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MINOR SUMMATION FORMULA AND APPLICATIONS,
DISCRETE FOURIER TRANSFORMS

Masao ISHIKAWA AND MasaTo WAKAYAMA
)| FEE ZEHWLIEA
ERRZEHEFZE N KZEHEZHER

ABSTRACT. The aims of the paper are as follows: (1) to prove miscellaneous identities such as pfaffians version of
Pliicker relations, Lewis-Caroll’s formula from the minor summation formula of pfaffians; (2) as an application we
give some identities which are considered as special generalizations of Littlewood’s formulas. Further in Appendix
we give another proof of a minor summation formula of Pfaffians by means of the lattice path method from a
combinatorial aspect.

0. INTRODUCTION

‘Our minor summation formula of pfaffians is viewed as a formula for providing some sort of Fourier
transforms for discrete type as well as the Cauchy-Binet formula for matrices. In this situation, the kernel
functions of Fourier transforms are represented by a certain series of minor-determinants or subpfaffian
indexed by partitions of a suitable matrix instead of the usual exponential functions as well as test functions.
We think this point of view is somewhat new. Of course, as we have developed in [IOW], Littelewood’s
formulas provide information about the irreducible decompositions (= non-commutative Fourier series
expansions) of several representations of classical groups. But our viewpoint has more sophisticated sense.
Actually, in this paper we develop certain miscellaneous identities of pfaffians and, as a first step, give
Fourier expansion’s formulas of certain functions like elliptic thetas with special emphasis from this view
point. :

1. MINOR SUMMATION FORMULA

Let &,, be the permutation group of the index set [n] Lot {1,2,...,n} and, for each permutation o € G,
let sgn o stand for (—1)%®) where £(0) is the number of inversions in o.
Let n = 2s be even. Let H be the subgroup of &, generated by the elements (2i — 1,2i) for 1< i <s
and (2 — 1,2¢ 4+ 1)(2{,2i + 2) for 1 < i < s. We set a subset §, of G, to be
5 —do=(o01 & 0(2t-1)<o0(2) (1Li<s)
n=00 =W o) €Cnl 0 1) co@iv) Q<i<s—1) ("

For each m € G&,,, H7n N §, has a unique element 0. Let n = 2s be an even integer and B = (bix)1<i<k<n
be an n by n upper triangular matrix whose entries G are in a commutative ring.
The pfaffian of B is by definition

(1.1) pf(B) = Z sgn 0 by (1) (2) - - - Vo(n—1)o(n)-
TEFn

When n is a positive integer and N is a positive integer or co such that n < N, let [, N] denote the
totally ordered set {n,n+1,..., N}. Especially we abbreviate [1, N] to [N]. Note that, when N = co, [N]
stands for the set of all positive integers P. When 7 is a positive integer with r < N —n + 1, let [n, N],
denote the set of all r-tuples i = (iy,...,%.) such that i} € [n,N] and i3 < -+ < .

Let n and N be positive integers or co. An n by N matrix A = (a;;) is an array of entries a;; for
(i, 7) € [n] x [N]. An n by n matrix A = (a;;) is said to be skew-symmetric if its entries satisfy a;; = —a;
for (i, j) € [n] x [n].
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We sometimes regard an upper triangular matrix A = (a;j)1<i<j<n as an skew-symmetric matrix by
the obvious way. When ¢ = (iy,...,i;) € [n], and § = (j1,...,5r) € [N}s, let A; = A;'.i'_:'.g’r denote the
submatrix of A with the entries a;, ;, for 1 < k,£ < r. When i is [n] itself with the ordinary order, we
abbreviate A;"l to A; for simplicity. We use the similar abbreviation in the case j = [N].

A summation formula of minors, where the sum extends to all columns, weighted by the subpfaffians of
a given skew-symmetric matrix, is established in [TW1].

We describe the theorem here which corresponds to the case of ¢ = 1 of Theorem 1 in [IW1] and we call
it as the minor summation formula of pfaffians.

Theorem 1.1. Let n be an even integer, N be a positive integer or co such thatn < N. Let T = (t;,) be
any n by N rectangular matriz. Let B = (b;) be any N by N skew-symmetric matriz. Then

(12) > pf(BE) det(Th) = pf(Q),

k€[N,

where Q is the skew-symmetric matriz defined by Q — TB'T, i.e.

(13) Q= Y, bedet(Td), (A<ij<m).
1<k<t<N

From this theorem, we obtain the so-calied VCauchy—Binet formula [IOW]: Let n be a positive integer and
N be a positive integer or co, and suppose n < N.

(1.4) D det(Xg)det(Yz) = det (X'Y),
kE([N),

for any matrices X = (Zix)1<i<n,1<k<n and Y = (Yix)1<i<n,1<k<N-

Moreover if we take n = N = 2! then pf(B)det(T) = pf(T'B*T). This means that every determinant

can be represented by a pfaffian of the same degree. Actually if we choose B — K;(by, ... ,,b;), where
0 b ... 0 O
b 0 ... 0 0
Kl(bly"'”bl): : .. : . ’
0 0 ... 0 Ny
0 0 ... =4 O

then det(T) = pf(T'B*T) because pf(B) = 1. On the other hand, by the successive use of this relation we
see

det(S) det(T) = det(S) det(T) pf(B) = det(S) pf(T'BT) = pf(STB'TS) = det(ST).

Further it is well-known that every skew symmetric matrix is block diagonalizable, i.e. we see that TB!T =
K;(by,...,by) for some T. Then we observe

(15) PE(B)? = pE(TBUT)? = pf(Ki(bs, ... ,bi))2 = (b - by)? = det(B).

This implies that a square of pfaffian equals the determinant for any skew symmetric matrix. Although the
following formula is well-known (cf. [Ste], [[W1]) and directly derived from the very definition of pfaffians,
we give here it as the corollary of above theorem.

Corollary 1.1. Let A and B be m by m skew symmetric matrices. Put s = [%], the integer part of .
Then

8

(16) pI(A+B) =3 3 (~1)l~* pf(4f) pt(BE),

t=04Cma:
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where we denote by i° the complementary set of i in [m] which is arranged in the increasing order, and
8] =41 + -+~ g ford = (iq,...,d).

In particular we have the ezpansion formula of pfaffian with respect to any column (row): For any i, j
we have

(1.7) 6:; pf(A) = i(—l)k“'_lakj pf(A*),
k=1

(18) i pE(A) = 3 (1) Ty pf(AT),
k=1

where A¥Y stands for the (m — 2) by (m — 2) skew symmetric matriz which is obtained from A by removing
both the i, j-th rows and i, j-th columns for 1 <i# j <m.

