxes arranged vertically, with spectral
parameters, $u+a-1,$ $\cdots,$ $u-a+1$ from the. top to the bottom.

One can easily prove their pole-freeness. The meanings of functions $x_{a}^{A}(u)$ etc.,in eqs
(3.1) and (3.2) are now clear; $x_{a}^{A}(u)=$ a

$u$
.

Our conjecture is,

Conjecture 1. $T_{m\Lambda_{1}}’(u)$ and $T_{\Lambda_{a}}’$ coincide with th $\mathrm{e}$ eigenvalues of $t$ransfer matrices whose
auxiliary spaces are isomorphic to $V_{m\Lambda_{1}}$ and $V_{\Lambda_{a}}$ , respectively.

We employed the Bethe-strap procedure for some skew Young diagram cases and
obtain a generalization of the conjecture 1 as follows. Prepare a skew Young diagram.
We assign a number $\in\{1,2, \cdots, r\}$ to a box according to the “semi-standard” rule. That
is, the numbers should be strictly increasing from top to bottom and weakly increasing
from left to right. We assign the spectral parameters to the boxes which are decreasing
by 2 from top to bottom and increasing by 2 from left to right. Through the procedure
described above, we have an expression, $T_{\lambda\subset\mu}’$ for a given skew Young diagram $\lambda\subset\mu$ .

Conjecture 2. The expression obtained from the above combinatorial rule constitutes
a $m$inimal pole-free set, and it coincides with the eigenvalue of transfer matrix acting on
auxiliary space $\lambda\subset\mu$ .

We have different descriptions for the rules imposed for the $B_{r}$ type case. See $[\mathrm{K}\mathrm{S}$ ,
KOS].
For the $A$-model, there are some supporting arguments available in [Che, Baz-Resh].

The author, however, does not know the explicit proof for the above two conjectures.
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6 Equivalence between combinatorial and determinantal expressions

The following theorem is the main body in this section.

Theorem 1. Combinatorial expressions for transfer matrices coincide with the determi-
$n$antal expressions given in $(\mathit{3}.\mathit{6}),(\mathit{3}.\mathit{8})$.

We have argued in the previous section that the pole-freeness leads to the combinato-
rial rules for tableaux. Then theorem 1 further states that the pole-free condition fixes a
solution to $T$ -system being a determinantal form. And this is our main message in this
report.
Though theorem 1 can be proved in a general setting, we prefer to adopt again a simple
example.
We first prepare some lemmas.

Lemma 1. There exists a one to one mapping between a pair of one column Young
tableaux $\{\tau(1^{a}), T\}(1^{b}),$ $(a\geq b+2)$ and a skew Young ta$ble\lambda\subset\mu s.t.,$ $\mu_{1}’=a-b-2,$ $\mu_{2}^{;}=$

$0,$ $\lambda_{1}’=\lambda_{2}=a-1$ which breaks the horizontal semi-standard rules. Here the $s\mathrm{e}m\mathrm{i}$ -stand$\mathrm{a}rd$

condition for the vertical adjacent pairs should be valid.

Proof: We can explicitly construct the map. Let the content of the left(right) column
of the skew tableaux be $\{j_{1},j_{2}, \cdots,jb+1\}$ $(\{i_{1}, i_{2}, \cdots , i_{a-1}\})$ . Looking from the top, we can
identify the first adjacent pair which breaks the rule: $j_{k}>i_{a-b-2+k}$ . Then the associated
pair of columns is

$\{(i1, i2, \cdots, ia-b-2+k,jk,jk+1, \cdots,jb+1), (j_{1},j2, \cdots,j_{k}-1, i_{a-b}-1+k, i_{a-b+,-1}k. . , ,\dot{i}_{a})\}$

One can similarly construct the inverse map.$\square$

We generalize the result to $(m-1,1)$ columns case. Let $(\lambda\subset\mu)_{k}$ be a skew Young diagram,
$\lambda=((m-1)a+1),$ $\mu=(m-k-1)$ . We fix the spectral parameter of the bottom-right box to
be $u-a+m-2$ . All numbers assigned to a table satisfy the semi-standard conditions. We
introduce a column $(1^{a-k})$ whose bottom box possesses the spectral parameter $u-a+m$ .
Let us denote by $TO_{(m}a$ ) $(u, k)$ the set of tableaux of which the first $k$ adjacent columns
from the right break the horizontal condition. Here the bottom-right box is assigned the
spectral parameter $u-a+m$.
We have

Lemma 2. There is a $one- t_{o^{-}one}$ correspondence between a pair of tableaux $\{(\lambda\subset$

$\mu)_{k},$ $(1^{a-k})\}$ and a member in $\tau o_{(m^{a})}(u, k-1)\cup TO_{(m}a)(u, k)$ .

The proof can be completed with repeated applications of the lemma 1 with some
“end” conditions.
Summing up them with alternating signs, we have

180



Theorem 2.
ロ

$\sum_{k=0}(-1)kT_{(\lambda\subset}\prime T\mu)k(\prime 1)^{a-}k=T_{(m^{a}}’)$
.

To prove the theorem 1, it is useful to adopt the induction method w.r.t. width of

the Young diagram $m$ . We have to prepare the analogue of theorem 2 where the rhs is

the $T’$ for a general Young diagram. The proof for such general case can be done in a

straightforward way, but lengthy. Thus we will not present it here and assume that our
theorem holds good for any skew Young diagram of width $m-1$ .
Let us expand the determinantal expression for $\tau_{(m^{a})}(u)$ w.r.t. the $m-\mathrm{t}\mathrm{h}$ column and
compare the result with theorem 2. Especially, consider the $(m-k, m)$ minor. The
$(m-k, m)$ element is $T^{a-k}(u+m-k-1)$ and is nothing but the $T_{(1^{a-k})}’$ . Close examination
reveals the minor coincides with $T_{(\subset)_{k}}’\lambda\mu$ under the induction assumption. Therefore, the
determinantal expression and the combinatorial one coincide at this stage. One can argue
a general skew case in a similar way, which completes the proof of theorem $1.\coprod$.

7 Conclusion

In this report, we have presented a solution to a certain discretized Toda field equation.
The solution is inspired by the studies on two dimensional solvable lattice models. In the
view of the latter, the determinantal structure of the solution can be easily understood as

a consequence of pole-freeness. We might expect DPEs also admit such interpretation in
their structure of solution and the singularity confinement property.
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