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ABSTRACT. In this paper we present some results on the generalized nonperiodic Toda
lattice equations. We start with an iso–spectral deformation of general matrix which
is a natural generalization of the Toda lattice equation. This deformation is equivalent
to the Cholesky flow, a continuous version of the Cholesky algorithm introduced by
Watkins. We prove the integrability of the deformation, and give an explicit formula
for the solution to the initial value problem. Using the formula, the solution to the LU
factorization can be constructed explicitly. Based on the root spaces for simple Lie
algebras, we consider several reductions of the equation. This leads to Toda equations
related to other classical semisimple Lie algebras which include the integrable systems
studied by Kostant. We show these systems can be solved explicitly in a unified way.
The behaviors of the solutions are also studied. Generically, there are two types of
solutions, having either sorting property or blowing up to infinity in finite time.
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1. INTRODUCTION

In this paper we describe briefly some results on the generalized nonperiodic Toda
equations. Details of the present results can be found in [13]. First we consider an
$\mathrm{i}\mathrm{s}\mathrm{o}$-spectral deformation of an arbitrary diagonalizable matrix $L\in \mathfrak{M}(N, \mathbb{R})$ . With the
deformation parameter $t\in \mathbb{R}$ , this is defined by

(1.1) $\frac{d}{dl}L=[P , L]$ ,

where $P$ is the generating matrix of the deformation, and is given by a projection of $L$ ,

(1.2) $P=\square (L):=(L)_{>^{0}}-(L)_{<0}$
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Here $(L)_{>0(<}0)$ denotes the strictly upper (lower) triangular part of $L$ . In terms of the
standard basis of $\mathfrak{M}(N, \mathbb{R})$ , i.e.

(1.3) $E_{ij}=(\delta_{ik}\delta_{j}\ell)_{1}\leq k,\ell\leq N$ ,

the matrices $L$ and $P$ are expressed as

(1.4) $L$ $=$
$\sum_{1\leq i,j\leq N}aijE_{ij}$

,

(1.5) $P$ $=$
$1 \leq i<j\sum_{\leq N}aijE_{ij}-\sum_{1\leq j<i\leq N}aijEij$

.

Using the commutation relations for $E_{ij}$ , i.e.

(1.6) $[E_{ij}, E_{k\ell}]=E_{itj}\delta k-Ejk\delta i\ell$ ,

the equations for the components $a_{ij}=a_{ij}(t)$ are written in the form,

$\frac{da_{ij}}{dl}$ $=$ $2(_{k=} \sum_{I+1}^{N}-\sum_{k}j=1-1)a_{ik}a_{kj}$

(1.7) $+(a_{II}-a_{jj})a_{ij}$ ,

where $I:= \max(i,j)$ and $J:= \min(i,j)$ . The equation (1.1) is also defined as the
compatibility of the following linear equations with $\mathrm{i}\mathrm{s}\mathrm{o}$-spectral property of $L$ ,

(1.8) $L\Phi$ $=$ $\Phi\Lambda$ ,

(1.9) $\frac{d}{dl}\Phi$ $=$ $P\Phi$ ,

where $\Phi$ is the eigenmatrix, and A is the diagonal matrix of eigenvalues,

(1.10) $\Lambda=diag(\lambda_{1}, \cdots, \lambda_{N})$ .

The set of equations (1.8) and (1.9) is also referred as the inverse scattering transform
for the system (1.1).

In the case of the original nonperiodic Toda lattice equation, $L$ is given by a symmetric
tridiagonal matrix [16]. The matrices $L$ and $P$ for this equation are commonly written
as

(1.11) $L_{T}$ $=$ $\sum_{i=1}^{N}a_{i}Eij+\sum_{i=1}^{N-1}b_{i}(E_{i,i+1}+E_{i+1,i})$ ,

(1.12) $P_{T}$ $= \sum_{i=1}^{N-1}b_{i}(E_{i,i+1}-E_{i+1,i})$

The integrability of the Toda lattice equation has been shown by the inverse scatter-
ing method [8] [15] [16]. In this paper, we call (1.1) with (1.2) the “generalized Toda
equation”.
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Several generalizations of the Toda lattice equation have been considered. In [2],
Bogoyavlensky extended the equation based on the simple roots of semi-simple Lie al-
gebra $\mathrm{g}$ , where $L$ and $P$ were given by

(1.13) $L_{B}$ $=$ $\sum_{i=1}aih_{i}\gamma+\sum_{\alpha\in\Pi}b_{\alpha}(e\alpha+e_{-\alpha})$ ,

(1.14) $P_{B}$ $=$
$\sum_{\alpha\in\Pi}b_{\alpha}(e_{\alpha}-e-\alpha)$

.

Here the elements $h_{i},$
$e_{\alpha},$ $e_{-\alpha}$ are Cartan-Weyl bases in $\mathrm{g}$ with $r=rank(\mathrm{g})$ and $\Pi=\mathrm{t}\mathrm{h}\mathrm{e}$

set of the simple roots. All of these equations associated with semi-simple Lie algebras
are shown to be completely integrable hamiltonian systems. In [14] Kostant solved
these by using the representation theory of semi-simple Lie algebras. In [1], Bloch et
al. showed that these systems can be also written as gradient flow equations on an
adjoint orbit of compact Lie group. They then showed that the generic flow assumes the
“sorting property” (or convexity). Here the sorting property means that $L(t)arrow\Lambda=$

diag $(\lambda_{1}, \cdots, \lambda_{N})$ as $tarrow\infty$ , with the eigenvalues being ordered by $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}$ .

There are also other types of extensions: One of them is to extend $L_{T}$ in (1.11) to a full
symmetric matrix. The corresponding system, which we call the “full symmetric Toda
equation”, was shown by Deift et al. [5] to be also a complete integrable hamiltonian
system. In [11] Kodama and $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{n}$ solved the initial value problem of the corres-
ponding inverse scattering problem (1.8) and (1.9), and obtained an explicit formula of
the solution in a determinant form. They also showed the sorting property in the generic
solution. The full symmetric Toda equation gives a $\mathrm{Q}\mathrm{R}$-flow defined by [17], and the
solution is obtained by the QR factorization method. As a slight generalization of the
full symmetric Toda equation, Kodama and Ye [12] considered a system with symmet-
rizable matrix $L$ , which is expressed as $L_{K\mathrm{Y}}=L_{S}S$ with a full symmetric matrix $L_{S}$ and
a diagonal matrix $S$ . A key feature of this system is that the eigenmatrix of $L_{KY}$ can be
taken as an element of noncompact group of matrices, such as $O(p, q)$ , and defines an
indefinite metric in the eigenspace. The integrability was also shown by a similar way
as in [11], and the general solution now assumes either sorting property or blowing up
to infinity in finite time as a result of the indefinite metric. This system is equivalent to
the $\mathrm{H}\mathrm{R}$-flow, a continuous version of the HR algorithm introduced by Watkins [20].