Proof: Let I, be an identity matrix of degree m. It is clear that

tm 1)(5 5)(1)=4+5

Hence by the minor summation formula we see
A 0
pf(A+ B) =pf ((Im [m)<0 B>t(Im Im))

k
> pf(‘g g) det (I Im)g-

k€i2mlm k

The only indices k in [2m],, for which det(I, ;)& does not vanish is of the form k& = (%, (m,m,..., m)+1i°)
for i € I™ and in this case we have det(I;, In )k = (—=1)°%#) | where 0(3,i¢) means the number of inversions
of i via i°. Further, if s is even, then we have

k .

A0 A0 ; e

pf ( 5 B)k = pf( o B?.C) — pf(A%) pf(BE).
1C

This pfaffian vanishes obviously in the case s is odd. Hence we see

pf(A+B)= ) > pf(Af) pf(Bk)(-1)7¢4)
kc2m)m k=@E,(m,m,...,m)+ic)
[m/2]

=) > (—n)fi—*pi(A}) pf(BE),

t=0 §¢[mla
because 0 (,%¢) = |¢} —t for @ € [m]a;.

The latter assertion can be proved by applying the previous result to the following form of the decom-
position of a skew symmetric matrix A with respect to the i-th row and column;

0 0 * 0 =%
A= * x| +10 0 O
0 0 * 0 =%

The following formula is a generalization of a theorem by Stembridge [Ste] and can be proved by the
above corollary.

* O %

This completes the proof. O
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Theorem 1.2. Suppose m, r are positive integers and n is a positive integer or co such that m+r is even
and0<m —r < n. Let T = (tix)i1<i<m,1<k<n+r be any m by (n+r) matriz. Let H = (t;x)1<i<m,1<k<n
be the submatriz of T' composed of the first v columns, and G = (t; r+k)1<i<m,1<k<r e the submatriz of T
composed of the last n columns. Let B be any n by n skew symmetric matriz. Then we have

(19) Z pf(B:) det(T[r]Uk) =pf <—J?tH IZ){T) ’

kelr+1,r4nlm—_r

where Q is the m by m skew symmetric matriz given by Q — GB!G, i.e.

(1.10) Qij= D BudetTE, ..,

1<k <t<n

and [r]| Uk denote the m-tuple of [r} = (1,...,7) and k= (k1,.. ., km_r) € [r + 1,7 + N}

Let J. denote the square matrix of size r whose (i, j)-entry is 1 if ¢ = r — j, and O otherwise. Let I,
denote the identity matrix of size r, and let O, denote the square zero matrix of size r. The following
theorem is Theorem 2 of [IW1] and a minor summation formula, where the sum extends to all columns
with some fixed columns. One can see that Theorem 1.1 is obviously a special case of the following theorem.
The proof is done by a successive uses of the formula (1.6) and the minor summation formula.

Theorem 1.3. Letm < n and T. Let A = (aix)1<ik<m ond B = (bix)1<ik<n be arbitrary skew symmetric
matrices. Then

&3

(3]

S pf(Ai)pf<Bf>det(T,:>:pf(“’jj;‘”m jg)
t=0 i N m
(1.11) i

_ m(m—1) A Ip
"(_1) 2 pf(_Im ZQ)’

where z is a spectra parameter and Q = T BT, i.e.

(112) Q= Y budet(T), (1<ij<m).

1<k<I<n

We also have

Corollary 1.2. Assume m < n. Let T = (t;;) be as in Theorem 1.3. Let A = (aik)o<ik<m and B =
(bik)o<ik<n be skew symmetric matrices of size (m + 1) and (n + 1), respectively. Then

> ) pf(A)pf(BE)det(TH) + Y 27 D pf(AZ) pf(BR) det(T})

0<r<m  i€lm|, 0<r<m  igm|™
(113) r:even  kelr], r: odd ke[n|?
—J 14, J, m(m—1) —~A I
—of m+1 m+1 'rrL+1 — (=1 f m;}—l) ,
P ( s @ )TEVTTR L g
where Q = (@-j) is given by
0, ifi=j§=0,

1.14 ~ zzlﬁkén bOktjk, ’le =0and 1 S ] S m,
(114) @ij = 23" 1 <k<n Drotik, ifj=0and1<i<m,

231 cher<n bi det(T), if1<i,j<m.
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2. THE LEWIs-CAROLL FORMULA AND THE PLUCKER RELATION

In this section we provide a Pfaffian version of Lewis-Caroll’s formula and Pliicker’s relation. The latter
relation is also treated in [DW], and in [Kn] it is called the (generalized) basic identity. First of all we recall
the so-called Lewis-Caroll’s formula, or known as Jacobi’s formula among for minor determinants. We give
a simple proof for completeness. We only use Cramer’s formula to provide it. In this section we write A;

for A% for short and we expect that it doesn’t cause confusions since we only treat square matrices in this
section.

Proposition 2.1. Let A be ann by n matriz and A be the matriz of its cofactors. Letr < n and j, k € [n),.
Then ‘

(2.1) det Ajs, = (det A)"~? det Aje ke,

where 3¢, k¢ € I"__ stand for the complementary tuples of j, k, respectively.

Proof: We can assume that A is non-singular because both sides of the identity are polynomials in the
entries of A. And it is enough to prove this in the case of j =k = (n —r+1,...,n). Put Ay; = Ajege,
A12 = Ajck, A21 = Ajkc, Azz = A,‘k. Then

An An |
A= .
( Agr Az
Further we can assume that A;; is non-singular. Then there exists a matrix P = (é ?) such that
An [0
AP = ,
( Az1 Bo )
where I and O stand for the identity matrix and the zero matrix, respectively. From this identity, we have

(AP)~! = (Al_ll o >

-1
* B,

1 (I = A1_11 O\ _ (% «x
AT = P(AP) _(O I)( x Bp') \x Bmp )’

Thus we have (A~1);x = Bj,'. Since A = |A|A~, it follows that Aj = |A|By;'. The preceding identity
gives us |A11||B2z| = |A|, and these identities show

It follows that

| Al = |AI"|Bs'| = |A"H|Anl-
This proves the proposition. [

Ezample. We give here a few examples of Lewis-Caroll’s formula for low degree’s matrices.

a1y G2 413
21.1 211 G13)|211 Q12 a1; QGiz2f|Qi11 Q13| _
( -4 ) - =aQai11]G21 Q22 Qaz3]|.
agy sz |{a21 Q22 az; @32 ||az21 a3
azy Q32 (33
We give one more;
a11 12 413 a1 Q12 G4
a1 Q14 a1 13
azy Qg2 assz|— az1 Qazz2 as4
Az  G24 azi1 Q23
@41 Q42 (43 a41 Q42 (43
a a a a
a a a 11 12 13 14
11 13 14
2.1.2 ai; a2 - a21 Q22 (23 Q424
( [ ) azy azz as4| = G111 .
a1 Qg2 asy Qg2 0azz (34

a41 (43 Q44
Q41 Q42 Q43 Q44
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Let m be an even integer and A be an m by m skew symmetric matrix. Assume that pf(A) is nonzero,
that is A is non-singular. For 1 <4 # j < m, recall that A% is the (m — 2) by (m — 2) skew symmetric
matrix which is obtained from A by ‘removing both the %, j-th rows and 4, j-th columns.

