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§1. Cyclic polytopes and stacked polytopes

In this section we briefly summarize the definition and basic facts of
cyclic polytopes and stackd polytopes according to [Bil-Lee] and [Brg]. See
those references for the detailed information.

Let R denote the set of real numbers. For any subset M of the d-
dimensional Euclidean space R?, there is a smallest convex set containing
M. We call this convex set the convez hull of M and denote it by convM.
For d > 2 the moment curve in R? is the curve parametrized by

t— z(t) = (4, %,---,t%), teR.

By a cyclic polytope C(v,d) , where v > d+1 and d > 2, we mean a poly-
tope P of the form P = conv{z(t,),---,z(t,)}, where t1,- - -, ¢, are distinct
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real numbers. It is well known that C(v,d) is a simplicial d-polytope with
the vertex set {z(¢;),---,z(t,)}, and its face lattice is independent of the
particular values of ¢. Therefore its boundary complex is a simplicial com-
plex and has the same combinatorial structure for any choices of vertices.
We denote it by A(C(v,d)).

Let V = {24, -+, 2,} be the vertex set of C(v,d). Let W be a proper
subset of V. A subset X of W of the form X = {z;,z;41,-:-,z;} is said to
be a contiguous subset of W if ¢ > 1,7 < v,z;1 ¢ W, and z;41 ¢ W. The
set X is a left end-set of W if i = 1 and z;41 ¢ W, and a right end-set of
Wif j = v and z;-1 ¢ W. We say that X is a component of W if X is a
contiguous subset or an end-set of W. A subset X of W is said to be even
(resp. odd) if the number of elements in X is even (resp. odd). The set W
can be written uniquely in the foom W = Y; U X; U--- U X,, U Y5, where
X;, 1 <1< n,is a contiguous subset of W, and Y;, ¢ = 1,2, is an end-set of
W or an empty set. We quote two facts which are necessary later. We may
abuse notation and call a subset W of V itself a face of C(v,d) if convW is
a face of C(v,d).

(1.1) LEMMA ([Brg, Theorem 13.7]). Let W be an m-element subset
of V, where m < d. Then W is an (m — 1)-face of C(v,d) if and only if the

number of odd contiguous subsets of W is at most d — m.

(1.2) LEMMA ([Brg, Corollary 13.8]). Let m be an integer such that
1 <m < [%]. Then all m-element subsets of V are (m — 1)-faces of C(v, d).

Now we define a stacked polytope inductively. Starting with a d-simplex,
one can add new vertices by building shallow pyramids over facets to obtain
a simplicial convex d-polytope with v vertices, called a stacked polytope.

UPPER BOUND AND LOWER BOUND THEOREM. Let P be a d-dimensional
simplicial polytope with v vetices. Let C (resp. S) be a d-dimensional cyclic
(resp. stacked) polytope with v vetices. Then we have

£i(S) < fi(P) < £:(O),

where f;(P) stands for the number of i-facces of a polytope P.
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§2. Hochster’s formula

Given a subset W of V| the restriction of A to W is the subcomplex
Aw ={c€A|ocCW}

of A. In particular, Ay = A and Ay = {0}.
Let H;(A; k) denote the i-th reduced simplicial homology group of A with
the coeflicient field k. Note that H_;(A;k) = 0 if A # {0} and

nn - {620,

Hochster’s formula [Hoc, Theorem (5.1)] is that

Bi, = :‘ Z dimkf{j_i—-l(AW§k)-

WV, {(W)=j

Thus, in particular,

BER[A) = > dimy Hyw)-i-1(Aw; k).
wcv

Some combinatorial and algebraic applications of Hochster’s formula
have been studied. See, e.g., [Bac], [B-H,;], [B-H,], [Mun], [H,], [Hs], [Ha],
[Hs], and [T-H;].

§3. Betti numbers of Stanley—Reisner rings
associated with cyclic polytopes

In this section we compute the Betti numbers of a minimal free reso-
lution of the Stanley-Reisner ring k[A(C(v,d))] of the boundary complex
A(C(v,d)) of the cyclic polytope C(v,d).

We fix a field & .

