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1 Blowing-ups of a projective space

In this section, we fix a field k¥ of an arbitrary characteristic.

For a projective space P over k, we denote by X(P) the set of proper k-linear
subspaces of P. A finite subset ® C X(P) is said to be intersection closed if P,, P3 €
& implies P, N Ps = ) or P, N Ps € . |

Let ® be an intersection closed finite subset of ¥(P). We define a modification
p:0(®)P — P inductively as follows.

For each integer 0 < ¢ < 7 := dim P, let &; := {P, € ® ; dimP, < ¢}.
We define o(®y)P to be the blowing-up of P at the points in ;. For an integer
0 < d <r—2, assume that o(®,)P is already defined. Then o(®441)P is defined to

be the blowing-up of o(®4)P at the union of proper transforms of P, € ®441 \ P4



Thus we get 0(®)P = o(®,_1)P. By the construction, the centers of the blowing-ups
are always nonsingular. Hence o(®4)P is also nonsingular for all d. In particular,
0(®)P = 0(®,-1)P — 0(®,—2)P is an isomorphism.

Let |®| be the union of the linear subspaces of P which belong to ®. We are
going to describe the divisor p~!(|®|) C o(®)P. For the convenience of notation,
we denote the elements of ® with indexes as Py while we set P; := P. For distinct
elements P,, P3 € ® U { P} with P, C Pg, we denote by P/, the projective space
parametrizing linear subspaces P’ C P with P, C P’ and dim P’ = dim P, + 1.
There exists a natural projection Ps \ P, — Ps/o. This is an A%bundle for d :=

dim P, + 1. In particular, we get a natural morphism P\ |®| — I1p,cs Pi/x-

Proposition 1.1 The scheme o(®)P is naturally isomorphic to the closure &f

the image of the morphism
P\ 18] — Px (] Pip)-
Pre®

Proof. This is well-known, if ® chsists of a single element. In this proof, we
denote by I'g the closure of the image. For each Py € ®, let I) be the sheaf of ideals
defining Py C P. Since I'yp,} is the blowing-up of P at P,, a morphism of varieties
f X — P factors ['(p,y if f~'Iy C Ox is invertible [H, II,Prop.7.14]. In the
construction of o(®)P, the connected components of the centers of the blowing-ups
(®gy41)P — o(®4)P are inside or completely outside of the proper transform of P
in 0(®4)P for d < d:= dim P). Hence the inverse image of I, becomes invertible
after by the blowing-up o(®441)P — 0(®4)P (cf. Lemma 2.5). In particular, the
morphism p : o(®)P — P factors I'(p,} for all Py, € ®. Hence we get a morphism
ag : 0(®)P — I'y.
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We prove that ag is an isomorphism by induction on the number of elements in
®. The assetion is trivially true for ® = (). Assume ® # 0 and let P, € ® be an
element of maximal dimension. Since P, is not the intersection of other elements of
®, & := &\ {P,} is also intersection closed. By the assumption of the induction,
agr : 0(®')P — T'g is an isomorphism. It is sufficient to show that the morphism
s — Ig =~ o(®')P factors o(®)P. Let Y be the proper transform of P, in o(®')P.
Then the inverse image of I, by o(®')P — P is the ideal of the union of Y and the
exceptional divisors corresponding to Pz € ®' with Pg C P,. Since I's — P factors
I'(p,}, the inverse image of I, in 'y is invertible. Hence that of the ideal of Y in
I'p is also invertible. By the universal property of blowing-up, the birational map

e — o(®)P is regular, since o(®)P is the blowing-up of o(®')P at Y. g.e.d.

For each P, € ®, we denote by D, the proper transform of P, in o(®)P, i.e.,
the closure of the inverse image of the generic point of P, in ¢(®)P. Then D, is
a nonsingular prime divisor by the construction of o(®)P. Furthermore, since the
centers of the blowing-ups are always transversal with the exceptional divisors, we

get the following proposition.

Proposition 1.2 The reduced subscheme p~1(|®|) of o(®)P is a simple normal

crossing divisor with the set of irreducible components {D, ; P, € ®}.

Note that, if P, is of codimension one, then D, is birational to P,, and hence is
not an exceptional divisor of the morphism o(®)P — P.

Let P, be an element of ®. We set

i :={P,\E‘I);P,\CPQ,P)\7£PQ}.



This is an intersection closed subset of X(P,). On the other hand, we set
" ®(a):={P,€®;P,C P}

and

B, :={Pyja €9 ; Pr € &(a) \ {Fa}}.

Then ®,, is an intersection closed subset of X(Py/q).