Define a skew symmetric matrix A = (y(i, j)) by

(2.2) (i, 5) = (=1)**9 71 pf(A¥)

for 1 <7< j<m. Let A(4, j) = (—1)**7 det A% denote the (4, j)-cofactor of A. If we multiply the both
sides of (1.7) by pf(A) and use a basic relation between determinants and pfaffians; det A = [pf(A)]* which
we proved in §1 (for a combinatorial proof, see for e.g. [Ste]), we obtain

(2.3) Zam',k) pf(A) = &z [PF(A)* = 65 det A.

Comparing this equation with the ordinary expansion of det A as polynomials in a;;’s, we obtain the
following relation between A(4, j) and (4, j):

(2.4) A(G, §) = (i, j) pf(A).
The following result is considered as a pfaffian version of Lewis-Caroll’s formula.

Theorem 2.1. Let m be an even integer and A be an m by m skew symmetric matriz. Let A= (v(3, 7).
Then, for any j € [m]q;, we have ‘

(2.5) pf [(A);] = [pf(A)]* " pf(Aje).

_ Proof: Let A= A(i, j) denote the matrix of the cofactors of A. From (2.4) we have A = pf(A) A, thus

~

Aj = pf(A) (A);. It follows that
|45] = pECA* |(A)s] = A" |(A)].
On the other hand, Proposition 2.1 implies that |A;| = |A[**~1|Aj¢|. Comparing these two identities, we
obtain N
|45] = |AI" | Aje].
By taking the square root of both sides of this identity, we obtain
pf (4;) = = [pf(A)]*" pf (4j¢).

To finish the proof we have to determine the sign. By substituting

0 1 1
-1 0 1
(2.6) s=1. . .
1 -1 ... 0

in the both sides of the above identity, we can verify that the positive branch is correct because it is easily
to check pf(S) = 1. This proves the lemma. [

Ezample. Form = 6,t =1 and j = (1,2,3,4) in the above theorem, we see

¥(1,2)7(3,4) — ¥(2,3)7(1,4) + (1, 3)7(2,4) = pf(A) pf(A(s.6))-

Hence by definition, we see that this turns out to be

Pf(A(3,4,5,6)) pf(A(1,2,5,6))_ Pf(A(1,4,5,6)) pf(A(z,s,s,s)) + Pf(A(2,4,5,6)) pf(A(1,3,5,6))
(2.7) =pf(A) pf(As,6))s
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0 az4 a3z A36 ( 0 a2 W5 16
pf —azs 0 Q45 Q46 pf —ai2 0 azs  Qage )
—azs —asgs 0 ase —a1;5 —ags 0 ase
—aze —a4s —ase O \ —a1g —age —ase O
0 a4 a15 416 ( 0 a3 G5 Qg6
_of ( —a1s 0 G5 Gg6 | o | —G23 0 ass Qs )
—a15 —ass 0 ase —ags —azs 0 ase
—ais —a46 —ass6 O \ —ags —azs —asg O
0 (24  QG25 Og6 / 0 a13 415 Q16
+pf ( —azs 0 L I B 0 azs  asze )
—azs —ass 0 ase —ais —azs 0  ase
—azs —a4s —ase 0 \ —ay =—azs —ass O
0 a2 G113 @14 Q15 Q16
—a;2 0 @23 G4 G5 Q26
— pf ( 0 (156> of —aiz —azz 0 azs  ass O3
—ass 0 —Q14 —024 —0a34 0 Q45 Q46
—a15 —ag5 —azs —ags 0 ase
—a16 —06 —a3zs —Q46 —ase O

We next state a pfaffian version of Pliicker relations (or known as Grassmann-Pliicker relations for de-
terminants) which is an algebraic identity of degree two describing the relations among several subpfaffians.
This identity is proved in the book [Hi] and a recent paper [DW] in the framework of an exterior algebra.

Theorem 2.2. Suppose n, m are odd integers. Let A be an (m + n) X (m + n) skew symmetric matrices
of odd degrees. Fir a sequence of integers i — (i1,42,...,%m) n [m + n]™. Put the complement of © by
i¢ = (k1,ka, ..., kp) € [m+n]™ in [m + n]. Then the following relation holds.

m

Z(_l).?_l pf((A,‘);a) pf(AtJU‘LC) = Z(—l)‘?_l pf(A‘iUka) pf((A’ic)EJ)'

=1

(2.8)

Jj=1

Here the notations 4; means a taking i; off from the index i and i; U4° stands for {i;} U°.

Proof: We only use the expansion formula of pfaffian given in Corollary 1.1. In fact, if we expand
Pf(A;;usc) with respect to the first 4; at the left hand side and expand also pf (Asuk;) with respect to the
last k; at the right one, and finally compare it, then it is immediately to see the desired equality. [

For convenience, we use a notation A(iy,z,...,%%) instead of Ay, ,,. .. ) for a matrix A. Then the
following assertion, which is called by the basic identity in [Kn] is a special consequence of the above
formula.

Corollary 2.2. Let A be a skew symmetric matriz of degree N. Fiz an indez i = (41,12, . ..,i2k) in [N]2F.
Take an integer | which satisfies 2k + 21 < N. Then

pf(A(L,2,...,20) pE(A(is, i, - . ., iz, 1, .. ., 21))
2k—1

(2.9) = Z (1)1 pf(A(i1, 1,2, ..., 20, 441)) PE(A(Gg, -, 841, - - S2ks Ly oo, 20))
Jj=1

Proof: Put m=2l+1,n=2k+ 2] — 1 and

iy =1y,ip = L3 =2,...,iy41 = 2,
ki =g, ky = i3,..., kok—1 = dog, ko = L kog1 = 2, ., Kapar—1 = 21,

in Theorem 2.2. Then, since each of terms in the left hand side’s summation vanish except for the case
j = 1(i; = 1), the desired identity immediately follows from the identity of Theorem 2.2. U
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Remark. Assume [ = 2. If we take the special choice of an index i = (3,4,...,2k —4) with 2k +4 = N,
then the identity in this corollary is nothing but the identity in Theorem 2.1 for t = 2, that is, this basic
identity partially covers the Lewis-Caroll identity. Consequently these two identities seem to be located at
the transversely directions for each other.

3. FOURIER EXPANSION OF THE ELLIPTIC THETA

In this section we investigate certain formulas involving the Chebyshev polynomials and the characters
of the classical groups. It is also possible to derive these formulas from Cauchy’s identity. We also show
that the Fourier expansion formulas of Jacobi’s elliptic theta-functions are obtained as a corollary of our
formula.