If the dimension d is even, a minimal free resolution of k[A] is pure and
the Betti numbers can be easily computed from the Hilbert function of k[A].

(3.1) PROPOSITION ([Sch]). Let A be the boundary complex A(C(v,d))
of the cyclic polytope C(v,d), where d > 2 is even. Then a minimal free
resolution of k[A] over A is of the form:
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0 — A(—v) — A(—v+ g + 1)Poma-1
—-—)/—1(—;‘;—2)'82 —)A(—g-—l)ﬂl — A — k[A] — 0,

where for 1 <i:<v—-d-—1,
, d d | d d_
= () () () (),
3t 2 11 3

Our formula on §; in Propesition 3.1 is, in fact, a little bit different from
the one in [Sch]. But it is easy to show that they are coincident.

If the dimension d is odd, the minimal free resolution of k[A] is not pure,
and the situation is much more complicated.

Now we state the main theorem in this chapter.

(3.2) THEOREM. Let A be the boundary complex A(C(v,d)) of the
cyclic polytope C(v,d), where d > 3 is odd. Then a minimal free resolution
of k[A] over A is of the form:

0 — A(~v) — A (—p + [-;-l—} + 2) e A (—v + [g] + 1’) " —

(-] o) wa i) T —a(-[]-)
oa(-[f]-2) T —a—mai—

where for 1 <i<v—d—1,
()

Even if the geometric realization |A| of a simplicial complex A is a
sphere, a Betti number of the Stanley-Reisner ring k[A] may depend on the
base field k in general. See [T-H,, Example 3.3]. But as for the boundary
complexes of cyclic polytopes we have the following result:



(3.3) COROLLARY. Let A be the boundary complez A(C(v,d)) of
the cyclic polytope C(v,d), where d > 2. Then all the Betti numbers of the
Stanley-Reisner ring k[A] are independent of the base field k.

We show unimodality of the Betti number sequence
(Bo, B, -, Buv—a) of the Stanley-Reisner ring k[A(C(v, d))] associated with
C(v,d). Since this sequence is symmetric, i.e., B; = B,_4-; for every 0 <
¢ < v — d, the unimodality means By < By < -+ < Bjw-a)/2)-

(3.4) COROLLARY. Let A be the boundary complezx A(C(v,d)) of
the cyclic polytope C(v,d). Then, the Betti number sequence
(Bo(K[A]), Bi(K[A]),- -+, Bu-d(k[A])) of the Stanley-Reisner ring k[A] over

A is unimodal.

We prepare several lemmas to prove the theorem. We put A = A(C(v, d))
and V = {1,2,---,v} for simplicity, and fix an odd integer d > 3.

(3.5) LEMMA. Ifv is odd and W = {1,3,5,- - -, v}, then

Proof. We have ﬁ[g]_l(AW; k) = I?[g_](AV_W; k) by the Alexander du-
ality theorem (see, e.g.,[Sta;, p76]). Since V—-W = {2,4,...,v—1},if o is
a subset of V — W with (o) > [£], then o does not belong to A by Lemma
1.1. Thus we have H[%](AV_W; k) = 0. Q.E.D.

(3.6) LEMMA. Ifv is even and W ={1,3,5,---,v — 1}, then

Proof. All the maximal faces of Aw are of the form {1} U o, where
1¢ 0, 0 CW, f(c) = [2]. Thus Aw is a cone with apex {1}. Hence we
‘have ﬁ[g]-l(Aw; k) =0. Q.E.D.

(3.7) LEMMA. Ifv is even and W = {2,4,6,---,v}, then

g[%]_l(AW; k) - O.
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(3.8) LEMMA. Ifv is odd and W = {2,4,6,---,v — 1}, then

dimg Hygy_, (Aw; k) = ([5]; 1)-
: (5]
Proof. Let
0-Cy—>Cy4—--—>C—-Co—-C_1—0

be the augmented chain complex of the simplicial complex Ay over k. Then
we have Cg) = 0 and, for j < (4], all the (j+1)-subsets of W form a basis of

C; as a vector space by Lemmas 1.1 and 1.2. Thus we have Hj(Aw;k) =0
for all j < [¢] — 1. Hence, the Euler-Poincaré formula (see, e.g. ,[Bru-Her,

p223]) gives

o ([)-(8)+ () -
([%1 - 1).
[3]

(3.9) LEMMA. Let W be a non-empty proper subset of V with a unique
decomposition

)

[CRESW RN

Q.E.D.

