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1 Introduction

By a homogeneous algebra over a field k, we mean here a commutative k-algebra A with
identity, together with a vector space direct sum decomposition A = €, A; , such that:
(a) Ao =k, (b) A;A; C Aipj, (c) dimg A; < oo and (d) A is generated by A; as a k algebra.
The Hilbert function of A is defined by H4(n) := dimy A, for n > 0, while the Hilbert series
is given by T -

FaQ) 1= 3 HaGX = 22 Tt

i>0

where d is the Krull dimension of A and hg, hy, .. ., h, are certain integers satisfying h, # 0.
We call the vector (hg, hq,- -, h,) the h-vector of A. The h-vector is nothing other than
the d-th difference of the Hilbert function. More precisely, h; = A%H4(4) for all i, where
AHy(n) = Hu(n) — Ha(n — 1). And we always have hg = 1 and deg A = Y;_ h;. If A
is Cohen-Macaulay, we have h; > 0 for all 0 < ¢ < s. It is clear that the h-vector of A
together with its Krull dimension determines the Hilbert function of A and conversely.

A famous theorem of Macaulay-Stanley gives a characterization of a numerical functions
which occur as the Hilbert function H4(n) of a homogeneous k-algebra A. They also gives
a numerical characterization of possible h-vectors (that is, numerical functions which occur
as the Hilbert function H4(n) of a Cohen—Macaulay homogeneous algebra A). See [18] for
further information.

But very little is known about the Hilbert function of a Cohen-Macaulay homogeneous
domain, while it is conjectured that the h-vector of a Cohen-Macaulay homogeneous do-
main is under much stronger restrictions than that of a general Cohen-Macaulay homoge-
heous k-algebra.

The complete characterizations are obtained in a few special cases :

o when hy <1 (trivial),
o when hy; = 2 (Gruson and Peskine [8], see also [9]),

o when h; = 3 and A is Gorenstein (de Negri and Valla [15]).

When h; > 4, the problem become quite difficult. In general case, one of the best known
results on the h-vector of a Cohen-Macaulay homogeneous domain is that, if the base field
k is algebraically closed field with chark = 0, then h; > hy for all 1 < ¢ < s —1 (cf. [20]).

The following theorem refines the above inequality (in the rest of this note, we assume
that the base field k is algebraically closed).

Theorem 1 ([24, Theorem 3.2 (a)]) Suppose that k is algebraically closed field characteris-
tic 0. Let A be a Cohen—-Macaulay homogeneous domain with the h-vector (ho, hy, ..., h,).
If hy = hy for some 2 < i< s—2, then hy = hy =--- = hy_y > h,. When h, > 2, the
condition hy_; = hy also implies the same assertion.



Remark. (a) For a given sequence h = (ho, hy, ..., h,) satisfying ho =1, by = hy = --- =
hs_1 > h,, there exists a Cohen-Macaulay homogeneous domain whose h vector comc1des
with h. For example, the projective coordinate ring of an arithmetically Cohen—-Macaulay
irreducible curve contained in a surface scroll is a two dimensional Cohen~Macaulay ho-
mogeneous domain with such a h-vector (see [10] for further information).

(b) When h, = 1, the condition h,_; = h; does not implies h; = hy. For example, a
complete intersection of general hypersurfaces of degree > 3 is a Cohen—-Macaulay homoge-
neous domain whose h-vector (hg, hy, . .., h,) satisfies s > 4, h, = 1, hy_; = hy (furthermore
h,_; = h; for all i) but hy > h;. Theorem 4 (stated below) concerns what happens when
h,=1and hy = h,_;.

To prove Theorem 1, we use technique of Eisenbud and Harris [10, Chapter 3]. More
precisely, we will use uniform position lemma and generalize a classical result of Castelnuovo
which concerns a finite set of points in a projective space.

Lemma 2 ( [24, Lemma 2.1]) Let X C P" be a not necessarily reduced zero-dimensional
subscheme in uniform position. Denote the h-vector of the projective coordinate ring of X
by (ho, b, ..., hs). If hi = hq for some 2 < i < s —2, then there is a rational normal curve
containing X. If hy > 2 and s > 3, then hy = h,_; also implies the same assertion.

When ¢ = 2 and X is reduced, Lemma 2 is a classical result due to Castelnuovo And
Eisenbud and Harris [3, 4] proved the case i = 2 and X is non-reduced.