Proposition 1.3 The prime divisor D, is naturally isomorphic to o(®*)P, X

o (‘I’Q)Pl Ja-
Proof. Consider the projections

p:o(@P—Px( JI Pup)
Pred\2(o)

py: 0(®)P — H Py .
P e®(a)

The image of the first projection is equal to o(® \ ®(a))P. The proper transform of
P, in o(®\ ®())P is equal to o($*)P,. Hence we have p;(Dy) = 0(®*)P,. On the
other hand, since Pi/x = P1/a)/(z/a) for Py € ®(a) \ { P}, the image of the second
projection is equal to a(®4)Pi/.. Hence D, is contained in the product o(®)P, X
0(®a)P1/o- These are equal since both of them are irreducible of dimension dim P-1.

q.ed.

When a point z € o(®)P is contained in Dy, we set % := p(x) and z, := pa(z),

and we write z = (2%, z,).

Lemma 1.4 Assume that P,,Ps € ® satisfy neither P, C P nor P3 C F,.

Then D, N Dg = 0.
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Proof. Let P, := P,N Ps. By the projection of o(®)P to Py/,, the divisors D,

and Dg are mapped to disjoint subspaces P,,, and Pg/,, respectively. q.e.d.

Let P,, P be distinct elements of ® with P, C Pz. Recall that &P is an inter-
section closed subset of £(Ps). We set &3 := (®P),. This is an intersection closed

subset of X(Pg/q).

Proposition 1.5 For P,,P3 € ® with P, C Pg, the intersection D, N Dy is

natumlly isomorphic to
(@) P, x 0(25)Pp/a X 0(®5) P/

Proof. We denote the product variety by Z in this proof. By Proposition 1.3,
the proper transform of P, C P in o(®?)Ps is o(®*)Pa X (®5)Ps/s, while that
of Pgjq C Pijo in 0(®)Py/q is U(QQ)P[}/Q X 0(®g)P1/5. Hence we have natural
inclusion maps

¢1:Z — Dg~ o(®P)Py x o(@5)Pyyp -

and

¢2: Z — Dy~ 0(®*) Py X 0(2) Py /g

We can check that Z is equally embedded in P X ([Tp,ce P1/») by these inclusion
maps. Actually, the composites of both ¢; with the projections from o(®)P to
Px( II Py ) II Pyand [ Py
Pye®\®(a) PreR(a)\2(B) Pre®(B)
are equal to the composites of the projections from Z to the three components and
the canonical embeddings to the above three varieties, respectively. Hence Z is a

subvariety of o(®)P contained in D, N Dg.
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If a point * = (2P,z4) € Dg is containd in Do;, then the projection of z° in
o(®*)P is in o(®*)P,. Hence z# € o(®*)P, x o(®?)Ps/o. This implies z € Z.

Hence Z = D, N Dg. q.ed.

More generally, we get the following theorem.
Theorem 1.6 Let Py, P,,, -+, Pa, be distinct elements of ® with
P,CP,C---CP,,.

Then Dy, N -+ N D,, is naturally isomorphic to

Cd—1

(8% )Py, X 0(B2)Poyjay X +++ X 0(®_VPoyjay_y X 0(®ay)P1 /ey -

Proof. We prove the theorem by induction on dim P. Note that d < dim P and

the theorem is true for dim P < 2. For 1 < ¢ < d—1, Dy, N D,, is equal to
G(QQi)Pae X a(q)g?)Pad/ai X U(@ad)Pl/ad

by Proposition 1.5. Let D/, be the proper transform of P,, in 0(®*)P,,. Then we

have

Do, N Doy = Dy, X 0(®4,)Pi /o,

by Proposition 1.3. Hence

Do, NN Do, =(Dy, N---ND, )X 0(Pay)Pr/ay -

ad—1

We get the theorem, since

D, Nn---ND;

d—1

= O(QQI)PCH X U(q)g?)Paz/a: Xoeer X,U(q)ad )Pad/ad—1 )

Qgd—1

by the assumption of the induction. q.e.d.
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Let z be a point of o(®)P. Then F, := {P, € ® : 2 € D,} forms a flag by
Lemma 1.4. Let F, = (P,, C--+- C P,,) and

Q) .0 o
1 op02 o 0

.’L'Z(SL' y Loyt ad_lyxad)

with respect to the product description of Dy, N--- N D,,. Since z is not in the

other D,, we have

z*t € P, \|9™|
3+t € Payyifo; \ @3] fori=1,---,d—1, and
Lay € Pl/ad \ |(I)ad| .

Thus we get the following theorem.
Theorem 1.7 The scheme o(®)P has a stratification
o(®)P = [[ Xr
F

of locally closed subschemes where F = (P,, C -+ C Pa,) runs over all flags in

® including the empty flag (). Fach Xp consists of points x with F, = F and is

naturally isomorphic to

(Pal \ I(Dall) X (Paz/al \ l@gfl) X X (Pad/ad—1 \ I(I)g:_ll) X (Pl/ad \ l@adl) ’

which is understood to be P\ |®| if F is the empty flag.