W=Y,UX;UXU...UX,UY,

for some n > 0, where X;,1 <1 < n, is a contiguous subset and Y;,1 = 1,2,
is an end-set or an empty set. Then

ngl, Zin=(band 1/,2:(0,
(5]

dimy H[g]_1(Aw; k)= { 0, otherwise,

where we define (’E]l) =0if n—1<[4]

Proof. We prove the lemma by induction on the number v of vertices.

First let v = d + 1. Then C(v,d) is a d-simplex. Thus H (4 (Aw;k) =0
for every subset W C V. Since n < [%52] = [§], the lemma holds.
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Next let v > d + 1. Let
V-W=X,UXjU---UX’,,

be a unique decomposition, where X!,1 < i < n + 1, is a component of
V — W. Suppose there exists X! (1 <i < n+ 1) with §(X/) > 2. Let j be
an element of X!. Put V''=V — {j}. Note that W C V'. We consider the
simplicial complex A’ = A(C(v —1,d)) on the vertex set V'. Then we have
Aly = Aw by Lemma 1.1. Thus we have H;(Aw; k) = H;(Ayy; k). By the
induction hypothesis, we are done in this case.

We put Xy := Yi, X431 := Y3, Next suppose there exists X; (0 < ¢ <
n + 1) with §(X;) > 2. Let j be an element of X;. Put V' =V — {5}. We
consider the simplicial complex A’ := A(C(v —1,d)) on the vertex set V.
Then we have A},_y, = Ay_w by Lemma 1.1. By Alexander duality, we
have :

Higy_1(Aw; k) = ﬁ[g](Av—w; k) = ﬁ[g]( vowi k) = g[g]q( ws k).

Thus we are done in this case.

In the remaining case we may assume §(X;) = 1 for 1 <7 < n,f(X!) =1
for 1 <i<n+1and§(¥;) <1 for:=1,2. But in this case we have the
desired result by Lemmas 3.5, 3.6, 3.7, and 3.8. Q.E.D.

Proof of Theorem 3.2. Since k[A] is Gorenstein (see, e.g., [Bru-Her,
Corollary 5.5.6]), we have hd4k[A] = v — d. Let

0—)Fv_d—)---—+F2—>F1—>Af>k[A‘]—>O,_

be a minimal free resolution of k[A] = A/In over A. By Lemma 1.2, we
have min{a € Z;(Ia)s # 0} = [2] + 1. Then F has a direct summand of
the form A(—[¢] — 1)’ with b, > 0 and F;,1 < ¢ < v —d — 1, may have
A(—[g] — i)% with b; > 0 as a direct summand. We have F,_; = A(—v)
and F;,1 < i < v—d—1, may have A(—v + [2] 4+ (v — d — 7))bv—e-i =
A(—[4]—i—1)%-4~ as a direct summand by the self-duality of the minimal
free resolution (see, e.g., [Sta;, p59]). By [B-H;, Proposition 1.1} we can
easily check that other shiftings do not appear, since k[A] is Gorenstein.
Thus we obtain the desired form of the minimal free resolution of k[A].
We now determine the graded Betti numbers b;,1 <: < v —d—1. By

Hochster’s formula we have

bz' = ﬂi[d]+i - Z dimk f{[gl_l(AW; k)
2 WV, j(W)=[§]+i
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Let c;(n) denote the number of ([£] + ¢)-subsets W of V such that W has
a unique decomposition W = X; U X3--- U X,, where X;,1 <7 < n, is
a contiguous subset of W. Then ¢;(n) is the number of positive integer
solutions of the system of the equations '

@1+ Tyt z, = [§] 43
Yi+Yat o+ Yo =v—[§] 1.

Thus we have

ci(n) = ([%]:_il— 1) (U - [%]n_ Z— 1).

By Lemma 3.9 and combinatorial identities in [Brg, Appendix 3] we have

b= Lt (nﬁ 1)

Q.E.D.