In [7], Ercolani et al. proposed the equation (1.1) with matrices,

(1.15) $L_{H}$ $= \sum_{i=1}^{N1}-E_{i,i+}1+\sum_{1\leq j\leq i\leq N}bijEij$ ,

(1.16) $P_{H}$ $=$
$-2(L_{H})<0=-2 \sum_{N1\leq j<i\leq}bijEij$

,

which was called the “full Kostant-Toda equation”. This is also an extension of the Toda
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equation (1.11) which can be written in the form,

(1.17) $\tilde{L}_{T}=\sum_{i=1}^{N1}E_{i,i+1}-+\sum_{i=1}^{N}a_{i}Eii+\sum_{i=1}^{N-1}b_{i+}^{2}Ei1,i$ ,

As we will show in this paper, the transformation from (1.11) to (1.17) is given by a
rescaling of the eigenvectors of $L_{T}$ . Several group theoretical structure of the extended
system were found. However the question whether the system is completely integrable
still remains open in a sense of explicit integration.

It is immediate but important to observe that all of these extensions are special reduc-
tions of the generalized Toda equation (1.1). In fact, we show that these reductions are
obtained more systematically as certain decompositions of the root spaces of semi-simple
Lie algebras.

In terms of the matrix factorization, the generalized Toda equation (1.1) with (1.2)
is equivalent to the Cholesky flow introduced by Watkins in [20]. In fact, writing $P$ in
(1.2) as $P=L-2(L)_{<0}-(L)_{0}$ , where $(L)_{0}$ denotes the diagonal part of $L$ , we see that
the equation (1.1) is the same as the Cholesky flow in [20] except a scale of $t$ by 2. Deift
et. al. showed [6] that the Cholesky flow is a completely integrable hamiltonian system,
and it can be solved by the following $\mathrm{L}\mathrm{U}$-type of matrix factorization:

(1.18) $e^{tL\langle 0)}=V(t)W(t)$ ,

where $V(t)$ and $W(t)$ are lower and upper matrices respectively with diag$(V(t))=$
$diag(W(t))$ . Note that the usual LU factorization has a different normalization in the
diagonal part, diag$(V(t))=diag(1, \cdots, 1)$ . Then the solution $L(t)$ is given by

(1.19) $L(t)=V^{-1}(t)L(0)V(t)=W(t)L(0)W^{-1}(t)$ .

The above solution is not explicit in the sense of (1.18). The explicit formula of the
factorization is a direct consequence of our results.

In this paper we first show the complete integrability of (1.1) with (1.4) and (1.5)
by means of the method of inverse scattering transform and give an explicit solution to
the initail value problem. Then we prove the complete integrability of any reductions of
(1.1) which include generalized Toda equations based on other classical semi-simple Lie
algebras. The content of this paper is as follows: We start with a preliminary in Section
2 to give some background information necessary for analysis of the system (1.1) and the
inverse scattering scheme (1.8) and (1.9).

In Section 3, we give solutions to the initial value problem of (1.9) for the general
system (1.1). A key in the method is to use the orthonormalization procedure of Szeg\"o,
which is equivalent to the Gram-Schmidt orthogonalization method. This shows the
complete integrability of the generalized Toda equation in the sense of inverse scattering
transformation method. Based on our explicit solution, we then give an explicit solution
to the Cholesky factorization (1.18).
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In Section 4, we present reductions of (1.1) according to the classification of semi-
simple Lie algebras. The matrix $L$ here then contains “all” the root vectors, and it gives
a generalization of the systems formulated by Bogoyavlensky [2]. A key ingredient here is
to find a matrix representation of the algebra in a decomposition consisting of diagonal,
strictly upper and lower matrices (Lie’s Theorem [10]). Then the integrability of these
systems associated with semi-simple Lie algebras is a direct consequence of the result in
Section 3.

Section 5 provides other reductions which include the full Kostant-Toda equation and
system with a matrix $L$ having band structure in the elements.

In Section 6, we discuss the behavior of the solutions. Generically, in addition to the
sorting property, there are slutions blowing up to infinity in finite time, as in the case
discussed in [12].

Finally we illustrate the results obtained in this paper with explicit examples in Section
7.

2. PRELIMINARY

Here we give some background information necessary for the inverse scattering method
(1.8) and (1.9). As we will see in the next section, a key idea for solving these equations
is to use an orthogonality of the eigenfunctions of (1.8). This is simply to consider a
dual system of (1.8) and (1.9), which are written by

(2.1) $\Psi L$ $=$ $\Lambda\Psi$ ,

(2.2) $\frac{d}{dl}\Psi$ $=$ $-\Psi P$ ,

where the matrix $\Psi$ is taken to be $\Phi^{-1}$ , and of course

(2.3) $\Psi\Phi=I$ , $\Phi\Psi=I$ .

In terms of the eigenvectors, these matrices can be expressed as

(2.4) $\Phi\equiv[\emptyset(\lambda_{1}), \cdot.. , \phi(\lambda_{N})]=[\phi_{i}(\lambda_{j})]1\leq i,j\leq N$ .
(2.5) $\Psi\equiv[\psi^{T}(\lambda_{1})$ , $\cdot$ .. , $\psi^{T}(\lambda N)]^{T}=[\psi_{j}(\lambda_{i})]1\leq i,j\leq N$

Note here that $\phi(\lambda_{i})$ and $\psi(\lambda_{i})$ are the column and row eigenvectors, respectively. Then
the equations (2.3) give

(2.6) $\sum_{k=1}^{N}\psi_{k}(\lambda i)\phi k(\lambda_{j})$ $=$ $\delta_{ij}$ ,

(2.7) $\sum_{k=1}^{N}\emptyset i(\lambda k)\psi_{j}(\lambda_{k})$ $=$ $\delta_{ij}$ ,
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which are called the “first and second orthogonality conditions”. With (2.7), one can
define an inner product $<\cdot,$

$\cdot>\mathrm{f}\mathrm{o}\mathrm{r}$ two functions $f$ and $g$ of $\lambda$ as

(2.8) $<f,g>:= \sum_{k=1}^{N}f(\lambda_{k})g(\lambda_{k})$ ,

which we hereafter write as $<fg>$ . From $L=\Phi\Lambda\Psi$ , the entries of $L$ are then expressed
by

(2.9) $a_{ij}:=(L)_{i}j\phi_{i}=<\lambda\psi j>$

This gives a key equation for the inverse problem where we compute $L$ from the ei-
genmatrix $\Phi$ (and $\Psi$ ) with the eigenvalues $\lambda_{i}$ . So the eigenmatrix plays the role of the
scattering data in the inverse scattering method. Then the method for solving the initial
value problem of the equation (1.1) can be formulated as follows: First we solve the ei-
genvalue (or scattering) problem (1.8) at $t=0$ , and find the scattering data, $\Phi^{0}:=\Phi(0)$ .
Then we solve the time evolution of the eigenmatrix from (1.9), and with the solution
$\Phi(t)$ we obtain $L(t)$ thorough the equation (2.9).