First we recall the Chebyshev polynomials of the first and second kinds. Though there are several ways
to define the Chebyshev polynomials, here we adopt the way to define them by means of determinants. Put

2a ifi=j,
' b ifi=j+1,
3.1 =
(3.1) i ifj=i+1,

0 otherwise,

for i, j > 1. Let U™ be the n by n matrix whose (i, j)-entry is given by u;;, and put uy,(a, b) = det U™~
for n > 1. For example, the first few terms are given by u;(a,b) = 1, uz(a,d) = 2a, uz(a,b) = 4a® — b,
ug(a, b) = 8a3 — 4ab. If we expand the determinant det U(™ with respect to the first row, then we see that
the polynomials uy,(a,b) satisfy the recursion formula

(3.2) Unt1(a, b) — 2aun(a,b) + bup—1(a,b) =0

for n > 2. For the integers n < 0, we define u,(a,b) as the above recursion formula always holds. The
generating function of u,(a, ) is given by

1
n _
(3.3) nE_OunH(a, b)z™ = %0z T 523"

This can be seen from the above recursion formula and the first few terms of uy(a, b).
If we substitute b = 1 into u,(a,b), then u,(a, 1) are called the Chebyshev polynomials of the second
kind, and denoted by Uy, (a). We also define t;; by

a ifi=j=1,

2a ifi=j2>2

1 ifi=j+1lorj=1i+1,
0 otherwise.

(3.4) ti; =

Let T™ be the n by n matrix whose (4, j)-entry is t;;. The Chebyshev polynomials of the first kind are

by definition T,,(a) = det T™. By the same argument as above, we see that the polynomials T}, (a) satisfy
the same recurrence formula with Up(a), i.e.

(35) Tn+1 (a) - 2aTn(a) + Tn—l(a) =0.
The first few polynomials are as follows. Tp(a) = 1, Ti(a) = a, Tz(a) = 2a% — 1, T3(a) = 4a® — 3a,

Ty(a) = 8a* — Ta? + 1. We also define T},(a) for n < 0 as the above recurrence formula always holds. The
pairs (T, (a), U, (a)) satisfy the recurrence formula

Toy1(0) = aTo(a) + (@* — Un(a)
Un—H(a) =Ty (a) + aUn(a)
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This can be seen since the first few terms satisfy these equation.

Next we prepare some preliminaries and notation. Let us denote by N the set of nonnegative integers,
and by Z the set of integers. We use the notation [i, j] = {i,i+ 1,...,j} for ¢, j € Z satisfying i < j. A
partition is a non-increasing sequence A = (A1, Az, . .. ) of non-negative integers with finite sum. Sometimes
we use a notation which indicates the number of times each integer occurs as a part: A = (1™2™z...)
means that exactly m; of the parts of A are equal to i. In particular, we use the notation (r") = (r,7,...,7).

n-times
Also a partition N = (\j, \},...) defined by A, = #{j : A\; > 4} is called the conjugate partition of . The
length I()\) of a partition ) is the number of non-zero terms of A.

For a partition )\, we denote by r(\) (resp. ¢()\)) the number of rows (resp. columns) of odd length in A.
We say also that )\ is even (resp. transposed-even) if r(A\) = 0 (resp. ¢(\) = 0). Let n(A) =3 5, (i—1)\; =
dois1 ()‘2,) For each cell z = (4, §) in \, the hook-length of X at z is defined to be h(x) = A —j+X; —i+1.

For a partition \, we put p(\) = #{i : A; > i}, which is a number of nodes on the main diagonal of X
and define ’

a=X—j, Bi=X—j for1<5<p(N).

Then a; > -+« > apny > 0and f; > --- > By = 0. We write A = (¢|B) and call this the Frobenius
notation of A,

We denote by I',.,, the set of all partitions of the form A = (61 +71,...,8, + 7|51, .., 5p) With length
< n. For example,

F2,2 - {67 (3) = (210)’ (4» 1) = (Bll), (474) = (32“0)}1

and these partitions are depicted by the following diagrams;

If a is a nonnegative integer which doesn’t coincide with any of ¢;’s, then let g(a, a) denote the number
of o;’s which are bigger than a. For example, A = (5441) is the partition of 14 and p(\) = 3. This
partition is denoted by A = (421|310) in the Frobenius notation. If a = (310) then g(,2) = 1 and
(o + 1|a) = (421]310).

Let A = (a1,...,a|51,...,05) be a partition expressed in the Frobenius notation. Let a and b be
nonnegative integers such that a # a1,...,a, and b # Bi,...,0.. There are some k and [ such that
ag > a > og41 and G > b > B41. The partition A U (a|b) is defined by

(36) Ay (a|b) = (051, vy Ok, Ay Oy, arlﬁl, s ngl’b’ ﬂl-l—l; R ’:67‘)'

For example, (421|310) W (0|2) = (4210|3210). _

A half-partition of length n is a non-increasing sequence A = (Ay,..., A,) of non-negative half-integers
Ai € N+ 1. Then we can write A = p+ (3)", where 4 is a partition of length < n. If there is no confusion,
we simply write A = p+ 3.

If A is a partition of length < n or a half-partition of length n, then we put

JAN)={M+n—120+n-2,..., 0}

Conversely, for a subset J = {ji < ++- < jn} of N or N+ 1, let A(J) be the partition or half-partition
defined by the equations

Ai = Jnt1-i — Nt

We now recall Weyl’s character formula. Let

T*® = (13™)iz,..n (X =A,B,C,D+,D~,D)
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be the n-rowed matrix defined by

T.‘;:(") =zF forkeN,

2

e 1
TEM — phH1/2 _ k=12 for ke oN,

v 2
(3.7) TL™ = oh+! —z7%1 fork €N,
1
Ti[k,+(n) =k + x;k for k € §N,
- 1
T2 ™ =gk —27% forke §N,
and .
TD(,n) _ 1 if k=0
ko T\ akb—z* f k>0

Then Weyl’s character formula can be written in the following form.

Proposition 3.1. For a partition or a half partition A = (A, ..., Ay), we have

det(TX™
Ax(m) = detTren ) for X = A, B,C,
(n) X(n)
38) det(T75y)
) Dt D~
- det(T,\™) £ det(T7 ™) a
D) det(Thg?)

Furthermore, Weyl’s denominator formula (or the Vandermonde determinant), gives the following explicit
description of the denominator of a character given in the above proposition.

Proposition 3.2. For each series, we have

det(Ty )= [[ (=5 -,

1<i<j<n
n
n(ntl) —n4i
det(Tﬁg;)) =(-1) 7 (z1-..25) nt3 H(l — ;) H (z; — ;) (1 — zi35),
(3.9) ¢n:1 1<i<j<n
det(T55) = ()" 2@y x) T [[(-2h) [ (@5 —2) (1 - mizy),
=1 1<i<j<n
det(TJD(g;)) = (=)D 2 (g g, )T H (zj — )1 —23x5). O
1<i<j<n

Now we prove a fact which is simple, but seems interesting by its corollary.