§4. Betti numbers of Stanley—Reisner rings
associated with stacked polytopes

Our main result in this chapter is to present a combinatorial formula for
the computation of the Betti numbers of the Stanley~Reisner ring associated
with the boundary complex of a stacked d-polytope P(v,d) with v vertices.

(4.1) THEOREM. Fiz v > d > 3. Let P(v,d) be a stacked d-polytope
with v vertices and A(P(v,d)) its boundary complez. Then, a minimal free
resolution of the Stanley-Reisner ring k[A(P(v,d))] = A/Ia(p(v,a)) over A
is of the form

0 — A(—v) — A(—v + d)>-1 P A(—v + 2)»
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— A(~v+d+ 1)l PA(-v+3)? — -
— A(=3)2 P A(—d — 1)bs-e-2
— A(=2)" P A(=d)’~41 — A — k[A(P(v,d))] — 0,

fv—d
b"‘z(zurl)

When d = 2, A(P(v,2)) is the cycle C, with v vertices. A minimal free
resolution of k[C,] = A/I¢, over A is a pure resolution, which is discussed

in, e.g., [B-H;] and [B-H,].

where

foreachl <i<v-—d-1.

(4.2) COROLLARY. Every Betti number of k[A(P(v,d))] = A/Ia(P(,q)
over A is independent of the base field k and of the combinatorial type of
P(v,d).

(4.3) COROLLARY. Fizv > d > 3. Let P = P(v,d) a stacked
d-polytope with v vertices and A = A(P) its boundary complex. Then, the
Betti number sequence (Bo, B1, - -, Bu—d) of kK[A] = AJIa over A is unimodal.

To prove the theorem we prepare several lemmas. Let P = P(v,d)
be a stacked d-polytope with the vertex set V, (V) = v, A = A(P) the
boundary complex of P, and F a facet of P with the vertex set X. Let
P’ denote a stacked d-polytope with (v + 1)-vertices which is obtained by
building a shallow pyramid over F with a new vertex a, and A’ the boundary
complex of P'. Let V' = V U{a} be the vertex set of A’ and W a subset of
V'. We fix a base field k.

(4.4) LEMMA. (a) Ifa ¢ W and X ¢ W, then
Ay = Aw.
(b Ifagd W, W #£V and X CW, then

. ~' I . —_ .
dimy Hi( Ay k) {dimkHi(Aw;k)-}—l (i=d—2).

(c) Ifa € W and X NW # 0, then, for each i, we have

Hy(AYys k) = ﬁi(AW—{a}; k).



(d) Ifae W, W # {a} and XOAW =0, then

. oAl . d.ll’Il}c Hi(AW—{a}; k) (Z 7£ 0)
dimy, Hi(Aw; k) _{ dimy .E[i(AW——{a}; E)+1 (i=0).

Proof. (a) In general, A’ = (A—{X})U{oc C V' | o C X U{a},0 # X}.
Hence, we have Ay = Aw if a ¢ W and X ¢ W.
(b) Let T denote the set of all subsets of X and set 0' = ' {X}. Then
UL = Aw and Ajy NT = 9I. Since I' is a simplicial (d — 1)-ball, oT'
is a simplicial (d — 2)-sphere and Hy_(Aw; k) = 0, the required equalities
follow from the reduced Mayer—Vietoris exact sequence

- ~i-—1(8r‘; k) — f?z-_l(I‘; k)@ﬁi—l(Aﬁz; k) — ~i-l(Aw; k)

..

(c) If X C W, then the geometric realization of Ay, is homeomor-
phic to that of Aw_¢s}. Thus Hi(Aly; k) = Hi(Aw-{a); k) for each i. On
the other hand, if X\W # X, then AW_{Q}UA’VVQ({Q}UX) = A}y and
Aw—{a} N AWngajux) = Awnx. Since both Ajyajuxy and Awnx are
contractible, again the reduced Mayer—Vietoris exact sequence guarantees
the desired equalities. ‘

(d) Since A}y is the disjoint union of Aw_g} and one point {a}, we
immediately have the required equalities. Q. E.D.