3. $\mathrm{I}\mathrm{N}\mathrm{E}\mathrm{R}\mathrm{s}\mathrm{E}$ SCATTERING METHOD

In this section, we construct an explicit solution formula for the initial value problem
of the generalized Toda equation (1.1) by using the inverse scattering method. A key of
this method is to generalize the orthogonalization procedure of Szeg\"o with respect to the
inner product (2.8). This is essentially an extension of the method developed in [11].

Following [11] we first “gauge” transform $\Phi$ and $\Psi$ by

(3.1) $\Phi=G\tilde{\Phi}$ , $\Psi=\tilde{\Psi}G$

where the matrix $G$ is given by

$G=diag$ $[<\tilde{\phi}_{1}\tilde{\psi}_{1}>-1/2,$ $\cdots$
$,$

$<\tilde{\phi}_{N}\tilde{\psi}_{N}>-1/2]$

Note that the gauge transform (3.1) includes a freedom in the choice of $\tilde{\phi}$ and $\tilde{\psi}$ , that
is, (3.1) is invariant under the scaling $\tilde{\phi}_{i}$ , $\tilde{\psi}_{i}arrow f_{i}(\mathrm{t})\tilde{\phi}_{i},$ $f_{i}(\mathrm{t})\tilde{\psi}i$ , with $\{f_{i}\}_{i=1}^{N}$ arbitrary
functions of $\mathrm{t}$ . With (3.1), the equations (1.8) and (1.9), as well as (2.1) and (2.2),
become

(3.2) $(G^{-1}Lc)\tilde{\Phi}=\tilde{\Phi}\Lambda,\tilde{\Psi}(GLc^{-1}\mathrm{I}=\Lambda\tilde{\Psi}$ ,

(3.3) $\frac{d}{dl}\tilde{\Phi}=(G^{-1}PG)\tilde{\Phi}-(\frac{d}{dt}\log G\mathrm{I}^{\tilde{\Phi}}$ ,

(3.4) $\frac{d}{dl}\tilde{\Psi}=-\tilde{\Psi}(GPG^{-1})-\tilde{\Psi}(\frac{d}{dt}\log G)$
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Noting $G^{-1}(L)_{<0}G=(G^{-1}LG)<0$ etc, we write

$G^{-1}PG=$ $-2(G^{-1}LG)_{<0}+G^{-1}LG$ –diag $(L)$ ,

$GPG^{-1}$ $=2(GLG^{-1})>0^{-}GLG^{-1}+d\dot{\iota}ag(L)$ ,

from which we obtain the equations for the column vectors $\tilde{\phi}(\lambda, t)$ in $\tilde{\Phi}$ and the row
vectors $\tilde{\psi}(\lambda, t)$ in $\tilde{\Psi}$ ,

(3.5) $\frac{d\tilde{\phi}}{dl}$

$=$ $-2(G^{-1}Lc)<0 \tilde{\emptyset}+\lambda\tilde{\phi}-(diag(L)+\frac{d}{dl}\log G\mathrm{I}\tilde{\emptyset}$ ,

(3.6) $\frac{d\tilde{\psi}}{dt}$

$=$ $-2 \tilde{\psi}(GLG-1)_{>0}+\lambda\tilde{\psi}-\tilde{\psi}(diag(L)+\frac{d}{dl}\log G)$

We here observe that (3.5) and (3.6) can be split into the following sets of equations by
fixing the gauge freedom in the determination of $\phi$ and $\psi$ . In the components, these are

(3.7) $\frac{d\tilde{\phi}_{i}}{dt}=-2\sum_{j=1}^{i-}\frac{<\lambda\tilde{\phi}_{i}\tilde{\psi}_{\mathrm{j}}>}{<\tilde{\phi}_{j}\tilde{\psi}_{j}>}1\tilde{\phi}j+\lambda\tilde{\phi}_{i}$ ,

(3.8) $\frac{d\tilde{\psi}_{j}}{dl}=-2\sum_{i}^{-1}j=1\tilde{\psi}i^{\frac{<\lambda\tilde{\phi}_{i}\tilde{\psi}_{j}>}{<\tilde{\phi}_{i}\tilde{\psi}_{i}>}}+\lambda\tilde{\psi}_{j}$ ,

(3.9) $\frac{1}{2}\frac{d}{dl}\log<\tilde{\phi}_{i}\tilde{\psi}_{i}>=a_{ii}$ .

It is easy to check that (3.7) or (3.8) implies (3.9). It is also immediate from (3.7) and
(3.8) that we have:

Proposition 1. The solutions of (3.7) and (3.8) can be written in the following forms
of separation of variables,

(3.10) $\tilde{\phi}(\lambda,t)$ $=M(t)\phi 0(\lambda)e\lambda t$ ,

(3.11) $\tilde{\psi}(\lambda,t)$ $=\psi^{0}(\lambda)N(t)e\lambda t$ ,

where $M(t)$ and $N(t)$ are, respectively, lower and upper triangular matrices with
$diag[M(t)]=diag[N(t)]=I$, the identity matrix.

Note here that the initial data for $\tilde{\phi}$ and $\tilde{\psi}$ are chosen as those of $\phi$ and $\psi$ , i.e. $\tilde{\phi}(\lambda, 0)=$

$\phi(\lambda, 0):=\phi^{0}(\lambda)$ and $\tilde{\psi}(\lambda, 0)=\psi(\lambda, 0):=\psi^{0}(\lambda)$ . As a direct consequence of this
proposition, and the orthogonality of the eigenvectors, (2.7), i.e. $<\tilde{\phi}_{i}\tilde{\psi}_{j}>=0$ for $\dot{i}\neq j$ ,
we have:

Corollary 1. (Orthogonality): For each $i,j\in\{2, \cdots, N\}$ , we have for all $t\in \mathbb{R}$ ,

(3.12) $<\tilde{\phi}_{i}\psi_{\ell}^{0}e^{\lambda}t>$ $=0$ , for $\ell=1,2,$ $\cdots,$ $i-1$

(3.13) $<\phi_{k}^{0}\tilde{\psi}_{j}e^{\lambda}t>$ $=0$ , for $k=1,2,$ $\cdots,j-1$ .