Proposition 3.3.

06 oo n
1
(3.10) 22 uen(@ s oon) =[] g e
k=0 1=0 i=1 t i
n n—k n
(3.11) Z ug+1(a, b)blS(zllk)(xl, e Tp) = H(l + 2ax; + bx?)
k=0 1=0 i=1

Proof. First we prove the second identity. Take n-rowed matrices T' = (:L"Z 1) and

1 2 b 0 0 O
0 1 2« b 0 O

0o ... 1 22 b 0
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If J = {j1 <--- < jn} is an index set of columns and A = A(J) is the corresponding partition, then det Sy
vanishes unless j, < n+ 2. It is easy to see

uy b2 IFI(N) <2

det Sy = .
0 otherwise,

where ) is the conjugate partition A. On the other hand, we have
ST = diag(1 + 2az; + 22,. .., 1+ 2az, +22) (@ V)1<i j<n-

This proves the second identity. The first identity is derived from the second one. U

One remarkable fact is that we can prove the Fourier expansion formula of Jacobi’s elliptic Theta-
functions as a corollary of the above proposition. We nse the following notation.

aww—llﬂ—w ),
(3.12) .
(a; q)n = ﬁy_q);oo_ — H(l — aqk—l).

(ag™ Qoo o

The symbols (a; ¢)oo and (a; q),, are abbreviated to (a)s and (a), respectively when the second variable is
assumed to be gq.

Lemma 3.1. Let n be a nonnegative integer.

5.1 0 ghlktn)
' = (@De@rktn @
0 k(k+n) 1 +qn+1
3.14 -
(319 > D@~ @a

Proof. Note that = ) is the generating function of all partitions. The first identity can be shown by
considering a rectangle contained in a partition. Let A be a partition and let r be the maximum integer

such that the rectangle of shape r x (r 4 n) is contained in A. We denote this 7 by r,(A). Then the
k(k+n)

generating function of all partitions such that r,(A\) = k is given by —q—q;:m Thus, by summing over all

k, we obtain the generating function of all partitions. The second identity is derived from the first one as
follows.

k(k+n) 0 k(k+n+1) O gklktn) (1 — gk
Z + q ( q°)
e @e@Drrntr = @Qe@rintr 2 @r@rintr
B 1 +q"+1i q(k 1)(k+n+1)
(@r-1@kint1
1+q"+1
(@)oo

This proves the lemma. 0O
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Corollary 3.1. Letq = €™ (37> 0).

(3.15)
oo 112 N oo .
(v, 7) =2 Z(—l)”q("+§) sin(2n + 1)7v = 294 Qo sin 7o H (1 —2¢%" cos 2mv + ¢ ")
k=0 n=1
(3.16)
(v,7) = 2Zq nt3 cos (2n + 1)mv = 293 Qo sin 7w H (1 + 24" cos 27v + ¢*™)
n=1
(3.17)
[o o] 2 o o]
da(v,7) = 1+ 22 g™ cos2nmv = Qo H (1+ 2¢*" " cos 2mv + ¢** 1)
k=1 n=1
(3.18)
o0 2 o0
94(v,7) = 1+ 22(—1)"q" cos2nmv = Qo H (1—2¢*" " cos2mv + ¢*" ')
k=1 n=1

Proof. In the second identity of Proposition 3.1 we put b = 1 and n — co, then we obtain
Z Ug+1(a) Z S(gk1my(T) = H (1 + 20z, + mi) .
n=0

Here s(3x1n(7) stands for the infinite variable Schur function s(x1ny(1,%2,. .. ). Substituting @ = cos 27v
into the above identity yields

(3.19) Z sin 2(n + 1)7v Z 8(gk1my () = sin 2mv H 1 + 2z, cos 27v + T )
n=0 k=0 n=1

becagse of Ug.y1(cos 2mv) = &:‘%"—2'%)—@ Further we specialize z,, = ¢*® (n = 1,2,...) in this identity, then
we obtain

jo o] oo
Z sin2(n + 1) Z M 5 001my (1, 6%, %, )
n=0 k=0

[o o]
= sin 27w H (14 ¢*" cos2(n + )7 + ¢**)

n=1
Recall that by the specialization x,, = ¢"~* of the Schur function sx(x) with A = (2¥1") we have
ey (O+(57)
[hex(1=4"®)  (@r(@k+n+1

where n()) = 3772, (i — 1)); and h(z) = A + Nj —i— j+ 1 for z = (4,§) € A (See [Mal, p.44 Ex.1) It
follows that

(320) s(2kl")(13 q, q2, s ) -

i 1 o ghtkint) ("3 (1 _ gntl)
3 a1 g,¢%, ) =) (1 - q"“)z =
e =0 (@ (Dr+nia (9)oo

Combining the above identities, we obtain

Z sin 2(n 4 1)7v g™t (1 — ¢***2) = sin 27w H (1+ ¢*™ cos 2mv + q‘m)

n=0 n=1
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The left-hand of this identity is equal to

o0 oo
Z sin2(n + Lo g"* D — E sin 2(n + 1)7v gD H2)

n=0 n=0

oo
=sin27v + Z gD {sin 2(n + 1)7v — sin 2nmv}

n=1
oo
= 2sin v cos Tv + 2 Z q"" D cos(2n + 1)mv sin 7o.
n=1

This proves the identity we desire. The identity on ¥; can be proved by a parallel way with substituting
a = —cos 2mv. Next we prove the identity on 3. We substitute z,, = ¢~ (n =1,2,...) into (3.21), then
we obtain

oo o0 o0
3.21 sin2(n+ vy ¢Z* "sorin (1, 6%, ¢4, ... ) = sin2mv 14 ¢*"* cos 2mv + ¢*" 2
( )
n=0 k=0 n=1

By the similar reasoning as above we obtain

grtetn) 3 q(g)(l _ g2 t2)

(322) qus(zkl"‘)(ls q, q2» cee ) = q(;) (1 — q'n.+1) z (
k=0 D

k=0 (Q)k(k+n+1) B (@)oo

Combining (3.22) and (3.23), we obtain

fo'e) (e o]
Z g (1 — ¢*™**)sin 2(n + 1)mv = Qo sin 27v H (14 ¢*" " cos2mv + ¢*"?)
n=0 n=1

The left-side of this identity is equal to

o ] oo
Z ¢ sin2(n + 1)mv — Z ¢ sin2(n + D)v

n=0 n=0

oo
= sin27v + gsindmv + Z e {sin2(n + 1)7v — sin2(n — 1)7v}

n=2

oo
= sin 2mv + 2¢ sin 27v sin 27v + Z q"2 {cos 2mv sin 27w}

n=2

This proves the identity. The identity on ¥4 is also obtained by a parallel reasoning by substituting
a = —cos 27mv. This completes the proof. [

The following formulas are B, C, D types of Proposition 3.3.
Proposition 3.4. Letn € N and let X = B,C,D+. Then

(3.23) Y Uka(@) Y ((m+ D'mF(m — )**) = (™) x @i +2a+=).
k=0 =0 i=1

Herem € INif X = B,D+, andm e N if X = C.