(4.5) LEMMA. Let A = A(P) denote the boundary complez of a
stacked d-polytope P = P(v,d) with the vertez set V, §(V) = v. Then,
for every non-empty subset W of V with W # V and for each 1 # 0,d — 2,

we have

Hi(Aw; k) = 0.

Proof. fv = d+1, i.e.,, P is a d-simplex, then Ay is contractible.
Hence, H;(Aw; k) = 0 for each i. We now work with the same situation as
in the above Lemma 4.4 and suppose that H;(Aw;k) = 0 for every non-
empty subset W of V with W # V and for each ¢ # 0,d — 2. Let W be
a non-empty subset of V' with W # V. If W = V' — {a}, then Ay is
a simplicial (d — 1)-ball. Hence, H;(Aw;k) = 0 for each i. Moreover, if
W = {a}, then H;(Aw;k) = 0 for each 5. On the other hand, if W is a
non-empty subset of V'’ with W # V' such that W # V and W # {a}, and
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if i # 0,d — 2, then dimy H;(Aly; k) = dimy Hi(Aw_(s); k) by Lemma 4.4,
Hence, fL-(AW; k) = 0 as desired. Q. E. D.

Fix d > 3, and keep the notation P, P’, A and A’ as above. Let B;; be
the z;-th Betti number of k[A] and £ the i;-th Betti number of [A].

(4.6) LEMMA. For each i > 1 we have

/ v—d
IBiH.] = ﬂi.‘+1 + Bi—l,‘ + ( i ).

Proof. By virtue of Hochster’s formula as well as Lemma 4.4, we have

B, = 3 dimy, Ho(Aly; k)
WCV!, {(W)=i+1
= ) dimy, Ho(Ayy; k) + 3 dimy, Ho(Aly; k)
agWC V!, j(W)=i+1

CE€EWCV!, j(W)=i+1

. ~ —d
WCV, §(W)=i+1 WCV, H(W)=i ¢

= Bis + Bict, + (” o d)

as desired.

Q. E. D.

(4.7) LEMMA. Let A = A(P) denote the boundary complez of a
stacked d-polytope P = P(v,d), d > 3, with v vertices. Then, for each
1 <1< v~d-1, the 1;4,-th Betti number of k[A] = A/I5 over A is

gtk =i(1 )

141

Proof. Thanks to Lemma 4.6, we have

i (KA]) = i(v;fl_l)ﬂi—l)(”_?“l)+(”—‘Z—1)
)y
- (5
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as required. Q. E. D.

Proof of Theorem /.1. We are now in the position to give a proof of
Theorem 4.1. Since A = A(P(v,d)) is a simplicial (d — 1)-sphere with v
vertices, we know that the homological dimension of k[A] = A/Ix over A
is hd4(k[A]) = v — d and that §f}(k[A]) = 2 a—i,_, (K[A]) for every ¢ and
Jj. By Lemma 4.5, we have ﬂ{:(k[A]) =0foreachl <:<v—-d—1and
for each j # ¢+ 1,i+ d — 1. On the other hand, Lemma 4.7 enables us to
compute b; = g‘}“(k[A]) =BA i . (k[A]) foreach 1 <i<v—d—-1
Hence, we obtain a desired minimal free resolution of k[A] over A.

§5. Connectivity of comparability graghs of
distributive lattices

We now study the comparability graphs of finite distributive lattices.
Every partially ordered set (“poset” for short) is finite. A poset ideal in a
poset P is a subset I C P such that a € I, § € P and 8 < « together
imply B € I. A clutter is a poset in which no two elements are comparable.
A chain of a poset P is a totally ordered subset of P. The length of a
chain C is 4(C) := §(C) — 1. The rank of a poset P is defined to be
rank(P) := max{{(C); C is a chain of P}. Given a poset P, we write
A(P) for the set of all chains of P. Then A(P) is a simplicial complex on
the vertex set P, which is called the order complex of P. The comparability
graph Com(P) of a poset P is the 1-skeleton A(M)(P) of the order complex
A(P). When z < y in a poset P, we define the closed interval [z,y] to be
the subposet {z € P; £ <z <y} of P.