189



Now we obtain the formulae for the eigenvectors of $L$ in terms of the initial data
$\{\phi_{i}^{0}(\lambda)\}_{1}\leq i\leq N$ and { $\psi_{j(\lambda)\}_{1\leq}}^{0}j\leq N$ :

Theorem 1. The solutions $\tilde{\phi}_{i}(\lambda,t)$ and $\tilde{\psi}_{j}(\lambda, t)$ of (3.7) and (3.8) are given by

(3.14) $\tilde{\phi}_{i}(\lambda, t)$ $=$ $\frac{e^{\lambda t}}{D_{i-1}(t)}$

(3.15) $\tilde{\psi}_{j}(\lambda, t)$ $=$ $\frac{e^{\lambda t}}{D_{j-1}(t)}$

$c_{11}$

.$\cdot$. ... $c_{1,i1}c_{i,i-1}..\cdot-$
$\phi_{i}^{0}\phi_{1}^{\mathrm{o}_{(}}(..\cdot\lambda)\lambda)|$ ,

$c_{i1}$

$\psi^{0}1(.\cdot.\lambda’)c_{j-1}c111^{\cdot}.$

.
$\psi_{j}^{0_{(\lambda)}^{-}}c_{j1}C1..\cdot j,j|$

where $c_{ij}(t)=<\phi_{i}^{0}\psi_{j}^{0_{e}2}\lambda t>$ , and $D_{k}(t)$ is the determinant of the $k\cross k$ matrix with
entries $c_{ij}(\mathrm{t}),$ $i.e_{r}$.

(3.16) $D_{k}(t)=det[(c_{ij}(t))_{1}\leq i,j\leq k]$

(Note here that $c_{ij}(0)=\delta_{ij}$ and $D_{k}(0)=1.$)

We then note:

Corollary 2. The gauge factors $<\tilde{\phi}_{i}\tilde{\psi}_{i}>can$ be expressed by

(3.17) $< \tilde{\phi}_{i}\tilde{\psi}i>(t)=\frac{D_{i}(l)}{D_{i-1}(t)}$

This yields the formulae for the normalized eigenfunctions

(3.18) $\phi_{i}(\lambda, t)$ $=$ $\frac{e^{\lambda t}}{\sqrt{D_{i}(t)Di-1(t)}}$

(3.19) $\psi_{j}(\lambda, t)$ $=$ $\frac{e^{\lambda i}}{\sqrt{D_{j}(t)Dj-1(t)}}$

$c_{11}$

$c_{i1}.\cdot$

.
$.\cdot..\cdot...\cdot$ $c_{1,i1}c_{i,i-1}..\cdot-$

$\phi_{i}^{0_{(\lambda}}\emptyset_{1}^{0}(.\cdot.\lambda))|$ ,

$\psi^{0}1^{\cdot}..(\lambda)c_{j-1,1}C11$ $..\cdot.\cdot$

.
$\psi_{j}^{j}0^{-}..\cdot(\lambda)cC1j1,j|$ .

With the formula (3.18) and (3.19), we now have the solution (2.9) of the inverse scattering
problem (1.8) and (1.9).

The above derivation of the eigenvectors is the same as the orthogonalization procedure
of Szeg\"o [19], which is equivalent to the Gram-Schmidt orthogonalization as observed
in [11].

To see the connection with the LU factorization method (1.18), we have the following
corollary from $\Phi(i)\Psi(t)=I$ :
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Corollary 3. The matrices $V(t)$ and $W(t)$ in the $LU$-type factorization (1.18) can be
expilicitly represented by

(3.20) $V(t)=M^{-1}(t)G^{-1}(t)$ , and $W(t)=G^{-1}(t)N^{-1}(t)$ ,

where $G(t)$ is the gauge matrix in (3.1), $M(t)$ is the lower triangular matrix in (3.10)
and $N(t)$ is the upper triangular matrix in (3.il). (Here we normalized $2t$ to $t$ in
$exp(tL(0)).)$

Remark 1. The generalized Toda equation (1.1) with (1.2) possesses a hierarchy defined
by

(3.21) $\frac{\partial}{\partial t_{n}}L=[P_{n} , L],$ $n=1,2,$ $\cdots$ ,

where $P_{n}$ is given by

(3.22) $P_{n}=\square (L^{n})\equiv(L^{n})_{>0}-(L^{n})_{<0}$ .

The commutativity of these flows can be shown by the “zero” curvature conditions of $P_{n}$ ,
i.e.

(3.23) $\frac{\partial P_{m}}{\partial t_{n}}-\frac{\partial P_{n}}{\partial t_{m}}+[P_{m}, P_{n}]=0$ ,

which is a direct consequence of the choice of (3.22) [12]. The solution for the hierarchy
is then obtained by extending the argument $\lambda t$ in the solution formula to $\xi(\lambda, t)$ $:=$

$\Sigma_{n=1}^{\infty}\lambda nt_{n}$ [12].

Remark 2. The well known QR flow for a general matrix $L\in \mathfrak{M}(N, \mathbb{R})$ is in the same
form as (1.1) with the following generating matrix $P$ :

(3.24) $P=(L)_{>0}-(L^{T})_{<0}=(L)_{>0}-[(L)_{>0}]^{\tau}$

It has been studied extensively in [17], [18], [4], [6] and [20]. They showed that this
equation is completely integrable hamiltonian system and can be solved in the sense of a
matrix factorization of QR type, and the solution converges to a matrix in the triangular
form. Our method developed in this section can be also applied to this problem as follows:
First we note that the product $\Phi^{*}\Phi$ of the eigenmatrix $\Phi$ and its adjoint $\Phi^{*}:=\overline{\Phi}^{T}$ is
invariant under this flow (1.1). Then we define a hermitian matrix $S=(s_{ij})_{1}\leq i,j\leq N$ as
the inverse of $\Phi^{*}\Phi$ , i.e.

(3.25) $\Phi S\Phi^{*}=I$ .

The matrix $S$ is determined from the initial eigenmatrix $\Phi^{0}$ , and $S\Phi^{*}$ gives the inverse
of $\Phi$ , that is, we have $S\Phi^{*}$ for $\Psi$ in our method. Note that if $L$ is symmetric, $S$ is an
identity matrix $I$ and $\Phi\in O(N)$ . In general, we see from the Binet-Cauchy theorem that
$S$ is positive definite. The equation (3.25) now gives the orthogonality relation,

(3.26)
$\sum_{1\leq k,l\leq N}\phi i(\lambda k)s_{k\ell}\overline{\phi j(\lambda\ell)}=\delta_{ij}$

,
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from which we define the following inner product as in (2.8),

(3.27)
$<<f,g \gg:=1\leq k,t\sum_{\leq N}f(\lambda_{k})_{S_{k}}\ell\overline{g(\lambda\ell)}=\overline{<<g,f\gg}$

.

This leads to a positive definite metric. Then following the procedure in this section with
some modifications based on $\Psi=S\Phi^{*}$ , we obtain the same result for the eigenvectors
(3.18) except the quantities $c_{ij}$ which is now given by

(3.28) $c_{ij}=\ll\emptyset_{i}0_{e}\lambda t,$ $\phi j0e\lambda t>>=\overline{c}_{ji}$ .
The solution $L(t)$ is then given by $L(t)=\Phi\Lambda S\Phi^{*}$ , i.e.

(3.29) $a_{ij}(t)=<<\lambda\phi_{i},$ $\emptyset j>>(t)$ .
Thus, we can show explicitly the integrability of the equation (1.1) with the generator $P$

given by (3.24) for arbitrary diagonal matrix $L$ , and as a result of the positivity in the
metric, the solution converges to a upper triangular matrix.