They use a deformation theory on projective schemes, while we use standard techniques
of modern commutatlve algebra.

Obv1ously, Ais a quotlent ring of a polynomial ring S = k[zy,...,z,] with v = dimj A,
and degz; = 1 for all 1 <7 <wv. S is used in this meaning in the rest of this section. So
A ~ S/I as a graded k-algebra for some graded ideal I C €,., Si

The h-vector of A = S/I has some information on the degrees of minimal generators of
I. The following, in particular part (1), seems more or less well-known. But, we will give
a proof in §4 for readers convenience.

Proposition 3 Suppose that A = S/I is a Cohen-Macaulay homogeneous domain with
the h-vector (ho, h1, ..., hs), hy > 2. Then;

(1) I is generated by elements of degree < s + 1.

(2) If hy < hq, then I is generated by elements of degree < s.

(3) Suppose that chark = 0. If I is generated by elements of degree < s — 1, then we
have h;y > hy for all2 <1< s—2.

Remark. Without the assumption that A is an integral domain, Proposition 3 (2) does
not hold at all, though (1) of this proposition remains valid for general Cohen—-Macaulay



homogeneous rings. For example, let A = S/I be as in Proposition 3, and let Gin(I) be
a generic initial ideal of I (see [2] for the definition). It is well-known that S/ Gin([) is
a non-reduced Cohen-Macaulay homogeneous ring with the h-vector (ho, hy,...,h,), but
Gin(/) always needs a generator of degre s + 1.

Theorem 4 Let A = S/I be a Cohen-Macaulay homogeneous domain with the h-vector
(ho, h1,...,hs). Suppose that s > 3, hy = 1 and hy = h,_; > 2 (note that I is gen-
erated by elements of degree < s by Proposition 2, in this case). If I actually needs a
generator of degree s, the number of minimal generators of I of degree s is hy — 1 (i.e,
dimy[Tor$ (k, S/I)], = hy — 1). In this case, hy = hy = --- = h,_; and A is Gorenstein.

If s >4and hy = ho = --- = hy_y > h,, then [ needs a generator of degree s or
s + 1, by Proposition 3 (3). When the h-vector of A is (1, k, h, 1), there are two cases. For
example, let C' be a smooth non-hyperelliptic curve with genus.g¢ > 5, and A = S/I the
homogeneous coordinate ring of the canonical embedding C C P91 A is a 2-dimensional
Cohen-Macaulay homogeneous domain with the h-vector (1,9 — 2,9 —2,1). A well-known
theorem of Enriques—Petri says that I needs a generator of degree 3 (= s) if and only if C
is trigonal or a plane quintic (of course, dimy[Tor:(k, A)]s = g — 3 in this case). So if C is
a general curve, then I is generated by degree 2 (= s — 1) elements.

2 Canonical modules

Let S := k[zi,...,z,] be a polynomial ring with degz; = 1 for all 1 < ¢ < v, and let
A ~ S/I be a d-dimensional Cohen—-Macaulay homogeneous algebra with the h-vector
(ho, h1,- .., hs). o
For a graded A-module M = P,.; M;, we sometime denotes the n-th graded component
of M by [M], (i.e., [M], = M,), and M(p) denotes the graded module with [M(p)}; = Mp,..
The graded mlnlmal free resolution of A = S/I over S is given by

0-»@5 ﬂ”—>--~—+@5 )i -8 — A=S/I -0,

JEZ jEZ

where ¢ := h; and §;; := dim[Tor] (k, A)]; for each i, j. We call 3;; the (i,)-th Betti
number of A. ‘

To prove Lemma 2, Proposition 3 and Theorem 4, we need the notion of canonical
module.

Definition 5 Let the notation be as above. The graded A-module wy = Ext(A, S(—v))
is called the canonical module of A. ‘



wy is a d-dimensional Cohen-Macaulay A module. The following is well known and a
easy consequence of local duality. '

Lemma 6 Let the notation be as above.
(a) (Stanley [18]) We have

A=+ (hy + Byt A+ -+ - + BoX?)
(1-A) '

F(WA, )\) = Zdlmk{wA],)\' =

1€EZ

(b) (c.f., [6]) Furthermore, [Tor{ (k, A)]; = [Tor_;(k,wa)lv—j, where c=hy =ht[.