Proof. Let T (o) = (Ti (a)) be the n-rowed matrix whose entries are given by

1
Ti(a) = zkte L g7 fork € §N.
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Let Sy, be the n-rowed matrix defined by

1 2« 1 0 0 O
0 1 2« 1 0 O
Sp=1 . . . ..

0 1 22 1 0

Since

k 1+m+a:tx—k+1 m— a+2a( k+m+a im—k m— a) +$k+1+m+a ix—k 1-m—a

= (zi+ 20+ z;") (ahtmte g kmoe),

we have

n
+ t _ -1 j+m+o —j—m—a
det (Tn (m—-1+0a) Sn) = 1_11 (:cz +2a+ z; )det (m{ +2; )1§z’,jsn

1=

On the other hand, one applies Binet-Cauchy formula to the left-hand side of the above identity to derive

+
Z det Spj,....j.} det T (a)n{j1+mf1,...,jn+m—1}
0<j1 <ga< <jn<n+1l

et H (1«'1‘, + 2a + {EZ_]') det (T,,,:lh (a){m,m+1’m’m+n_1}) .
i=1
Let
PE () = det (TF(@)s(n)) -

Then the above identity means

n—k n

35 Uk (@ + Dfmt(m— 125 = T (54 + 20 + 27 ) 9 0 m¥)

k=0 1=0 i=1

Put & = 1 (resp. @ = 1 or a = 0) to obtain the formulas for X = B (resp. X = C or X = D=). The
identities we desire are easily derived from this identity and the details are left to the reader.

Proposition 3.5.

S5 Uera (@ (-4 m) (1 +mym™2)..

k=01=0
i3 (@7 = 20t + ;) (2, — 20t + 227
n n—k
X Z Z(_l)k+2ltk+2lUk+1(a) ((m + 1) *m*(m — 1)Z)X(n)
k=0 =0

Proof. Let T (a) be as before and let S!, and S!! be the n-rowed matrices defined by
(1 207t t2 0 0 0

, 1 2™t t2 0 0
Sn = . N . N . * .
\0 1 2! t72 0
/Ul (a) Uz(a)t U3(a)t2 Us (a)t4
S" U] (a)t U2 (a)t2 U3 (a)t4
n - . .

\ 0o .. 0 Uya)tn?
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The (i, j)-entry of ToF (m + a)tS! is equal to

oo
k+i—1, k+i—1+m+te —k—itl——ma
) Ukia(a)t (=  + ) )
k=0
fi—1ypi—1tmto fi—lypTitl-m—a

= J + 1
1 —2atx; + 227 = 1 - 2atx; " + t2x;°

i—1l4+m+ta —i+l-m—a i—2+m+ta —i4+2-m—a 2 (i—3+m+a —i4+3-m—«
_ (x5 + z; ) — 2at(z] tz; ) + (x5 tz; )

(1 - 2atz; + t222)(1 - 2at1:j_1 + t%;z)
(T (a - Q)S;L)ij
(1 - 2atz; + 222)(1 — 2atz; * + t2z;°)

_ 41

for 1 <4,j <n. Let 1/)2,”()\) be as in the preceding proposition. We use Binet-Cauchy formula to obtain

i iUM(a)win((k + 14+ m)(k +1+m)m™2)

k=01=0
_ 1
| (1 - 2atz; + 232)(1 — 2atz; " + t22; %)

n n—k

x 30 S )FEFRY (@) (m A 1)k (m - 1)),
k=01=0

4. LitTTLEWOOD TYPE FORMULAS

In this section we consider Littlewood type formulas concerning the Schur polynomials. These results
can be extended to the characters of other classical groups, but we don’t have enough space to state them.
The following lemma is the key lemma. to evaluate the pfaffian we treat.

Lemma 4.1. Let m be a positive integer and put

(z.m _ ym)2 (1 _ tmmmym)Z

(4.1) Qmiz,y) = Y Qe

Then

(4.2) pf [Qm (2, xj)hgq;,jgzm = H (@5 — 25) (1 — twiz;).
1<i<j<2m

We fix T' = :L‘?m+d427j)1§i§2m,o§js4m+d_2 in this section.

Let m be a positive integer and let B = (Gk)o<k,i<m—1 be an skew-symmetric matrix of size m in the
ordinary means. Set b; to be the i-th row vector of B for 0 < ¢ < m — 1. The matrix B is said to be
(row-)symmetrically proportional if the (m — 1 — k)-th row is proportional to the k-th. That is to say,
there is some ¢, such that b,,_1_; = cgbg or by = cxbp,_1-% for each 0 < & < [F] — 1. Further B is
called row-symmetric if the by, 1 = by for 0 < i <[] — 1, and B is called row-antisymmetric if the
bm-1-r = -brfor0<k < [mT“] —1. This notion has importance since it makes us possible to find all the
subpfaffians pf(Bj, . ;,.) of B. From now on we assume that B is always supposed to be skew-symmetric
matrix.

Let P(z) = ap+ a1z + -+ -+ agz® be a polynomial of degree d. P(z) is said to be symmetric if a; = apn_;
for 0 <4 < [£], and P(z) is said to be antisymmetric if a; = —ap—; for 0 <7 < [4£1],
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Lemma 4.2. Let P(z) be a polynomial of degree d. Let B = (Bki)o<ki<am+d—2 be the skew-symmetric
matriz of size (4m + d — 1) which satisfy

(4.3) > Bri

0<Lk<I<4am—+d—2

% 4 peoratea

The matriz B becomes (row-)symmetrically proportional for all m if and only if P(x) is symmetric or
antisymmetric. Further, if the polynomial P(x) is symmetric then B becomes row-symmetric, on the other
hand, if P(x) is antisymmetric then B becomes row-antisymmetric.

From now we apply Theorem 1.1 to this 7" and B given by (4.3). Basically it is possible to find some sort
of formula for each skew-symmetric matrix of the form (4.3) if it is row-symmetric or row-antisymmetric.
Here we investigate each formula for small d. When d = 0; we obtain the following formula (4.4) from this
argument. If d =1 and P(z) is antisymmetric, we obtain the following formula (4.5). It is easy to see that
the case of d = 1 and P(x) being symmetric reduces to this case. If d = 2 and P(z) is antisymmetric, then
we obtain the formula. (4.6).