2 Mustafin’s scheme

Let R be a complete discrete valuation ring with the finite residue field k. Let

K be the quotient field of R. We fix a generator ¢ of the maximal ideal of R.
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Let 7 be a non-negative integer and V' the K-vector space KXo @ --- & KX,
with the basis {Xo,---, X, }.

Since R is PID and dimg V' = r + 1, finitely generated R-submodules of V' are
free of rank at most » + 1. Let 50 be the set of free R-submodules M C V of the
maxiaml rank.

We denote by Ay the quotient of Ag by the equivalence relation defined by
M~M &3ae KX M =aM

for M, M’ € Ao, where K* := K \ {0}. The class containing M is denoted by [M].
We denote by pg the natural map Ay — Ao.

A subset S C Ag is defined to be a simplex if pg'(S) is totally ordered. It is
easy to see that a simplex has at most 7 + 1 elements and the set of the simplexes
forms a simplicial complex. This complex is called the Bruhat-Tits complex.

For o € Ay, we denote by M, € 50 an element which represents a.. The choice
of M, is not unique and depends on the case. In genaral, for a given subset S C A,
the choice of M, is free for the first & € S. A choice of My for the other § € S is
called maximal in M,, if M, D Mg and tM, B Mjs.

For a, 8 in Ao, we denote by [a, §]x the subset
{[My + aMg] ;a € K*}

of Ag, and call it the interval with the ends «, 3. This definition does not depend
on the choice of the representatives M, Mpg.
The number of elements of [, B8]k is equal to d(a, 3) + 1, where d(a, 3) is the

nonnegative integer defined by

d(a,8) :=min{n € Z ; "M, C M} —max{m € Z ; t" M, D Mg}
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(cf.[M, §1]). If Mg was taken to be maximal in M,, then
[, Bl = {[t"Ma + Mg] ;n=0,---,d(a, 3)} .

A subset S C Ao is said to be convex if [, 8]k C S for every pair (e, ) of
elements of S.

It is easy to see that a subset S C Ag is convex if and only if M, M’ € pz(S)
implies M + M’ € p%'(S). In particular, the simplexes of the Bruhat-Tits complexes
are convex. This definition of convexity in Ag is not exactly equal to that of Mustafin

[M, §1].
Lemma 2.1 (1) Let o be an element of Ag. For a nonnegative integer N,

{6 € Ao;da,pB) < N}

8 a finite convex subset of A,.
(2) If 5, 8" are convez subsets of Ay, then so is SN S'.
(3) Any convex subset of Ag is the union of an increasing family of finite convex

subsets of Ay.

Proof. (1) and (2) are easy. (3) is a consequence of (1) and (2). g.e.d.

For each a € Ay, we set
P(a) := ProjSymg(M,) ,

where Sympg(M,) is the symmetric R-algebra of the free R-module M,. If we take
an R-basis {Y),---,Y,} of M, then P(a) is equal to the projective space P} with
the homogeneous coordinate (Y : --- : Y;). This definition does not depend on

the choice of M,, since an equivalent R-module has the basis {t°Yy,---,t°Y,} for



an integer c. The fiber P(a)p over the closed point of Spec R is an r-dimensional
projective space over the finite field k.

For all & € Ay, P(a) has the generic fiber Py = Proj K[Xy,- -+, X;]. In partic-
ular, the function field of P(a) is always |

PR}
We treat many integral R-schemes with this function field. Two such schemes are
identified if the canonical birational map is isomorphic.

Let a, B be elements of Ay with d(a, 3) = 1. If Mg is maximal in M, then M, D
Mg D tM,. The vector subspace Mg JtM, C M,[tM, define a linear subspace Pg/q
of P(a)o whose codimension is equal to dim(Mps/tM,). However Pg/, defined here
is not equal to Py, defined for projective spaces Py, Pg with Po C Ps in Section 1,

we use this notation because there is a good compatibility in these definitions.

For a pair (a, ) of elements of Ag, we define the directed length len(a, 5) by
len(e, 8) := length(Ma/Mﬂ),
for M, and Mg maximal in M,. 'N;’amely, if
My/Mg~ R/t @ - ® R/(t*),

then len(a,3) = e; + --- + e,. Clearly, this is greater than or equal to d(e, §) =

max{ei,- -, e,}. In particular,
{8 € Ag ;len(a,B) < N}

is finite for any « and an integer N.
If d(a,B) = 1, then the equalities len(a, ) = dimy Pg/o + 1 and len(,3) +
len(f3,a) =r + 1 hold.
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An ordering {a = a3, s, - -} of the elements of a convex subset S of A is said

to be convex if
Sd = {051, Qg, - ,0g-1, ad}

is convex for every 1 < d < #S.

Lemma 2.2 Let a be an arbitrary element of a convex subset S of Ay. Let {a =
1,09, -} be an ordering of the elements of S such that i < j implies len(a, a;) <

len(a, ;) for any positive integers i,7. Then this ordering is convez.