3 Zero-dimensional schemes

In this section; we work over an algebraically closed field & of arbitrary characteristic unless
otherwise specified. By P", we denote the projective r space over k. Let S := k[Xo, -, X;]
be the homogeneous coordinate ring of [P".

Given a subscheme V C P7, we denote by Iy the saturated homogeneous ideal of V. We
say that a subscheme V C PP" is non-degenerate, if no hyperplane contains V.

Let X C P’ be a zero-dimensional subscheme, and R := S/Ix be the homogeneous
coordinate ring of X. Unless otherwise specified, X and R are used in this meaning
throughout this note. R is a (not necessarily reduced) 1-dimensional Cohen-Macaulay
homogeneous algebra.

The Hilbert function of X is denoted by Hx : Z — N (n — dimy R,), while the degree
of X is given by deg X = sup{Hx(n)|n > 0}. If X is reduced, then deg X is equal to the
number of points contained in X.

Since R is 1-dimensional, the h-vector (ho, hy,...,hs) of R is given by h; = Hx(i) -
Hx(i—1) and s = min{n|Hx(n) = deg X}. We have that h; > 0 for all 0 < ¢ < s,
deg X = hg + hy + -+ + hy, and Hx(n) = ho + hy + -+ + hy for all n. hy is equal to the
dimension of the linear span of X, in particular, if X is non-degenerate then h; = r.

Let wg be the canonical module of R. wg is a 1-dimensional Cohen-Macaulay R module.
By Lemma 6, we have [wg); = 0 for all ¢ < —s+ 1, dimg[wr]_s41 = hs, and dimg[wg]-s+2 =
hs + hs_1.

We now recall a few well-known geometric conditions on zero-dimensional schemes.

Definition 7 We say that X is in linearly general position, if every proper subspace L C P~
satisfies deg(L N X) < 1+ dim L, or equivalently, if every subscheme ¥ C X satisfies
Hy(1) = min{degY, 7 + 1}.

Definition 8 Let X C P” be a zero-dimensional subscheme. We say that X is in uniform
position, if X is in linearly general position and every subscheme ¥ C X satisfies Hy(n) =
min{Hx(n),degY} for all n € Z.



In the next proposition, we shall say that a map of k-vector spaces ¢ : UQV — W is
1-generic, if $(u@v) # 0 whenever u, v # 0, and non-degenerate, if u € U and ¢(u®V) =0
(resp. v € V and ¢(U ® v) =0 ) imply u = 0 (resp. v = 0).

Proposition 9 (Kreuzer [13]) Let X C P" be a zero-dimensional subscheme in uniform
position, and let R be its coordinate ring. Set s = min{n|Hx(n) = deg X'}, in other words,
s is the “length” of the h-vector of R. If s > 2, then the multiplication map Sy @ (wg)—s+1 —
(Wr)-st+2 s 1-generic, and the multiplication map R, ® (wgr)-s+1 — (WR)—sini1 15 NON-
degenerate for alln > 0.

Remark 10 (a) Let X C P" be a zero-dimensional subscheme in linearly general position
(e.g., uniform position) with the h-vector (hg, hy, ..., hs). Then we have h; > h; = 7 for all
1 <4< s—1. Hence we have Hx(n) > min{l + nr,deg X} for all n > 0 (see for example
13)).

(b) For any non reduced point € X, the local artinian ring Ox , has a non-zero socle.
Since we have that dimy Ox ,/(a) = dimy Ox, — 1 where 0 # a € soc(Ox,), there is a
subscheme Y C X such that degY = deg X — 1 (if X is reduced, Y = X \ {z} for some
z € X). Moreover for each integer 1 < n < deg X, there is a subscheme Y C X such that
degY =n.

On the other hand, if X is in uniform position and has the h-vector (ho, hy,...,h,),
then every subscheme Y C X is in uniform position again, and its h-vector is given by
(ho, h1, ha, ..., hi_1, ) for some ¢ < s and h < h;.

7

We also need the following result from Eisenbud’s “1-generic matrix” theory.

