コンパクト量子群について

Hideki Kurose 福岡大学理学部 黒瀬 秀樹

§1序.

最近数年の間にコンパクト量子群のほぼ同等な定義が C^* -代数、Hopf*-代数のレベルで 与えられた。構造に関することも含めて、大まかな議論は完結したように思われる。ここ では Hopf *-代数レベルでのコンパクト量子群の定義からスタートし、その構造を議論す ることを目的とする。

定義 $A = (A, \delta, \varepsilon, \kappa)$ が Hopf *-algebra であるとは、

A: a unital *-algebra $\mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}$ (coproduct) a *-homomorphism s.t. $(id \otimes \delta) \circ \delta = (\delta \otimes id) \circ \delta$ $\mathcal{A} \longrightarrow \mathbb{C}$ (counit) a *-homomorphism s.t. $(id \otimes \varepsilon) \circ \delta = (\varepsilon \otimes id) \circ \delta = id$ $\mathcal{A} \longrightarrow \mathcal{A}$ (antipode) an anti-homomorphism

s.t. $m \circ (id \otimes \kappa) \circ \delta = m \circ (\kappa \otimes id) \circ \delta = u \circ \varepsilon$ $\kappa \circ * \circ \kappa \circ * = id$

であるときをいう。ただし、⊗は代数的テンソル積、

 $m \not \exists \mathcal{A} \mathcal{O} \text{ product } (m: \mathcal{A} \otimes \mathcal{A} \ni a \otimes b \rightarrow ab \in \mathcal{A})$ u if A \mathcal{O} unit $(u: \mathbb{C} \ni \lambda \to \lambda 1 \in A)$

である。

量子群という言葉は広い意味では、包絡 Lie 環の変形または群上の関数環の変形という 2 とおりの意味で用いられるが、ここでは我々は後者の意味で用いることにする。

例 G を有限群、F(G) を G 上の $\mathbb C$ 値関数全体とすれば、F(G) は pointwise な積と $f^*=\bar f$ により unital *-algebra。 さらに

$$\delta(f)(s,t) = f(st)$$

$$\varepsilon(f) = f(e)$$

$$\kappa(f)(s) = f(s^{-1})$$

 $(f\in F(G),\ e$ は G の unit, $s,t\in G)$ と定義すれば、 $F(G\times G)\cong F(G)\otimes F(G)$ より、 $(F(G),\delta,\varepsilon,\kappa)$ は Hopf *-algebra。

例 G がコンパクト群のとき、G の有限次元表現の座標関数から生成される C(G) の部分空間を A とすれば、上の例のように定義される $\delta, \varepsilon, \kappa$ で $(A, \delta, \varepsilon, \kappa)$ は Hopf *-代数となる。

ここで議論する Hopf *-代数は、上の例における群 G に付随した Hopf *-代数を何らかの意味での変形することにより得られたもの、と理解しておく。扱う Hopf *-代数は一般には可換でもないし $(m\circ\sigma\neq m)$ 、余可換でもない $(\sigma\circ\delta\neq\delta)$ 。 $(\sigma:A\otimes A\ni a\otimes b\to b\otimes a\in A\otimes A)$ Hopf *-代数 A に対して、あたかも群らしきものが下にあり、A はその上の関数環の部分環であるようなイメージを持って議論をすすめることにする。

定義 A' を Hopf (*)-代数 A の algebraic dual とする。 $\varphi \in A'$ が left (right) invariant であるとは、 φ が

$$(id \otimes \varphi)(\delta(a)) = \varphi(a)1 \ \ ((\varphi \otimes id)(\delta(a)) = \varphi(a)1) \text{ for } a \in \mathcal{A}$$

を満たすときをいう。

これに関しては次のことが判っている。

事実 1) Hopf *-代数 A 上の non-trivial な left (or right) invariant functional はあれば定数倍を除いて unique (c.f. [0])、またある意味で faithfull (c.f. [7])。

2) Hopf *-代数 \mathcal{A} 上の non-trivial, left inv. $\varphi \in \mathcal{A}'$ が positive $(\varphi(a^*a) \geq 0, \ a \in \mathcal{A})$ ならば、

$$\varphi$$
 は right inv. でもある、 $\varphi(1) \neq 0$ φ は faithfull ($\varphi(a^*a) = 0 \Rightarrow a = 0$)

問題 Hopf *-代数 A 上の両側 inv. $\varphi \in A'$ は自動的に positive か?