Remark 3. From Corollary 3, the ususal LU factorization of $e^{tL(0)}$ can be written as

(3.30) $e^{tL(0)}=(M^{-1})(G-2N-1)$ .
One verifies that $M^{-1}$ is lower triangular with diag$(M^{-}1)=I$ and $G^{-2}N^{-1}$ is upper
triangular with positive diagonal entries.

4. ISOSPECTRAL FLOWS ON SIMPLE LIE ALGEBRAS

In this section, we consider the generalized Toda equations (1.1) associated with simple
Lie algebras $\mathrm{g}$ , and show their integrability. The matrices $L$ and $P$ here are given by a
generalization of (1.13) and (1.14), i.e.

(4.1) $L_{\mathfrak{g}}$ $= \sum_{i=1}^{r}a_{i}h_{i}+\sum_{\alpha\in\Delta+}b_{\alpha}e_{\alpha}+\sum_{\beta\in\Delta}c_{\beta}e_{\beta}-$,

(4.2) $P_{\mathfrak{g}}$

$= \sum_{\alpha\in\Delta}b_{\alpha\alpha}+e-\beta\in\sum_{\Delta-}c\beta e\beta$
.

Here $h_{i}$ are the bases for the Cartan subalgebra with $r=rank(\mathrm{g}),$ $\triangle^{+}$ and $\Delta^{-}$ are the
sets of positive and negative roots with the corresponding root vectors $e_{\alpha}$ and $e_{\beta}(=e_{-\alpha})$ .
These vectors $\{h_{i}, e_{\alpha}\}$ form the Cartan-Weyl bases of the simple Lie algebra $\mathrm{g}$ which
satisfy for $i,j\in\{1, \cdots, r\}$ and $\alpha,\beta\in\Delta:=\triangle^{+}\cup\Delta^{-}$

$[h_{i}, h_{j}]=0,$ $[h_{i}, e_{\alpha}]=\alpha(h_{i})e_{\alpha}$ ,
(4.3) $[e_{\alpha}, e_{\beta}]=N_{\alpha\beta}e_{\alpha+\beta}$ , if $\alpha+\beta\in\triangle$ ,

$[e_{\alpha}, e_{-\alpha}]=h_{\alpha}$ , for $\alpha\in\Delta^{+}$

Using representations of the Cartan-Weyl bases, we now express (4.1) and (4.2) in matrix
form for each simple Lie algebra. Then we prove that the equation (1.1) with those $L_{\mathfrak{g}}$

and $P_{g}$ associated with the Lie algebra $\mathrm{g}$ is completely integrable by the inverse scattering
method developed in Section 3. The key ingredient in the proof is to show that for each
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simple Lie algebra $\mathrm{g}$ there exists a “permutation” matrix $O_{g}$ such that the matrices $L_{\mathfrak{g}}$

and $P_{\mathfrak{g}}$ are similar to $L$ and $P$ in (1.1) with $P$ defined by (1.2), i.e.

(4.4) $L=o_{\iota^{L_{\mathfrak{g}}}}o_{\emptyset}^{T}$ ,
(4.5) $P=O_{\mathfrak{g}}P_{\mathfrak{g}}O_{q}^{\tau}=\Pi(L)$ .
In another word, we look for a similarity transform such that the matrix representations
of $e_{\alpha}$ for $\alpha\in\Delta^{+}$ and $e_{\beta}$ for $\beta\in\Delta^{-}$ are transformed to strictly upper and lower triangular
matrices, respectively. The existence of such representations is due to Lie’s theorem [10].
Then the result in Section 3 implies the integrability of the system (1.1) with $L_{\mathfrak{g}}$ and $P_{\mathfrak{g}}$ .
Note here that the generalized Toda equation is invariant under the similarity transform.
Here we consider all the classical simple Lie algebras, $A_{n},$ $B_{n},$ $C_{n}$ and $D_{n}$ . The system
associated with the exceptional algebra can be treated as the same way. For convenient
matrix representations of the Cartan-Weyl bases, we follow the notations in [3] and [10].
$A_{n}$ : Let $E_{ij}$ be the $(n+1)\cross(n+1)$ matrix defined in (1.3). We then take an element of
the Cartan subalgebra as $h=\Sigma_{i=1}^{n+}1\lambda iE_{ii}$ with $\Sigma_{i=1}^{n+1}\lambda_{i}=0$ . Using (1.6) for $E_{ij}$ , we have

(4.6) $[h, E_{ij}]=(\lambda_{i}-\lambda j)Eij$ .
Thus $E_{ij}$ gives a root vector corresponding to the root $\alpha(h)=\lambda_{i}-\lambda_{j}$ . The simple roots
are defined as

(4.7) $\alpha_{k}(h)=\lambda_{k}-\lambda_{k+1}$ , for $k=1,$ $\cdots,$ $n$ .
Then the positive (negative) roots are given by $\lambda_{i}-\lambda_{j}$ with $i<j(i>j)$ . This implies
that the choice of the $P_{A_{n}}$ is the same as that in (1.2). Note also that adding some
constant to the Cartan subalgebra, one can choose $h_{i}$ of the basis to be $E_{ii}$ . Namely, the
generalized Toda equation (1.1) with (1.4) and (1.5) can be considered as an iso-spectral
flow on the simple Lie algebra $A_{n}$ .
$C_{m}$ : The element of this algebra is given by a $2m\cross 2m$ matrix $X$ satisfying $X^{T}J+JX=0$

where $J$ is defined by

(4.8) $J=$ .

Here $0_{m}$ is the $m\cross m0$-matrix, and $I_{m}$ is the $m\cross m$ identity matrix. We then choose
the following bases with the $2m\cross 2m$ matrix $E_{ij}$ defined in (1.3),

$e_{ij}^{1}$ $=$ $E_{ij}-E_{j}+m,i+m$ ’
$1\leq i,j\leq m$ ,

(4.9) $e_{ij}^{2}$ $=$ $E_{i,j+m}+E_{j},i+m’ 1\leq i\leq j\leq m$ ,
$e_{ij}^{3}$ $=$ $E_{i+m,j}+Ej+m,i,$ $1\leq i\leq j\leq m$ .