Proof. 'We take M, and {Mjp ; B € S\ {a}} so that Mz is maximal in M, for
every . For 1,7 < d, an element 7 € [, @]k C S is represented by Mo, + t*M,,
for some s € Z. By exchanging i, j, if necessary, we may assume s > 0. Then, since
My, +t°My; C My, len(a,y) < len(a, ;) if v # o;. Hence v = q, is in Sy by the

rule of the ordering. q.ed.

Lemma 2.3 Let S be a convezx subset of Ay, T a finite convez subset of S with
a convez ordering {1, -+, a.}. Then, there exists a convez ordering {1, s, -} of

the elements of S which is an extension of that of T

Proof. By Lemma 2.1, (3), it is sufficient to show the following.

In the situation of the lemma, assume further that S is finite and S\ T is
nonempty. Then there exsits § € S\ T such that T'U {6} is convex.

We take an element v € S\ T. Then TV {7} := User|a, 7]k is a convex subset
of S. Let T" be a minimal convex subset of S which contains T' as a proper subset.

Let 6 be an element of 7'\ T. Then T" =TV {6} by the minimality of T”. It is easy



to see that (T'V {6}) \ {6} is convex. Hence T" = T'U {6}, again by the minimality

of T'. q.ed.

For a finite subset S of Ag, we denote by V,cgP(a) the integral R-scheme

obtained by taking the closure of the diagonal embedding

Proj K[Xo,- -, X,] = [[ P(a)

a€S

to the R-scheme (cf.[M, §2]). When S is a convex finite subset of Ag, we denote

Vaes P(a) simply by P(S).

Lemma 2.4 Let a, 3 be elements of Ao with d(a,3) = 1. Then the blowing-up
of P(a) at Py, is equal to that of P(B) at P,/p. Furthermore, this R-scheme is
equal to P({a, B}).

For the proof, see [M, Prop.2.1].

This lemma implies that there exists a projection map
P(a)o \ Psja — Puoyp.
For an element « of a convex set S, we set
(S, ) := {Ps/a; B € S,d(ar, ) = 1} .

Then the convexity of S implies that ®(S,«) is an intersection closed subset of
E(P(a)y). We set

B(Sv le) = U((I)(S7 a))P(a)O
in the notation of Section 1.

If a,8 € Ag and d(a, §) = 1, then we set

‘I)(S)g = {P'y/a ;7Y € S)Ma ) 3M7 D) Mﬂa’)’ #O‘w@} )
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where Mp is maximal in M,. This is an intersection closed subset of £(Pg/,). We

also use the notation P/, := P(a)y and
®(S)e ={Pyja;7€ S, My DM, D tM,,y #a} .
The following lemma is checked easily (cf.[M, §2,Lem.]).

Lemma 2.5 Let Y, Z be irreducible closed regular subschemes of a regular
scheme X defined by the ideals Iy and Iz, respectively. For the blowing-up p :
X' = X atY, letY' the exceptional divisor and Z' the proper transform of Z.

(1) IfY C Z, thenp™'I; = Iz @ Ox:(=Y"), where I is the ideal defining Z'.

(2) If Y N Z is either empty or regular equidimensional of dimension dimY +

dimZ — dim X, then p~'I; = I,.

Theorem 2.6 Let S # 0 be a convex finite subset of Ag. Then (1) P(S) is a
regular R-scheme. (2) The closed fiber P(S)y is a reduced simple normal crossing

divisor with the components
{B(S,a);a€S}.

(3) For a subset T C S, the intersection

N B(S,a)
a€T
is nonempty if and only if T is a simplex of Ao. If T = {ap,---, 04} and
Mayy D +++ D M,, DtM,, ,

the intersection is naturally isomorphic to

0(8(8)2) P g X -+ X 0((S)as_, ) Pas/ca—y X 0(B(S)28) Pao/as -

Qd—1 07



(4) Let 6 be an element of Ag \ S such that S' := S U {6} is convez. Then P(S')
is equal to the blowing-up of P(S) at a(®(S)%)Ps/e C B(S, ), where o € S is the

element such that len(d, o) is minimal.

Proof. Note that d(a,6) = 1 in (4). In fact, if we take M, maximal in Msj,
then M, + tM; represents an element of S by the convexity. Then M, D tM;s by
the minimalty of len(é, ).

We prove the theorem by induction on the number N of the elements of S. If
S = {a}, then B(S,a) = P(a)y. Hence (1), (2), (3) are trivially true, while (4) is a
consequence of Lemma 2.4.

Assume that V > 1 and the assertion is true if we replace S by its proper convex
subset. Let {a,---,an} be a convex ordering of the elements of S. Then, by the
assumption of the induction, P(S) is a succession of blowing-ups at nonsingular
centers starting from P(ay). In particular, we have (1). Since the each center is
contained in a component of the divisor, and transversely intersects other compo-
nents, the union of the proper transform of P(a; )y and the exceptional divisors is a
simple normal crossing divisor.