Proposition 11 (Eisenbud [1, Theorem 5.1]) Let ¢ : U Q V. — W be a linear map of
k-vector spaces and M be the matriz with entries in W which corresponds to ¢ (the cor-
respondence between a bilinear map and a linear form matriz is given in the introduction
of [1]). If ¢ is I-generic and dimy V' = 2, then M is equivalent to a unique scroll matriz
M(ay, - aq) with1 < ay <--- < ag, Y% a; = dimy U. That s,

M~ M(ay, -, aq)

Zi0 Tia "7 Liae -1 | T20 - T240,-1 | crr Xdag-1

T11 212 - Ti,a | T21 - T2, | c0r Tday

Proof. From a well-known formula on determinantal ideals, the assumption of Theorem 5.1
of [1] is satisfied automatically in this case. o

See [1] for further information on 1-generic matrices.



Proof of Lemma 2. If the assumption of the lemma is satisfied, we have h;;; > 2 (see
Remark 10 (a)). Hence we can find a subscheme Y C X whose h-vector is (ho, b1, . .., by, 2)
by the argument in Remark 10 (b). Since [Iy]z = [Ix]2 and the defining ideal of a rational
normal curve is generated by quadrics, we can replace X by Y. So we may assume that
hs =2, s> 3 and h,_; = hy = r. Then we have dimg|[wg|_s+1 = 2 by Lemma 6 (a).

Let M be the matrix with entries in [wg|_s4+2 Which corresponds to the multiplication
map S1®[wg]-s+1 — [Wg|-s+2- Since this map is 1-generic by Proposition 9, M is equivalent
to a scroll matrix M(ay,- -, ag) by Proposition 11, for some ay, ..., agz such that 1 < a; <

-Sad/ande'a,-:r—kl. ‘

Easy calculation shows that dimy M < dimg[wg]-s12 = 2+ hs_; = 7 + 2, where dim; M
means the dimension of the linear span of the entries of M. On the other hand, by the
“shape” of the scroll matrix, it is easy to see that dimy M = r + 1 4+ d. Hence we have
d=1.

So we can find a basis zg,---,z, of S; and aq, a; of [wg]_,4; respectively such that
T,00 = x;q1a; foralll1 <i < r.

Set
M = To Ty - Tp—2 Tp—1
' Ty Tz - Tr-1 Ty
the scroll matrix of type M(r) with entries in 5.

An explicit calculation shows that I;(M') - [wg|-s4+1 = 0. In fact;, we have -

(%‘%‘—1 - -Tj—1$i) * Qg

= ZjTi—109 — Tj_ 1(93iao)

TiZi_10p — Lj_1(Ti— 1(11)

(
T;l;-100 — T4j— 1(% 101)
T;x;_100 — T;—1(T;00)

= 0,

for ail 1 < 4,5 < r. Similarly,

(zjzie1 — xj—12;) - a; = 0.

But, the multiplication map Ry®[wg]-s+1 — [wWg]|-s+3 is non-degenerate by Proposition 9.
So we have I,(M') C Ix. That is, the rational normal curve defined by I5(M’) contains
X. : a

The following is the non-reduced version of a classical result due to Castelnuovo.

Corollary 12 (Eisenbud-Harris, [3, Theorem 2.1] and [4, Theorem 2.2]) Suppose that X
is not necessarily reduced zero-dimensional subscheme of P" in linearly general position.



(a) If deg X = r + 3, then there is a unique rational normal curve containing X .
(b) If deg X > 2r + 3 but X imposes only 2r + 1 conditions on quadrics, then there is a
unique rational normal curve containing X .

Proof. (a) The uniqueness part is easy (see [3]). We can prove the existence of the rational
normal curve containing X by the same arguments in our proof of Lemma 2, since X is in
uniform position and has the h-vector (1,7,2).

(b) Let Y be a subscheme of X with degY = 2r + 3. Then Y is in uniform position
and has the h-vector (1,r,,2). Since [Ix]s = [Iy]2, the statement follows from Lemma 2
immediately. a

Theorem 13 Let X C P", r > 2 be a non-degenerate zero-dimensional subscheme in
uniform position and let (hg, hy,...,h,) be the h-vector of the projective coordinate ring of
X (note that hy = r).
(1) (Green, [6, Corollary (3.c.6)]) The following are equivalent.
(a) [Tor;_y(k, A)]» # 0.
(a’) dimg[Tor? ,(k, A)], =7 — 1.
(b) X lies on a (unique) rational normal curve.
(2) If further s > 4 (resp. s > 3 and hy > 2), then the following conditions are equivalent.
(c) hi = h; for some2<i<s—2 (resp. 2<i1<s—1).
(C’)h1=h2= "':hs—l Zhs-