(4.4) Z (—l)%s,\(:cl, ey Tp) = H (1—z;25),
A=(ala+1) 1<i<j<m
m
(45) PONCHERCINCIINENES § (CEENN | QTN
A=(a|a) =1 1<i<i<m
(4.6) DRRCHERNCRNIE ST | IR
A=(a+1|a) 1<i<j<m

These formulas are usually called the Littlewood formulas. We obtain further identities of this type by
considering the polynomials P(z) of higher degree. If we assume d = 2 and P(z) is symmetric, then we
obtain the following theorem.

Theorem 4.1. Let m be a positive integer. Then

2]
(-1)= +1’(’\)S>\(x1,. cey Tm)
A=(a+1|a)

m
121 _
(4 7) + 22 Tk(a) Z (._1) 7 +a(\k DSXQ‘J(OIk—l) (371, e mm)
. k=1 ’\:(§+1f"1)

aZk—1

m
:H(1+2axi+x§) H (1 — z;25).
i=1

1<i<j<m

If we put z; = ¢** in this formula and we use the g-expansion formula of Jacobi’s theta function 93, we
obtain the following corollary.

Corollary 4.1.

RS L IE,0-g)

(4.8) Z (=1) 7 N gz +n) H s = Aor=d )
— gh(=) —
A=(a+1la) zEX 1—gt= Hr:l(l q")
Let m be a nonnegative integer.
1AL Al 0 1 m(m+1 Hoo_z(l —_ q’f‘)["%]
(4.9) > (- Fraemghmeeem)  TT PR ey
A=(a+1|a) £EAW(0|m) 1—gte Hr:l(l —q")

If d = 3 and P(x) is antisymmetric, we obtain the following theorem. The case of d = 3 and P(z) being
symmetric essentially reduces to this case.
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Theorem 4.2. Let m be a positive integer. Then

Y )T F (o, )

A:(a+2|a)
m
Y HT@ - D@} Y (-
(410) k=1 AZ(;,:'Z%_Q)
gk
x {SA“‘J(OIk—l)(xl’ s Bm) = Saw(k-1) (1, - .,xm)}
m
=[J+2azi +e5)(1-2) [[ 1-ziay)
=1 1<i<i<m

If d =4 and P(z) is antisymmetric, we obtain the following theorem.

Theorem 4.3. Let m be a positive integer. Then

IS}
E (=1) = ¥ Nsy (21, ..., Tm)
A=(a+3la)

m
iy] _
+ E Uk+1(a) E (—1) 7 tadk=D
k=1

A=(a+3la)

(4.11) =)

X {wa(olkq)(ivh ooy Tpm) — Sw(zik—n(wl, e 7$m)}

m
= H(l + 2(1:171; + .’Ef) H (1 - .’lff;.’Bj).
i=1

1<i<j<m

APPENDIX

Summation Formula for Columns

We now review basic terminology on lattice path method and fix notation. Let D = (V, E) be an acyclic
digraph without multiple edges. Further we assume that there are only finitely many paths between any
two vertices. Let P(u,v) denote the set of all directed paths from u to v in D. Fix a positive integer r.
An r-vertex is an r-tuple (ui, ug,. .., u,) of vertices of D. Given any pair of r-vertices u = (u1,u2,...,ur)
and v = (vy,%s,...,v,), an r-path from u to v is an r-tuple P = (Py, P, ..., P.) with P; € P(u;,v;). Let
P(u,v) denote the set of all r-paths from u to v. Two directed paths P and @ will be said to intersect if
they share a common vertex. An r-path P is said to be nonintersecting if P; and P; are nonintersecting
for any ¢ # j. Let Po(u,v) denote the subset of P(u,v) which consists of all nonintersecting r-paths.

We fix a weight-function w which assigns values in a fixed commutative ring R to each edge of D. Set
the weight of a path P to be the product of the weights of its edges and denote it by w(P). If u and v are
any pair of vertices in D, define

hw,v)= Y w(P)

PcP(u,v)

The weight of an r-path is defined to be the product of the weights of its components. The sum of the
weights of r-paths in P(u,v) (resp. Po(u,v)) is denoted by P(u,v) (resp. N(u,v)).

Definition A.1. IfI and J are ordered sets of vertices of D, then I is said to be D-compatible with J if,
whenever u < u' in I and v > v’ in J, every path P € P(u,v) intersects every path Q € P(u',v").

The following lemma is from [GV], but we give a proof here to make this paper self-contained.

Lemma A.l. (Lindstrém-Gessel-Viennot) Let u and v be two r-vertices in an acyclic digraph D. Ifu is
D-compatible with v, then

(A.1) N(u,v) = det[h(ui, v3)]1<i,5<r-
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Proof: For m € G, let m(v) denote the r-vertex (vx(1), Un(2),- -+ , Un(r))- Then

(A.2) det[h(ui, v)i<ig<r = 3 SE(T)R(u1, vr())h(Uz, Vn(2)) - - - B(Ur, Vn(r))-
7r€6r

Put

I ={(n,P): 7 €&, and P € P(u,n(v))},
o = {(m,P) : 7 € G, and P € Py(u,n(v))}.

Then the right-hand side of (A.2) is a generating function of the set II of configurations (7, P) with the
weight w(m, P) = sgn(7)w(P). Now we describe an involution on the set I \ Il which reverse the sign of
the associated weight. First fix an arbitrary total order on V. Let C = (7, P) € II\ Il,. Among all vertices
that occurs as intersecting points, let v denote the least vertex with respect to the fixed order. Among
paths that pass through v, assume that P; and P; are the two whose indices ¢ and j are smallest. Let
P;(— v) (resp. Pi(v —)) denote the subpath of P; from u; to v (resp. from v to v,(;). Set C' = (', P')
to be the configuration in which P}, = Py for k # 4, j,

P = P,(— v)Pj(v —), P} = Pj(—= v)P;(v —),
and 7' = wo (4, 7). It is easy to see that C' € Il and w(C') = —w(C). Thus C > C' defines a sign reversing
involution and, by this involution, one may cancel all of the terms {w(C) : C € I\ I} and only the terms
{w(C) : C € Ilp} remains. Since u is D-compatible with v, the configurations C € Ily occur only when
7 =1id, and are counted with the weight 1. This proves the lemma. O

Let I be a finite or countablly infinite totally ordered subset of V. Let I" be the set of all r-vertices
v = (v1,vg,...,9,) with v; € I for 1 <i < r, and let I,. be the set of all r-vertices v = (vy,v2,...,0.) € I"
such that v; < v < --- < v, with respect to the fixed total order on I. Let §,, be an element of the
commutative ring R for (v, w) € I;. We write the assembly of the elements as B = (Byw)(v,w)cI, and regard
it as an upper triangular matrix of finite or infinite degree indexed by the totally ordered set I. This upper
triangular matrix defines an antisymmetric matrix by the unique way, and we express this antisymmetric
matrix by the same symbol B. Suppose 7 is even. Define the associated generating function of the set of
nonintersecting r-paths from u to I weighted by the subpfaffians of B to be