We show that the proper transform of P(a)y in P(5) is isomorphic to B(S, a)
for each @ € S. By Lemma 2.3, we can take the convex ordering {ay,---,ay} so
that a1 = a,

{B€8;da,p)=1}={ag -, ac}
and
{ye€S;de,7)>1} = {act1, -, an}
for an integer c. Furthermore, we may assume that the ordering of SC is deﬁﬁed by

the directed lengths as in Lemma 2.2. Then, by the process of the blowing-ups, the
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proper transform of P(a)y in P(S,) is equal to B(S, @) = (®(S, a))P(a) in view
of the construction of ¢(®)P in Section 1. It is of multiplicity one, since so is P(a),.
The centers of the blowing-ups P(S;;1) — P(S;) do not intersect B(S, ) for i > ¢
by (4) of the induction assumption. Hence we get (2) for a. Here, we know also
that B(S,a) N B(S,y) =0 if d(a,v) > 1.

If d(a, ) = 1, then the intersection B(S,a) N B(S, () is the proper transform
of Pgjq in B(S,a). Hence (3) follows from Theorem 1.6 applied for P(a)q and its

linear subspaces

Pal/aoa R Pad/ao € E(P(a)o) .

Now we prove the last assertion (4) of the theorem. Let Y be the blown-up
scheme of P(S). We take a convex ordering {@ = a1,---,an} of the elements of
S as in the proof of (2). Let I be the ideal sheaf of Op(y) defining Ps/o, and I’
the ideal of Op(g) defining the center o(®(S5)%)Ps/e C P(S). By the minimality of
len(é,), d(6,3) =1 and B € S imply that Ms D M, D Mg D tM;, where M, and
Mg are maximal in Ms. We see that the blowing-up P(S;;1) — P(S;) is the case (1)
of Lemma 2.5 if d(8, a;41) = 1, while it is the case (2) if (6, a;41) > 1, for the ideal of
the proper transforms of Ps/,. Hence the inverse image of I to Opg) is the tensor
product of I’ and the invertible sheaf Op(g)(—E), where E is the union of B(S, o;)’s
whose image in P(«) is contained in Pjs/,. Since the morphism P(S’) — P(a) factors
P({a,6}), the inverse image of I to Opg) is invertible. Hence the inverse image of
I' to Opg) is also invertible. By the universality of blowing-up, the birational map
P(S') > Yis régula,r. Conversely, since the inverse image of I’ to Oy is invertible, so
is the inverse image of I to Oy. Hence the birational map Y — P({a, é}) is regular.

Since S’ = SU{a, ¢} and Y dominates P(S), the birational map Y — P(’) is also



-regular. Hence Y = P(5’). S q.ed.

By (4) of this theorem, we get the following corollary.

Corollary 2. 7 Let {al, ,ay} be a convex ordermg of the elements of a ﬁmte

convez subset S of AO Then the sequence of morphisms
P(§) =P(Sy) = -+ = P(52) — P(51) = P(u)
is the succession of blowing-ups at nonsing;ldr centers.

Since P(S)y C P(S) is a simple normal crossing divisor, it has a stratification

induced by the intersections of the irreducible components.

Theorem 2.8 Let S be a conver finite subset of Ay, and X(S) the set of sim-
pleres T = {a,- -+, aq} € A whose vertices are in S. Then the k-scheme P(S)y has

a stratification

P(S)= TI X(T)

Tex(S)
of locally closed subschemes X(T') consisting of the points x with

{a€S;zeB(S,a)}=T.
Each X(T) for T = {ay,- -+, 0q} with
My, Do+ D My, DtM,,
s naturally isomorphic to

(Poq/ao \ I(I)al ) ( oz /oy \ I‘Pazl) X - ( ogfagq \ i@g; 1|) ( ag/aqg \ |‘I>a°|)

where we abbreviate ®° := ®(S)8.
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Proof. This is a consequence of Theorem 2.6,(3) and Theorem 1.7. q.e.d.

We are ready to reconstruct the R-scheme X(S) and the formal R-scheme P(S)
of Mustafin for an infinite convex subset S C Ay. For the definition of formal
Scheme§, see [EGA1, §10]. We say simply “formal R-scheme” instead of “formal
Spf(R)-scheme”. | |

Let ap := [RXo+-- -+ RX,]. We may assume oy € S by exchanging the K-basis

of V, if necessary. We define an ordering

{a07a17a21 o }

of the elemenets of S in the following rule.

If : < j, then
(1) d(ag, ;) < d(a, @) or
(2) d(ag, ;) = d(avg, ;) and len(ayg, o;) < len(ayg, o).

Then this ordering is convex, i.e., Sk := {ag, @1, - -, @ } is convex for any positive
integer k. The R-scheme X(S) is defined as the limit of the infinite sequence of
blowing-ups

— P(S3) = P(Ss) — P(51) — P(ayp) .