Proof of (2). (b) = (c’): Well-known.
(¢’) = (c): Obvious.
(c) = (b): From Lemma 2. |

The assumption h, > 2 of the “resp. part” of Theorem 13 (2) is necessary. There
are many examples of a zero-dimensional subscheme in uniform position whose h-vector
satisfies s > 4, hy, = 1, hy = h,_; and hy > h;. In fact, almost all zero-dimensional
complete intersections have such h-vectors.

The following result is a key lemma of the arguments in Eisenbud and Harris [10, §3.b].
They proved this under the additional assumption that char k& = 0.

Corollary 14 (Eisenbud-Harris, [10]) Let X C P" be a zero-dimensional scheme of degree
d in uniform position. If there is no rational normal curve containing X then we have

Hy(n) > min{d,n(r + 1)} unlessr +1|d andn =d/(r+1) -1,
XA =Zd-1 ifr+1|d andn=d/(r +1) - 1.

Proof. The assertion follows from Theorem 13 (2) immediately. O



4 The h-vectors of Cohen-Macaulay homogeneous
domains

In this section, we assume that k is an algebraically closed field with chark = 0. The next
result plays a key role of this note.

Uniform Position Lemma (Harris, [10, Corollary 3.4]) Let C C P} be a reduced,
irreducible and non-degenerate curve. Then a general hyperplane section C N H is a set of
points in uniform position in H.

Remark. When chark > 0, uniform position lemma does not hold! In fact, there are
well-known examples of a space curve C such that every secant of C' is a multisecant, i.e.,
every secant of C intersects C at least one more point. It is easy to see that the hyperplane
section of C' always fails uniform position property.

Rathmann [16] classifies counter examples of uniform position lemma, in the positive
characteristic case (the classification is not complete). Like the curve we mensioned above,
most of these curves have pathological properties on secant lines or planes.

In virtue of UPL, we can use our results on zero-dimensional schemes to study the Hilbert
function of a Cohen—Macaulay homogeneous domain.

Lemma 15 Let A be a homogeneous Cohen-Macaulay domain over k of dimension d.
Then there exists a set of points in uniform position whose projective coordinate ring has
the same h-vector as A. '

Proof. By Bertini’s theorem and the uniform position lemma, there is a linear regular
sequence X = 1,...,%q_1 € A; for which A/(x) is the projective coordinate ring of a set of
points in uniform position. It is well-known that A and A/(x) have the same h-vector. .0

Proof of Theorem 1. The assertion follows from Lemma 15 and Theorem 13 (2). O

Let A be a d-dimensional Cohen-Macaulay homogeneous domain. Set v := dimy A;.
And let § = k[Xy,...,X,] be a polynomial ring over k such that A ~ S/I as a graded
k-algebra, for some homogeneous ideal I C €, Si.

It is easy to see that X := Proj(S/I) C P*!is a subvariety (i.e., reduced and irreducible)
of dimension d — 1. Note that hy is the codimension of X C P*7! (ie., by = v — d).

The following is a domain version of Theorem 13. :

Lemma 16 (1) (Green, [6, Theorem (3.c.1)]) Let the notation be as above. If s > 3 and
hi > 2, then the following are equivalent.
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(a) [Tors, - 1)(k A, # 0.

(a’) dlmk[Tor(,zl y(k, A, = b1 — 1.

(b) X C P*~! lies on a d-dimensional subvariety of P'~! with minima degree (i.e., degree
v—d).

(2) If further s > 4 (resp. s > 3 and h, > 2), the following statements are also equivalent
to the above.

(C) h1:h2="' :hs—l 2 hs.

(¢’) hi = hy for some2<i<s—2 (resp. 2<i<s—1)

Proof of Proposition 3. For the convenience, we put ¢ = h;.

(1) Since [wa]; = 0 for all j < —s + d, we have [Tor} (k,w,)]; = 0 for all j < —s +d + 1.
From Lemma 4, it is easy to see that [Torj(k, A)]; ~ [Tor.  (k,wa)|cta—; = O for all
J > s+ 1. So the assertion follows from the fact that dimk[Torf(k, A)]; is the number of
minimal generators of I of degree j.