Writing $h=\Sigma_{i=}^{m_{1}}\lambda ie_{ii}^{1}$ as a general element of the Cartan subalgebra, we have
$[h, e_{ij}^{1}]$ $=$ $(\lambda_{i}-\lambda_{j})eij1,$ $i\neq j$ ,

(4.10) $[h, e_{ij}^{2}]$ $=$ $(\lambda_{i}+\lambda_{j})e_{i}^{2}j’ i\leq j$ ,
$[h, e_{ij}^{3}]$ $=$ $-(\lambda_{i}+\lambda j)e_{i}^{3}j’ i\leq j$ .
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The simple roots are taken by

(4.11) $\alpha_{k}(h)$ $=$ $\lambda_{k}-\lambda_{k}+1$ , for $1\leq k\leq m-1$ ,
$\alpha_{m}(h)$ $=2\lambda_{m}$ ,

from which the sets of positive and negative root vectors $\Sigma_{C_{m}}^{+}$ and $\Sigma_{\overline{C}_{m}}$ are given by

(4.12) $\Sigma_{C_{m}}^{+}$ $=$ $\{e_{ij’ k\ell}^{1}e2|1\leq i<j\leq m, 1\leq k\leq\ell\leq m\}$ ,
(4.13) $\Sigma_{\overline{C}_{m}}$ $=$ $\{e^{\mathrm{i}_{j’ k}}.e^{3}\ell|1\leq j<i\leq m, 1\leq k\leq\ell\leq m\}$ .
Then the matrix $L_{C_{m}}$ can be represented by

(4.14) $L_{C_{m}}=$ ,

where $A_{1},$ $\cdots$ , $A_{4}$ are the $m\cross m$ matrices satisfying the relations

(4.15) $A_{1}^{T}=-A_{4},$ $A_{2}=A_{2}^{T},$ $A_{3}=A_{3}^{T}$

The matrix $P_{C_{m}}$ is now given by

(4.16) $P_{C_{m}}=(\Pi(A_{1})-A_{3}$ $-\Pi(A_{4})A_{2})$

We then obtain:

Proposition 2. With the permutation matrix $O_{C_{m}}$ , we have the generalized Toda equa-
tion (1.1) on $C_{m}$ with L-P pair given by

(4.17) $L$ $=$ $o_{c_{m}c_{m}}LO_{c_{m}}^{T}$ ,
(4.18) $P$ $=$ $Oc_{m}Pc_{m}O^{\tau}c_{m}=\Pi(L)$ ,

where $O_{C_{m}}$ is given by

(4.19) $\mathit{0}_{c_{m}}=$ ,

with the $m\cross m$ matrix $Q_{m}$

(4.20) $Q_{m}=$ $=Q_{m}^{T}$ .

Example 1: We take the simplest case $C_{2}$ . The matrices $L_{C_{2}}$ and $P_{C_{2}}$ are represented as

(4.21) $L_{C_{2}}=$ ,
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and

(4.22) $P_{C_{2}}=$ .

Under the similarity transformation with $O_{C_{2}}$ defined in (4.19), $L_{C_{2}}$ and $P_{C_{2}}$ becomes

(4.23) $L=Oc_{2}LC_{2}o_{C}^{\tau_{2}}=$ ,

and

(4.24) $P=Oc_{2}Pc_{2c}o^{\tau_{2}}=(a_{1}-c_{1}-c_{2}-C_{4}$ $a_{2}b_{1}-C-C_{3}4$ $\frac{bb_{4}}{c_{1}}a_{2}3$ $b_{4}b_{2}-a_{1}-b_{1})$ .

Note here that under the similarity transformation the root space is decomposed into the
diagonal, upper and lower triangular parts of the matrix (Lie’s theorem).

Similarly, for $D_{m}$ and $B_{m}$ , we have the following two propositions:

Proposition 3. With the permutation matrix $O_{D_{m}}=O_{C_{m}}$ given in $(4.19)_{f}$ we have

(4.25) $L$ $=$ $o_{D_{m}}L_{D_{m}}O_{D_{m}}T$ ,
(4.26) $P$ $=$ $O_{D}P_{D}O^{T}=\Pi mmD_{m}(L)$ .

where $L_{D_{m}}$ is a $2m\cross 2m$ matrix expressed as

(4.27) $L_{D_{m}}=$ ,

with the $m\cross m$ matrices $A_{1},$ $\cdots,$
$A_{4}$ satisfy

(4.28) $A_{1}^{\tau_{=-}}A_{4}$ , $A_{2}=-A_{2}^{T}$ , $A_{3}=-A_{3}^{T}$ ,

and $P_{D_{m}}$ is given by

(4.29) $P_{D_{m}}=(\Pi(A_{1})-A_{3}$ $-\square (A_{4})A_{2})$

Proposition 4. With the $(2m+1)\cross(2m+1)$ permutation matrix $O_{B_{m}}$ , we have

(4.30) $L$ $=$ $O_{B_{m}}LB_{mB}o^{\tau}m$ ,

(4.31) $P=$ $O_{B_{m}}P_{B_{mB_{m}}}oT=\Pi(L)$ .
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where $O_{B_{m}}$ is given by

(4.32) $\mathit{0}_{B_{m}}=$ ,

$L_{B_{m}}$ is a $(2m+1)\mathrm{x}(2m+1)$ matrix expressed as

(4.33) $L_{B_{m}}=$ ,

where $b_{1},$ $b_{2}$ are the $m$ -column vectors, and the $m\cross m$ matrices $A_{1},$
$\cdots,$

$A_{4}$ satisfy the
same relations as (4.28). and $P_{B_{m}}$ is given by

(4.34) $P_{B_{m}}=(-b_{2}b_{1}0$ $\prod_{-A_{3}}^{-b_{1}^{\tau}}(A_{1})$ $-\Pi()A_{2}b_{2}^{\tau_{A_{4}}})$ .

5. REDUCTIONS ON ROOT SPACES

As we have explained in the introduction, several generalizations of the Toda equation
may be obtained by taking reductions of the generalized Toda equation (1.1) with general
matrix $L$ . We then showed in the previous section that the equations on simple Lie
algebras studied in [2] are generalized by taking all the root vectors in the algebras. In
this section, we consider reductions of these equations by restricting the set of roots in
the sums in (4.1).

Let $S^{+}$ and $S^{-}$ be subsets of positive and negative roots of a simple Lie algebra $\mathrm{g}$

defined by, for $\forall\alpha_{0}\in S^{+}$ and $\forall\beta_{0}\in S^{-}$ ,

(5.1) $S^{+}$ $:=$ $\{\alpha\in\triangle^{+}|\alpha\prec\alpha_{0}\}$ ,
(5.2) $S^{-}$ $:=$ $\{\beta\in\Delta^{-}|\beta\succ\beta_{0}\}$ .