More precisely, X(S) is described as follows.
For each nonnegative integer s, let N, be the integer such that ¢ < N, if and
only if d(ag, ;) < 5. We define
Noy1
Us := P(SNs) \ ( U Pa.'/ﬂ.’) ’
i=Ny+1

where ; is the element of Sy, with the minimal len(e;, §;) for each i, and 130,,. /8; 18

the proper transform of P,;/s; in P(S n,). Then Uy is outside of the centers of the



blowing-ups P(S;;1) — P(S;) for all i > N,. Hence -
| UQCU1CU2C"'

is a sequence of open immersions of R-schemes with the common generic fiber
Proj K[Xy, -+, X,]. Then X(S) is defined to be U3, Us.
X(S) is an R-scheme locally of finite type with the function field

K(%’...,%)’_
The formal R-scheme P(S) is defined to be the formal completion of X(S) along
the closed fiber X(S)o over Spec R. »

X (o) and P(Ay) are also denoted by X(A) and P(A), respectiveI}tr. 'P(A) is

known as the p-adic unit ball of Kurihara and Mustafin.

3 Proof of Mustafin’s proposition

Let k be a finite field. Let ¥ be the set of all proper k-linear Subspaces of Pz.
We set B := o(X)P}, and denote by A the union of D, for all P, € ¥ in the notation
of Section 1. The total exceptional divisor E C B of the projection p : B — P} is

the union of D, for P, of codimension greater than one.

Lemma 3.1 Let k' [k be a field extension. We set B' = B@,k' and A' = AQk'.
Then the natural homomorphism

PGL(n,k) — Aut(B', 4")

is an isomorphism, where Aut(B', A") is the group of k'-automorphisms of B' which

maps A’ to itself.
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Proof. We prove this lemma by induction on r. Let ¢ be an element of the
group Aut(B’,A’). If r = 1, then B’ = P}, and A’ is the set of k-rational points.
Hence, ¢ is a k-rational linear automorphism. Set E' := EQ®, k' C B'. Forr > 2,
it is sufficient to show that ¢(E’) = E'. In fact, B’ \ E’ is isomorphic to the open
subset of P}, whose ‘complément F'is the union of k-rational linear subspaces of
codimension two. Hence Pic(B’'\ E’) ~ Z and ¢ induces an automorphism of the
homogeneous coordinate ring of P},. Since F' = p(E’) C P}, is mapped to itself by
¢, it is a k-rational linear automorphism.

For r = 2, the components of A’ are nonsingular rational curves with the self-
intersection numbers —¢q or —1, where ¢ := |k|. It is an exceptional divisor if and
only if the number is —1. Hence ¢(E')=FE" K | |

Assume 7 > 2. Each point z of A’ is called i-ple for the number 4 of irreducible
components of A’ which contains z. Since A’ is a simple normal crossing divisor, it
is at most r-ple. For an i-ple point, th’e'i linear Subép;beé" of P; 'corrésp‘ondihg to
the components form a flag of length ¢ (cf. Theorem 1.7). .Let D, be a component
of A’ associated to P, € L. Then the number of r-ple points on D,, is equal to that
of full-length k-rational flags which contains P, as a member. The number of r-ple
points on D, is calculated easily to be

3 qi+1 -1 r—1-s q1'+1 —1

11

o g—1 o1 g-1

bl

where s := dim P,. Since this number is invariant by ¢, ¢(D,) = Dg foraPge X
with dimPg =sorr—1—s.

Since D, is in E if and only if dim P, < r—1, it is sufficient to deny the possibility
that there are P,, P3 € ¥ with dim P, =0, dim P3 = r — 1 and ¢(D,) = Dg.
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Suppose that there were such P, and Ps. By Proposition 1.3, there are natural
isomorphisms Dy & P, X 0(Xa)Pi/e and Dg ~ o(EP)Ps, where P, is a single
point. By the assumption of the induétion, the isomorphism D, ~ Dg induced by ¢
descends to a linear isomorphism ¢ : P, Jo— Pg of projective spaces. We may replace
k' by its algebraic closure, in order to take a sufficiently general line £, C Py/o. We
set £ := ¢(£y), and let £, C D, and £ C Dy be the proper transforms of £, and
£, respectively. We shall compare the intersection numbers D, - ¢, and Dg - lg.

Since £, in P, X Py C 0(Pa)P} does not intersect the centers of the nontrivial
blowing-ups, the intersection number D, £, is equal to (Py X Py/o)-£oa = —1. On the
other hand, ¢5 in Ps C P}, intersects k-rational hyperplanes of Ps which are going to
be the centers of the blowing-ups. Since there are (¢" —1)/(g — 1) such hyperplanes,
the intersection number Dg - £5 is equal to 1 — (¢" = 1)/(g— 1) = —(g+--- +¢"1).