(2) Since [wy); = 0 for all j < —s+d and dimg[wa]-s4+q = hs, Theorem (3.a.1) of [6] (see

also [5]) yields that [Tor} (k,w4)]_syari = 0 for all s > h,. By the assumption that h, < c,
we have

[T0T1(k Aoy {TOTC 1(k wA)]—3+d+C 1=0.

(3) It is easy to see that, if A = S/I satisfies the equivalent conditions of Lemma 16, I
is not generated by elements of degree < s — 1. In the next section, we will study the free
resolution of A over S, when A satisfies the conditions of Lemma 5 O

Proof of Theorem 4. By Lemma 6, we have
[Tor_y(k, wa)]-sra+e = [Tori (k, A)], # 0,

where ¢ = h;.

Since h, = 1 and h,_; = hy, we see that [ws]; = 0 for all 1 < —s + d, dimg[wa]_s1qa = 1
and dimg|ws]_s4a+1 = dimy A;. Consider the following exact sequence (note that wy is a
torsion free A-module),

00— A— ws(—s+d) — Coker — 0.
It is easy to see that [Coker]; = 0 for all ¢ < 1, and hence
[Tor?_, (k, Coker)]. = [Tor® (k, Coker)]. = 0
. So applying the functor Tor®(k, —) to the above exact sequence, we get
[Torg_y (k, A)]e = [Tor?_, (k,wa(~s + d))le = [Tory_,(k, wa)l—stare 7 0.
Thus the assertion follows from Lemma 16. O

Another application of Corollary 16 can be found in [25]. We give here the main result
of [25] without proof. It improves [21, 12, 14], in some senses.
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Theorem 17 ([25]) Let C C P", r > 3 be a reduced, irreducible and non-degenerate curve.

(1) Suppose that the hyperplane section Z := C N H is aithmetically Gorenstein (aGor,
for short) for a general hyperplane H C P', but C C P" itself is not aGor. Then Z 1s
contained in a rational normal curve of H ~P™1, and degC =degZ =2 (mod r — 1).
If further degC > r + 1, then C is contained in a surface with minimal degree.

(2) Conversely, for a given integer d > v+ 1 such that d =2 (mod r — 1), there is
a smooth, irreducible curve C C P" with degC = d which is not aGor, but its general
hyperplane section is aGor.

(8) If a general degree d hypersurface section of C is aGor for some d (> 2), then C
itself is also aGor.

5 Minimal Free Resolution

Let A = S/I be a d-dimensional Cohen-Macaulay homogeneous domain which satisfies the
equivalent conditions of Lemma 16. '

By several methods, we can compute the Betti numbers of A. For example, according
to an idea of Schreyer [21], we can construct the minimal free resolution of A over S as a
mapping cone between the complex constructed by Buchsbaum-Eisenbud (c.f., [2, A2.6.1]
and [17, (1.5) and (1.6)]) and the Eagon—Northcot complex. Or, we can also compute the
Betti numbers of A using an argument similar to [23, Corollary 3.4], since a suitable linear
subspace section of Proj A is a set of points contained in a rational normal curve.

Proposition 18 Let A = S/I be a Cohen~Macaulay-homogeneous domaih whicﬁ satisfies
the equivalent conditions of Lemma 16. Put ¢ := hy. Then the Betti numbers of A over S
is given by,

dimy[Torf (k, A)];
(1 ifi=j=0,

’l:(i—}c-l) ifl<i<c—landj=1i+1,

= Q(e=i—h+1)(;5) #l<i<c—h,andj=s-1+4,

(ks — c+1)(5) ifc—h+1<i<candj=s+1,

\ 0 otherwise.

When h, = 1, the Betti numbers are relatively simple.
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Corollary 19 Let A = S/I be a d-dimensional Cohen-Macaulay homogeneous domain
whose h-vector (hg, hy,- -, h,) satisfiesh, =1 and h; =---=h,_;. Ifs >4, or s =3 and
I has a generator of degree 3, then a minimal free resolution of A over S is of the form:

0 S(=s— ) — S(=c)*1 ® S(—s — c + 21 —
S(—c+ 1’2 @ S(—s—c+3)2 — .- — S(=3) @ S(—s — 1)t —
S(=2) @ S(—s)b-1 = § - A=S/I -0,
where ¢ = h; and

bizi(ij_l) foralll<i<c—1.