(A.3) Qr(u; B) = ) pf(By)N(u,v).

vel”

The difference of our definition from the original one by Stembridge is this whether weighting antisymmetric
matrix B is putting on or not. Notice that, since u is D-compatible with I, N(u, (v1,...,v,)) = 0 unless
v1 < vy < -+- < v, and this implies that, in the above definition, the sum extends to all r-vertices v € I,.
In particular, if r = 2, assuming u = (u1, uz) is D-compatible with I, then, we have

h(uy,v1) h(ug,ve)

(A.4) Qr(w; B) = Z Borvs h(ug,v1) h(ug,v2) |

(v1,v2)€l

The following theorem is an extension of Theorem 3.1 in [Ste]. Here we give a proof by the lattice path
method exploited in it. Indeed, the proof we give here almost follows it except some minor modifications
by the addition of B, but one may see that this extension gives us a strong tool.

Theorem A.1. Letr be an even integer. Letu = (u1,us,...,u,) be an r-vertex and I be a totally ordered
set of vertices such thatu is D-compatible with I. Let B = (Bre)k,pcr? be an antisymmetric matriz indeced
by I whose entries are in R. Then

(A.5) Qr(y; B) = pf [Qr(us uwjs Bl cicjcr -
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Proof: Put r = 2s. We may interpret the right-hand side of

pf [Qr(ui, us; B) = D sgno [ [ Qr(uo@i-1)s toesy; B)

o€, i=1
3 ]
(A.6) = Z Z sgno H Buaie—1vae HN((Ua(zi—l),ua(zi)), (v2i—1, v2i))
o€Frv=(v1,...,0-)EI" k=1 i=1
V2i-1<V2

as a generating function of the set

o€ %r, Y= (1’1,1’2,---:7)7') € IT’
Y»={C=(o0,v,P)|P=(P,Ps,...,P) with P, € Plug,vx) for 1<k <7, 3,
P, (2i~1) and P,(; must not intersect for 1< i <s.

where the weight assigned to C = (0,v, P) is sgno [[1—; Bvax_romW(P). Let
Yo = {C = (0,v,P) € ¥ : the r-path P is nonintersecting. }.

We shall show that we can define a sign reversing involution on X \ Xo. Fix an arbitrary total order on
V which is consistent with the edges of D. That is to say, if there is an edge directed from u to v, then
u precedes v in the total order. Let C = (r,P) € &\ ¥o. Among all vertices that occurs as intersecting
points, let v denote the the vertex which precedes all other points of intersections with respect to the fixed
order. Among paths that pass through v, assume that P; and P; are the two whose indices ¢ and j are
smallest. Define a new r-path P’ = (P, P}, .., P.) with P} = Pi(— v)P;(v —), Pj = Pj(— v)Pi(v —) and
P} = Py for k # i, j. Let H be the subgroup of &, generated by the elements (2k—1,2k) for 1 <k < sand
(2k — 1,2k + 1)(2k, 2k + 2) for 1 < k < s. Then the orbit of (ij) oo by H in &, has a unique intersection
element with 3. Set o’ € G, (ij)ooNF, to be this unique element. We shall show that C' = (¢”, v, PHeX.
It suffices to show that the paths Pé, (2k—1) and Pé '(2k) do not intersect for 1 < k < s. The case we need
to consider is that either of o/(2k — 1) or o’(2k) equals i or j. Without loss of generality, we suppose that
0'(2k — 1) =i and o'(2k) # j. Then we have o(2k — 1) = j and o (2k) = 0'(2k). If the path P,/ (ax) had
intersected P/, @2k—1)’ then, from the minimality of v, there would be no intersection points on the subpath
Pi(— v), and this would imply that P,(gxy would intersect P;(v —). But this is a contradiction to the fact
that the paths P,(3;_1) and P2y must not intersect. Thus we have shown that C’ € ¥\ ¥, and it is
easy to see that C + C’ is an involution.

Now we shall show that this involution is sign reversing. Assume that C' = (¢/,v,P’) is the image of
C = (0,v, P) € ¥\ X by this involution and v, %, j are as the above. We shall show that sgn o' =sgno. Let
k and [ be the integers such that i = 0(2k—1) or 0(2k) and j = 0(21—1) or 0(21), respectively. Without loss
of generality, we may suppose that {o0(2k—1),0(2k),0(21—1),0(21)} = {1,2,3,4} and 0(2k—1) = 1. In the
case of (i, j) = (0(2k—1), 0(21-1)) or (4, §) = (6(2k), 0 (21)), if (7(2k—1),0(2k), 0 (21-1),0(21)) = (1,3,2,4)
or (1,4,2,3), then it is easy to see that sgno’ = sgno. However, we shall show that the condition
(0(2k —1),0(2k), (2l —1),0(21)) = (1,2,3,4) never happens in this case. There is no loss of generality by
supposing that ¢ = 1 and j = 3. Assume that the vertices u1, uz, and ug is connected to v, ve, and vz in I
by the paths P;, P, and P3, respectively. If v1 > vg, then P; and P, must intersect by the D-compatibility,
and this violates the condition C € X. If v; < va, then consider the path P§ = P3(— v)Pi(v —) which
connects uz to v;. From the D-compatibility, P; must intesect P, and further, by the minimality of
v, this intersection points must be on Pj(v —). We have a contradiction as well, and this shows that
the condition never happens. In the case of (4,j) = (0(2k — 1),0(2)) or (4, j) = (0(2k),0(2 - 1)), if
(0(2k — 1),0(2k),0(2 — 1),0(21)) = (1,2,3,4) or (1,3,2,4), then it is easy to see that sgno’ = sgno.
However, by similar reasoning, one can see that (0(2k — 1),0(2k),0(2l — 1),0(2l)) = (1,4,2, 3) never
happens. Thus, we have shown that the above involution is sign reversing, and, in (A.7), one may cancel
out all the terms which involve intersecting configulations of paths. Thus, we have

pf [Ql(ui’u.’i; B)] = E sgno H /B'Uzk—-ﬂ)zzcw(P)'

(o,9,P)eX0 k=1
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Suppose (0,v,P) € Xy. Then, put w = (w;,ws,...,w,) € I, such that w has the same support set with
v, ie {wy,ws,...,w.} = {v1,vy,...,v,}. From the D-compatibility, P; connects u; with w; for 1 <i < r,
and this shows that

pf [Ql(ui: Uj; B)] = Z N(ua w) Z sgno H ﬂwa(zk—l)wv(zk) .

wel,. oc§, k=1

This completes the proof. O
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