Here $”\prec$ ” and $”\succ$ ” are the standard partial orderings between roots. We then consider
the equation (1.1) with the matrices $L$ and $\hat{P}$ given by

(5.3) $\hat{L}$

$=$ $\sum_{i=1}^{n}a_{i}h_{i}+\sum_{\alpha\in S+}be\alpha\alpha+\beta\in S\sum_{-}c\beta e\beta$ ,

(5.4) $\hat{P}$

$=$
$\sum_{\alpha\in S^{+}}b\alpha e\alpha-$ $\sum_{-,\beta\in S}c_{\beta}e_{\beta}$

,

where $n=rank(\mathrm{g})$ . We have:

Proposition 5. The equation (1.1) with $\hat{L}$ and $\hat{P}$ is a reduction of the generalized Toda
equation on $\mathrm{g}$ .
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Example 3: The generalized Toda equation with band matrix $L$ .
This example can be obtained as the following reduction on $A_{N-1}$ : Consider the subsets
of the roots $S^{+}$ and $S^{-}$ given by

(5.5) $S^{+}$ $=$ $\{(i,j)\in\Delta^{+}|0<j-i\leq M^{+}\leq N-1\}$ ,
(5.6) $S^{-}$ $=$ $\{(i,j)\in\Delta^{-}|0<i-j\leq M^{-}\leq N-1\}$ ,

where $M^{+}$ and $M^{-}$ are some positive integers. Then the corresponding matrix $\hat{L}$ which
we denote $L_{\mathrm{t}^{M+_{M^{-})}}}$, becomes

(5.7) $L_{(M^{+},M}-)=(.\cdot.\cdot..00a1+M-a_{11},1$

$.\cdot.\cdot.\cdot$

$0^{\cdot}a_{1.1+M+}.$

’

$.a_{N,N-M^{-}}0...\cdot.$

.
$.\cdot.\cdot.\cdot$

$.\cdot..\cdot.a_{NN}0a_{N}0-M+,N)$ .

As a special case of this example, we now construct the full Kostant-Toda equation
having $L_{H^{-}}P_{H}$ pair given in (1.15) and (1.16). Here we choose $S^{+}$ and $S^{-}$ to be the
sets of the simple roots (i.e. $M^{+}=1$ ) and of all the negative roots (i.e. $M^{-}=N-1$ ),
respectively. Thus the corresponding matrix is expressed as

(5.8) $L_{(1,N-1})=$ .

We have:

Proposition 6. The full ICostant-Toda equation with $L_{H}$ in (1.15) and $P_{H}=-2(L_{H})_{<0}$

in (1.16) can be obtained from the generalized Toda equation (1.1) with $L_{(1,N1)}-$ and
$P_{\langle 1,N1)}-:=\Pi(L_{(-}1,N1))$ through a similarity transform $L_{H}=HL_{(1},N-1$ ) $H^{-}1$ , where $H$ is
given by

(5.9) $H=diag[1,$ $b_{1},$ $b_{1}b_{2},$ $\cdots$ , $\prod_{i=1}^{N-1}b_{i}]$

Thus the full Kostant-Toda equation can be solved through the generalized Toda equa-
tion with the $L_{()^{- P_{(}}}1,N-11,N-1$ ) pair as the reduction on $A_{N-1}$ , that is, with the solution
$L_{\langle 1,N1)}-,$ $L_{H}=HL_{(1},N-1)H^{-}1$ . The similarity transform $H$ in (5.9) was introduced by
Kostant [14] to write the original nonperiodic Toda in the Hessenberg matrix form.
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Remark 4. In [20], Watkins introduced the LU flow as a continuous version of the LU
algorithm. Deift et. al. [6] then showed that it is a completely integrable hamiltonian
system. The flow on a general matrix $L_{W}\in \mathfrak{M}(N, \mathbb{R})$ is in the same form as (1.1) with
the generating matrix $P_{W}$ :

(5.10) $P_{W}=-2(L_{W})_{<0}$ .

Namely the full Kostant-Toda equation is a special case of the LU flow. Then the LU
flow with $L_{W^{-}}P_{W}$ pair can be obtained from the generalized Toda equation (1.1) with
L-P pair in (1.4) and (1.5) through a similarity transform $L_{W}=HLH^{-1}$ where $H$ is
given by the form (5.9) with the new additional variables $b_{i^{\mathrm{S}}}$ satisfying

(5.11) $\frac{db_{i}}{dt}=(a_{i+1,i+1}-aii)b_{i}$ and $b_{i}(0)=1$ .

This immediately implies the solvability of the LU flow through our method, and the
explicit solution is given by the LU factorization in (3.30).

6. BEHAVIORS OF THE SOLUTIONS

Here we study the behavior of the solution of the generalized Toda equation obtained
in Section 3 by following the approach in [12]. Many results obtained in [12] are valid
for this more general situation. First we note:

Lemma 1. The determinants $D_{i}$ for $i=1,2,$ $\cdots$ , $N$ in (3.16) are real functions.

We also have:

Lemma 2. Suppose $D_{i}(t_{0})=0$ for some $t_{0}<\infty$ and some $i$ . Then $L(t)$ blows up to
infinity at $t_{0}$ .

To study the asympototic behavior of $D_{i}$ for large $t$ , we have the following expansion:

Lemma 3. The determinants $D_{i}$ with $i=1,2,$ $\cdots,$
$N$ can be expressed as

(6.1)

$D_{i}(t)= \sum_{N}j_{i}e^{2}\Sigma.k.=1\lambda jkt|\psi_{1}^{0}\psi_{1}^{0}(.\cdot.\lambda j_{i})(\lambda_{j1})$
, , . $\psi_{i}^{0}(.\cdot.\lambda_{j_{1}})\psi_{i}^{0}(\lambda_{j_{1}}.)|$ ,

where $J_{iN}=(j_{1}, \cdots,j_{i})$ represents all possible combinations for $1\leq j_{1}<\cdots<j_{i}\leq N$ .
In particular $D_{0}(t)\equiv 1$ , and $D_{N}(t)= \exp(2\sum_{i=1}^{N}\lambda_{i}t)$ .

We now obtain:
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Theorem 2. Let the eigenvalues of $L$ be all real and ordered as $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}$ .
Suppose that $det(\Phi^{0}k)\neq 0$ and $det(\Psi_{k}0_{)}\neq 0$ for $k=1,$ $\ldots$ , $N$ , where $\Phi_{k}^{0}$ and $\Psi_{k}^{0}$ are
the k-th leading principal submatrices of $\Phi^{0}$ and $\Psi^{0}$ , respectively. Then as $tarrow\infty$ , the
eigenfunctions $\phi_{i}(\lambda_{i}, t)$ and $\psi_{j}(\lambda_{i}, t)$ satisfy

(6.2) $\phi_{i}(\lambda_{j}, t)arrow\delta_{ij}\cross\frac{det(\Phi_{i}0)det(\Psi_{i1}^{0}-)}{\sqrt[\wedge]{det(\Phi_{i}^{0}\Psi^{0})iedt(\Phi^{0_{-1}}\Psi_{i-1}^{0})i}}$ ,

(6.3) $\psi_{j}(\lambda_{i}, t)arrow\delta_{ij}\cross\frac{det(\Phi_{i-}^{0})1det(\Psi_{i}0)}{\sqrt{det(\Phi^{0}i\Psi_{i}^{0})det(\Phi_{i-1}0\Psi i0)-1}}$ ,

which implies the sorting property as $tarrow\infty$ , that $is_{f}L(t)=\Phi(t)\Lambda\Psi(t)arrow\Lambda$ .

This theorem implies that if all the eigenvalues of $L$ are real, then generic solutions
have the “sorting property” in the asymptotic sense. It should be however noted that
$D_{i}(t)$ might be zero for some “finite” times, where the solution blows up (Lemma 2).
Next theorem provides sufficient conditions for the solutions to blow up to infinity in
finite time.