Let P(v,d) be a stacked d-polytope with v vertices, A(P(v,d)) its boundary complex
and R := k[A(P(v,d))] the Stanley—Reisner ring of A(P(v,d)) over k (see [22] for the
definition). R is a reduced (but non-irreducible) Cohen—Macaulay homogeneous ring of
dimension d and embedding dimension v. So R is a quotient ring of a v-dimensional
polynomial ring S.

A stacked polytope is a optimal example of lower bound theorem (cf. [10]), that is, the
h-vector of R is given by (hg, hy,--,hq), where hg =hg=1land hy =---=hg  =v—d.
So R has the same h-vectors as the Cohen-Macaulay homogeneous domains which have
been studied in this paper.

Recently, Terai and Hibi [22] computed the Betti number of R.

Comparing each Betti number, we get the following. /

Proposition 20 Let R be the Stanley-Reisner ring associated with the boundary complex
of a d-dimensional stacked polytope P{v,d). Let A be a Cohen-Macaulay homogeneous
domain over k which has the same h-vector as R. If A satisfies the equivalent conditions
of Lemma 16 (e.g., d > 4), then A and R have the same Betti numbers.

References

[1] D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988),
541-575.

2] , “Commutative Algebra with a view toward algebraic geometry.” Springer—
Verlag, 1995.
[3] and J. Harris, Finite projective schemes in linearly general position, J. Alg.

Geom. 1 (1992), 15-30.



13

[4] and , An intersection bound for rank 1 loci, with applications to Castel-
nuovo and Clifford theory, ibid. 1 (1992), 31-60.

and J. Koh, Some linear syzygy conjectures, Adv. Math. 90 (1991), 47-76.

[5]

[6] M. Green, Koszul cohomology and the geometry of projective varieties, J. Diff. Geom.
19 (1984), 125-171. ‘

[7] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic
curves, Comp. Math. 75 (1988), 301-314. : :

[8] L. Gruson and C. Peskine, Genre des courbes de I’espace projectif, Lect. Notes Math.
687, 31-59. Springer, 1978.

[9] J. Harris, The genus of space curves, Math. Ann. 249 (1980), 191-204.

[10] (with the collaboration of D. Eisenbud), “Curves in projective space.” Univer-

sity of Montreal Press, 1982.

[11] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publication, Aus-
tralia, 1992.

[12] C. Huneke and B. Ulrich, General hyperplane sections of algebraic varieties, J. Alg.
Geom. 2 (1993), 487-505.

[13] M. Kreuzer, On the canonical module of a 0-dimensional scheme, Canad. J. Math. 46
(1994), 357-379.

[14] J. Migliore, Hypersurface sections of curves, in “Zero-dimensional Schemes”, (F. Orec-
chia et al. eds.), De Gruyter, 1994, 269-282.

[15] E.D. Negri and G. Valla, The h-vector of a Gorenstein codimension three domain,
Nagoya Math. J.138(1995), 113-140.

[16] J. Rathmann, The uniform position principle of curves in characteristic p, Math. Ann.
276 (1987), 565-579.

[17] F.O. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275
(1986), 105-137.

[18] R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57-83.

[19] , Combinatorics and Commutative algebra, Birkhauser, 1933.



14

[20]

, On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure Appl.
Algebra 73 (1991), 307-314.

[21] R. Strano, A characterization of complete intersection curves in P> Proc. Amer. Math.
Soc 104 (1988), 711-715.

[22] N. Terai and T. Hibi, Computation of Betti numbers of monomial ideals associated
with stacked polytopes, preprint. (1995)

[23] K. Yanagawa, Some generalizations of Castelnuovo’s lemma on zero-dimensional
schemes, J. Algebra 170 (1994), 429-439.

[24] , Castelnuovo’s lemma and h-vectors of Cohen-Macaulay homogeneous domain,

J. Pure Appl. Algebra (in press).

[25] , A Characterization of Integral Curves with Gorenstein Hyperplane Sec‘mons

Proc. AMS (to appear).

[26] ——, A note on h-vectors of Cohen-Macaulay homogeneous domain, preprint.