This is a contradiction since these intersection numbers must be equal. q.e.d.

Now, we come back to the notation of §2.
We define ag € Ag by M, := RXo+ -+ RX,.
Since the generic fibers of the R-schemes X'(A) and P(«y) are both equal to P%,

there exists a birational map
A X(A) = P(a) -
The following lemma is clear by our construction of X'(A).
Lemma 3.2 The birational map A is reqular.
The restriction of A to the closed fibiers

A() . X(A)O s P(Cl{())o
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is a morphism of k-schemes.

We denote simply by B(«) the component B(a, Ag) of X(A). Let ¢ be an auto-
morphism of the k-scheme X(A)y. We denote also by ¢ the induced automorphism
of the complex A. For o € Ag, we denote by ¢, the isomorphism B(a) — B(¢(a))
induced by ¢. By Lemma 3.1, there exists an isomorphism @, : P(a)y — P(¢(a)),
such that the diagram

B(a) *% B(#(e))
Pal 1 Pg(a)
Pla)y £ P(g(a)
is commutative, where p, and pg(,) are the natural projections.

For a € Ay, we set Ag(a) := {8 € Ag ; d(e, B) = 1}.

Lemma 3.3 Let ¢ be an automorphism of X(A)y and o an element of A,.

Then, for every B € A¢(a), we have ¢(B) € Ao(¢p(a)) and
Ba(Pajp) = Poe/o(s) -

Proof. Note that 3 € Ag with 8 # o is in Ag(e) if and only if B(a)NB(S) # 0.
Since ¢ is an isomorphism, the last condition is equivalent to B(¢(a)) N B(¢(83)) #

0. Hence ¢(f3) € A¢(¢(e)) if and only if 3 € Ag(a). The equality follows from

Posp = po(B(a) N B(B)) and Pya)/4(8) = Po()(B((@)) N B($(8)))- q.ed.

By this lemma, dimy P,/s = dimy Py(a)/4(s) for any pair (o, §) of elements of A

with d(a, 8) = 1. In particular, ¢ preserves the directed lengths of A.

Lemma 3.4 Let ¢y be a k-automorphism of X(A)g such that the restriction to

the component B(cay) is the identitiy map. Then the equality A\g = A\g - ¢y holds.



Proof. Let a be an element of Ag. We prove the equality Ag = Ag - ¢ on the
irreducible component B(a) by the induction on d := len(oyg, ). It is sufficient to
show the equality for the generic point of B(«). The assertion is trivial for d = 0.

We assume d > 0. Let S := {8 € Ag ; len(a, f) < d} and S' := SU{a}. Then S
and S’ are convex. Let 3 € S be the elemenet with the minimal len(c, ). We have

d(a, ) = 1 similarly as in the proof of Theorem 2.6. Then the natural morphism

P(S") — P(S) is the blowing-up of P(S) at the nonsingular center o(®(S)3)Pu/s

contained in the component B(S, ) of the closed fiber P(S)y. By the assumption
of the induction, the equality Ag = g - ¢g holds on Uneg B(a) C X(A)o. Since ¢
preserves the directed lengths of the complex A, ¢(S) = S.

By Lemma 3.3, the isomorphism ¢, : P(a)y — P(é(e))o induces an isomorphism
¢o : B(S,a) — B(S,4(a))

for every o € S. Since P(S) = Uneg B(S,a), we get an automorphism of P(S5)o.

The natural morphism

ps USB(a) — P(S)o
a€
induced by the morphism X (A)y — P(.9) is compatible with these automorphisms,
since it is compatible on each component. Since pg is birational on each components,
the equality A\g = Ag - ¢ holds on P(S)y. Hence it is sufﬁciént to show the commu-
tativity of the diagram
B(S', a) — o(®(5)5)Ps/a c P(S)
l !

B(9(S"), () — o(®(S)5E)Possrea) C P(Sho
induced by ¢. This follows from the fact that the horizontal morphisms are the

projective space bundle maps generically defined by the linear systems |1':I — 15/3/Q|
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and |¢(H) — ¢(Pg/a)|, where H is the total transform of a hyperplane H of P(a)o
in B(S', ) and Py, is the proper transform of Pg;o C P(a) in B(S', @) which is
also equal to B(S',a) N B(S', ). g.ed.

Let P(ap) be the formal R-scheme defined by taking the completion of P(aq)
along P(ag)o. We denote by A the induced morphism of the formal schemes P(A) —

P(ag). Note that the morphism of the base topological spaces of ) is equal to that
of /\Q . X(A)o - P(ao)o.

Lemma 3.5 The natural homomorphism of Op(ao)-algebras
;\* : Op(ao) - :\*Ofp(A)
s an isomorphism.

Proof. Let Up be a nonempty open subscheme of P(«yg)g, and let U be the open
formal subscheme of P(ap) with the base space equal to that of Uy.