Theorem 3. Suppose some eigenvalues of $L$ are not real, $det\Phi_{n}^{0}\neq 0$ and $det\Psi_{n}^{0}\neq 0$ ,
for $n=1,$ $\cdots$ , N. Then $L(t)$ blows up to infinity in finite time.

Remark 5 All the results in this section remain valid for the full Kostant-Toda equation
defined by (1.15) and (1.16). To see this, from Proposition 6, we solve $L_{\langle 1,N-1)}$ with
$L_{\mathrm{t}-}1,N1)(0)=L_{H}(0)$ . Then $L_{H}(t)$ is related to $L_{(1,N1}-$ ) $(t)$ through $L_{H}=HL_{(1},N-1$ ) $H^{-}1$

where $H$ is defined in (5.9) with $b_{i}(0)=1,$ $i=1,$ $\cdots,$ $N-1$ . In the case $L_{\langle)}1,N-1(t)$ has
the sorting property, since $b_{i^{\mathrm{S}}}$ all go to zero, one verifies $L_{H}$ also has the sorting property.
Thus Theorem 2 holds. In the case of blowing-up, since the transformation with $H(5.9)$

does not change the diagonal elements, Lemma 2 holds, and thus Theorem 3 is valid.
In [9], the solution behavior of tridiagonal Kostant-Toda equation is considered, and a
neccessary and sufficient condition for blowing-up solution is obtained.

7. EXAMPLE

In this section, we demonstrate the results obtained in this paper by taking an explicit
form of the matrix $L$ . The main purpose here is to solve the generalized Toda equation
(1.1) for this explicit matrix, and discuss the behavior of the solution.

Let us consider a $2\cross 2$ matrix $L(t)=(a_{ij})_{1\leq i},j\leq 2$ . The generalized Toda equation $\mathrm{t}\mathrm{h}|$en
gives

(7.1) $\frac{d}{dt}=$ .

The initial data of $L(t)$ is assumed to be

(7.2) $L(0)=$ ,
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where $a$ and $b$ are arbitrary constants. The eigenvalues of $L(\mathrm{O}),$ $\lambda_{1}$ and $\lambda_{2}$ , are

(7.3) $\lambda_{1,2}=\frac{1}{2}(b\pm\sqrt{b^{2}+4a})$ .

Then the initial eigenmatrices $\Phi^{0}$ and $\Psi^{0}$ are expressed by

(7.4) $\Phi^{0}=$ ,

(7.5) $\Psi^{0}=\frac{1}{\lambda_{2}-\lambda_{1}}$ .

In order to compute the solutions $\Phi(t)$ and $\Psi(t)$ from (3.18) and (3.19), we need the
quantities $c_{ij}=<\phi^{0}\psi^{0}e^{2}\lambda t>$ . From (7.4) and (7.5), they are

(7.6) $C_{11}(t)= \frac{1}{\lambda_{2}-\lambda_{1}}(\lambda 2e2\lambda_{1}t-\lambda_{1}e)2\lambda_{2}t$ ,

$c_{12}(t)= \frac{1}{\lambda_{2}-\lambda_{1}}(-e^{2}\lambda 1t2+e)\lambda_{2}t$ ,

$c_{21}(t)= \frac{\lambda_{1}\lambda_{2}}{\lambda_{2}-\lambda_{1}}(e-2\lambda_{1}te)2\lambda 2t$ ,

$c_{22}(t)= \frac{1}{\lambda_{2}-\lambda_{1}}(-\lambda_{1}e^{2\lambda_{1}t}+\lambda_{2}e)2\lambda_{2}t$ ,

from which the determinants $D_{i}(t)$ in (3.16) become

(7.7) $D_{1}(t)=c_{11}(t),$ $D_{2}(t)==e^{2(}\lambda_{1}+\lambda 2)t$ .

We now have the solutions (Theorem 1),

(7.8) $\Phi(t)$ $=$ $\frac{1}{\sqrt{D_{1}(l)}}$ ,

(7.9) $\Psi(t)$ $=$ $\frac{1}{(\lambda_{2}-\lambda_{1})\sqrt{D_{1}(l)}}$ .

The solution $L(t)$ of the generalized Toda equation is then obtained from (2.9), $a_{ij}(t)=<$

$\lambda\phi_{i}\psi_{j}>(t)$ ,

(7.10)

$L(t)= \frac{1}{\lambda_{2}e^{2\lambda_{1}t}-\lambda 1e^{2}\lambda_{2}t}$ .

Now let us discuss the solution behavior for $t>0$ . First we assume both eigenvalues
$\lambda_{1}$ and $\lambda_{2}$ to be real. With the choice of the eigenvalues in (7.3), we have $\lambda_{1}\geq\lambda_{2}$ . Then
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if $\lambda_{1}\lambda_{2}\leq 0$ , then the function $D_{1}(t)$ does not vanish for all $t$ . This implies the sorting
property (Theorem 2). For the case of $\lambda_{1}>\lambda_{2}>0$ , the $D_{1}$ vanishes and we have the
blowing up in the solution at the time $t=t_{B}>0$ ,

(7.11) $t_{B}= \frac{1}{2(\lambda_{1}-\lambda 2)}\log\frac{\lambda_{1}}{\lambda_{2}}$.

This formula also implies that for $0>\lambda_{1}>\lambda_{2}$ we have the sorting result for $t>0$ . Note
here that the blowing up occurs at one time $t=t_{B}(7.11)$ , and then the solution $L(t)$ will
be sorted as $tarrow\infty$ , with the asymptotic forms of the eigenmatrices, i.e. (6.2) and (6.3),

(7.12) $\Phi(t)arrow\sqrt{\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}}}$ .

(7.13) $\Psi(t)arrow\frac{1}{\sqrt{\lambda_{2}(\lambda_{2^{-}}\lambda_{1})}}$ .

For the case of the complex eigenvalue $\lambda_{1}=\overline{\lambda}_{2}:=\alpha+i\beta,$ $D_{1}(t)$ is expressed as

(7.14) $D_{1}(t)=e^{2\alpha t}\sec\theta\cos(2\beta t+\theta)$

with $\tan\theta=\alpha/\beta$ . This indicates the blowing up (Theorem 3).

In the case of degenerate eigenvalues $\lambda_{1}=\lambda_{2}$ (i.e. $b^{2}+4a=0$ ), we take the limit
$\lambda_{2}arrow\lambda_{1}:=\lambda_{0}$ in (7.10), and obtain

(7.15) $L(t)= \frac{1}{1-2\lambda_{0}t}$ .

which showes the “sorting property” as $tarrow\infty$ , i.e. $L(t)arrow\lambda_{0}I_{2}$ . It should be noted
however that $L(0)$ with the degenerate eigenvalues is not similar to the “diagonal” matrix
$\lambda_{0}I_{2}$ .
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