A lattice is a poset L such that any two elements o and S of L have a
greatest lower bound a A B and a least upper bound a V 5. Let 0 (resp.
1) denote the unique minimal (resp. maximal) element of a lattice L. A
lattice L is called distributive if the equalities a A (BVY) = (e AB)V (a A7)
and aV (BAY) = (aV B)A(aVy) hold for all a,B,7 € L. Every closed
interval of a distributive lattice is again a distributive lattice. A fundamental
structure theorem for (finite) distributive lattices (see, e.g., [Stag, p. 106])
guarantees that, for every finite distributive lattice L, there exists a unique
poset P such that L = J(P), where J(P) is the poset which consists of all
poset ideals of P, ordered by inclusion. We say that a distributive lattice
L = J(P) is planar if P contains no three-element clutter. A boolean lattice
is a distributive lattice L = J(P) such that P is a clutter.

Achain C:0=ap <oy < -+ < Qsu1 < @y = 1 of a distributive lattice
L is called essential if each closed interval [, @;41] is a boolean lattice. In
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particular, all maximal chains of L is essential. Moreover, the chain 0 < 1
of L is essential if and only if L is a boolean lattice. An essential chain
C:l=ap<oy<--<a,; < a, = 1 is called fundamental if, for each
1 <1 < s, the subchain C — {;} is not essential.

(5.1) LEMMA. Let A be a simplicial complex on the vertex set V with
§(V) = v and i an integer with 1 < i < v. Then the 1-skeleton A1) of A is
i-connected if and only if By_;.,—iy1(K[A]) = 0.

Proof. The 1-skeleton A®) is i-connected if and only if, for every subset
W of V with §(W) = i — 1, we have Ho(A) 5 k) (= Ho(Av_w;k)) = 0.
Moreover, by virtue of Eq. (2), Ho(Ay_w; k) = 0 for every subset W of V
with (W) =1 — 1 if and only if B,_; y_iz1(k[A]) = 0 as desired. Q. E. D.

The following Lemma 5.2 is discussed in [Hy).

(5.2) LEMMA ([H,]). Let L be a ditributive lattice of rank d — 1 with
§(L) = v and A = A(L) its order complez. Then the (v — d,v — d + ©)-th
Betti number B,_44-4+i(k[A]) is equal to the number of fundamental chains
of L of length d — 1 — 1.

We are now in the position to give the main result of the this chapter.

(3.3) THEOREM. Suppose that a finite distributive lattice L of rank
d — 1 is non-planar. Then the comparability graph Com(L) of L is d-
connected.

Proof. Let P = {p1,p2,+-,p4-1} denote a poset with L = J(P) and
M:0=ay<a; < <agq<as;=1an arbitrary maximal chain
of L. We may assume that each «; is the poset ideal {p;,ps,---,p;} of P.
Since L is non-planar, there exists a three-element clutter, say, {pi, pm, ps}
with 1 <1 <m < n <d-1. Hence, for some | <7 < m, p; and p;;; are
incomparable in P, and for some m < j < n, p; and p;4; are incomparable
in P. Let ] <4 < m (resp. m < j < n) denote the least (resp. greatest)
integer ¢ (resp. j) with the above property. Then 8 = {p1,--*,pi_1,Pis1}
and v = {p1, -+, pj—1,Pj+1} both are poset ideals of P. Moreover, a;_; <
B < ajyyin L with 8 # a; and aj—y < v < aj3q in L with v # «;. Thus
the closed intervals {41, &i41] and {1, @;41] both are boolean. Hence, if
¢ +1 < j —1, then the chain M — {a;, ;} is essential. On the other hand,
ifi+1>j5—-11e,2=m—1and j =m, then p < pjpy <+ < Pt
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and poy1 < Pmiz < -+ < pn in P; thus {pm_1,Pm,Pm+1} is a clutter of
P. Hence the closed interval [a,,_3,@m41] of L is boolean, and the chain
M — {a@m—1,an} is essential. Consequently, there exists no fundamental
chain of L of length d — 2. Thus, by Lemma 5.2, By—4p-d+1(k[A(L)]) =

Hence, by Lemma 5.1 again, the comparability graph Com(L) = AM(L) of
L is d-connected as desired. Q. E. D.
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