Let g be an element of I'(U, Op(q,)). Then there exists a nonnegative integer c
such that t°g is regular and its restiction to P(qayg)g is nonzero. Hence ;\*(t‘cg) is
nonzero. Since ¢ is not a zero-devisor in D(A~}(U ), Op(ay), A*(g) is also nonzero.
Hence the homomorphism is injective.

Let f be an element of the R-algebra ['(A=1(U), Op(a))- It is sufficient to show
that f comes from an element of I'(U, Opyy)).

We set fo := f. Let p: B(ag) — P(ap)o be the natural birational morphism.
Then p~1(Uy) C A\g(Up), since p is the restriction of \g. Since P«OB(ag) = OP(a0)>
there exists an element g € I'(Up, Op(a),) such that fo|,-1,) = p*(@o). Since ag is

a rational function of the projective space P(ay)o, it has a lifting aq € T'(U, Op(a0))-



Since the fiber A\j'(z) is a connected scheme with complete components for every
closed point z of Uy, the restriction of fy — A*(ag) to the reduced scheme ¢~(Up)
is zero. Hence fo — A*(ag) = tf for some f, € F(S\‘l(U),Op(A)). Similarly, there
exists a, € T(U, Op(ap)) such that f; — X*(al) = tf, for some fs. Repeatiﬁg this

process, we get a sequénce ag, a1, - - of elements of I'(U, Op(q,)) such that
f- 5\*(0,0 +tay +---+ tdad) € td+1F(5\_1(U),Op(A))

for each nonnegative integer d. Hence f = X*(g) for g = Y 2,t'a; €T (U,‘Op/(.ao)).
| | - q.ed.
‘Let ¢ be an automorphism of the formal R-scheme P(A) which is identity on
the subscheme B(ag). Since the base reduced scheme of P(A) is equal to X(A)o,
¢ induces a k-automorphism ¢y of X'(A)y. For an open formal subscheme U of
P(ap), Lemma 3.4 implies ¢(A~1(U)) = A1(U). Hence ¢ induces an automorphism
of R-algebra F(j\_l(U),Op(A)). By Lemma 3.5, we get an automorphism ¢ of the
formal R-scheme P(ag) which is identity on the subscheme P(ayg)o.

Now we identify P(ap) with P% and we set Pg := P(ayp).
Lemma 3.6 The natural homomorphism
Autgp Py = PGL(r + 1, R) — Autg Py
s an isomorphism.

Proof. A nontrivial automorphism of P} induces a nontrivial automorphism of
Py for a sufficiently large m. Hence the homomorphism Autg P; — Autgp Pg

is injective. Let ¢ be an element of Autp Pg. For each positive integer m, let ¢,, be
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the induced automorphism of P%/;m). Then ¢, is represented by a matrix (ag,';)) €
GL(r + 1,R/(t™)). By the surjectivity of the homomorphism (R/(t™*!))* —
(R/(t™))*, we can choose the matrices so that they are compatible with the reduc-
tions R/(t™*') — R/(t™) for every m. For each (3, j), let a;; € R be the projective

limit of agf?) for m. Then A := (a;;) defines an element of Autg P} which induces

the automorphism ¢. q.ed.

Lemma 3.7 Let g* be the automorphism of P(A) induced by g € GL(r + 1, R).

If the automorphism of A induced by g* is the identity, then g is a constant matriz.

Proof. We denote also by g the R-automorphism of M,, defined by g. Let M
be an R-submodule of M,, of rank r + 1. By the condition, g(M) = t°M for an

integer c. Since My, /M and M,,/g(M) are isomorphic, they have same length as
R-modules. Hence g(M) = M.

For any nonzero element x € M,,, the R-module Rz is the intersection of M’s
which contain Rz. Hence g(Rz) = Rz, i.e., g(z) = uz for a unit element u. Let
9(Xi) = wX;fori =0,---,r. Since g(Xo+---+X,) = uw(Xo+--++X,) for a unit u
and g is linear, we have uy = --- = u, = u. Hence ¢ is equal to the constant matrix

ulpyg. q.ed.

The following theorem is equivalent to [M, Prop.4.2).
Theorem 3.8 The natural homomorphism
PGL(r + 1,K) — Autg P(A)

1S an isomorphism.
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Proof. The injectivity of the homomorphism follows from Lemma 3.7. Let p
be an automorphism of P(A). Since PGL(r + 1, K) acts transitively on A and
the homomorphism PGL(r + 1, R) — PGL(r + 1, k) is surjective, there exists g €
PGL(r + 1, K) such that ¢ := g~' - p is identity on B(ag)o. As we remarked after
Lemma 3.5, ¢ induces an automorphism ¢ of Py. By Lemma 3.6, ¢ is represented

by an element h € PGL(r + 1, R). Hence p =g -h € PGL(r + 1, K). g.ed.
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