定義 Hopf *-代数 A が、

non-trivial, positive, (両側) invariant $h \in \mathcal{A}'$

をもつとき、A を compact, h を A 上の Haar measure という。以下 A 上の Haar measure h に対して h(1) = 1 を仮定する。

上に定義したコンパクト Hopf *-代数がタイトルにあるコンパクト量子群の意味する ものである。

コンパクト Hopf *-代数の議論に入る前に、 Hopf *-代数 A に対して

A' の代数と A の表現

について述べておこう。

Hopf *-代数 A の dual A' には自然に積が定義できる

$$\varphi * \psi \equiv (\varphi \otimes \psi) \circ \delta \ (\varphi, \psi \in \mathcal{A}')$$

この積を convolution という。A' はこの積の下で unital algebra となる。(counit ε が A' の単位元)

 \mathcal{A} が Hopf *-代数ならば、 \mathcal{A}' にはさらに 2 種類の involution が定義できる。

$$\varphi^{\sharp} = \varphi^* \circ \kappa, \quad \varphi^{\flat} = \varphi^* \circ \kappa^{-1} \quad (\varphi \in \mathcal{A}')$$

ただし $\varphi^*(a) \equiv \overline{\varphi(a^*)} \ (a \in \mathcal{A})$ である。この 2 種類の involution の下で \mathcal{A}' は *-algebra となる。 \sharp , \flat をそれぞれ left, right involution と呼ぶことにする。

(注)
$$\varphi^{\sharp} = \varphi^{\flat} \ (\varphi \in \mathcal{A}') \Leftrightarrow \kappa \text{ it *-invariant} \Leftrightarrow \kappa^2 = id$$

$$\varphi^* \text{ it involution ではない。} ((\varphi * \psi)^* = \varphi^* * \psi^*)$$

Hopf *-代数 A に対して、あたかも下に群らしきものがあるとのイメージを持ったとき、群のユニタリー表現に相当するものが次で定義される。

定義 Hopf *-代数 \mathcal{A} に対して、 $\{u_{ij}\}_{i,j=1,\cdots,n}\subset\mathcal{A}$ が \mathcal{A} の (n-dim.) unitary corepresentation であるとは、

$$\delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}$$
$$\sum_{k=1}^{n} u_{ik} u_{jk}^* = \sum_{k=1}^{n} u_{ki}^* u_{kj} = \delta_{ij} 1$$

が成立するときをいう。 $U\equiv (u_{ij})\in M_n(\mathbb{C})\otimes\mathcal{A}$ も \mathcal{A} の unitary corep. という。

(注) \mathcal{A} の unitary corep. $U=(u_{ij})$ に対して、antipode κ の axiom より $\kappa(u_{ij})=u_{ji}^*$ を得る。

unitary corep. $\{u_{ij}\}\subset \mathcal{A}$ または対応する $U=(u_{ij})\in M_n(\mathbb{C})\otimes \mathcal{A}$ が既約であるとは

$$\{T \in M_n(\mathbb{C}) | (T \otimes id)U = U(T \otimes id)\} = \mathbb{C}1$$

であるときをいう。

§2. コンパクト Hopf *-代数に対する convolution algebra

以下、 $\mathcal{A} = (\mathcal{A}, \delta, \varepsilon, \kappa)$ を Hopf *-代数、h を \mathcal{A} 上の Haar measure とする。 \mathcal{A} に内積

$$(a,b) = h(b^*a)$$
 for $a,b \in \mathcal{A}$

を考え、A の (\cdot,\cdot) による完備化を \mathcal{H}_h とかくことにする。

A 及び A' の algebra としての表現が次のように定義される。

$$\pi(a)b = ab \qquad a, b \in \mathcal{A}$$
$$\lambda(\varphi) = (id \otimes \varphi) \circ \delta \qquad \varphi \in \mathcal{A}'$$
$$\varrho(\varphi) = (\varphi \otimes id) \circ \varphi \in \mathcal{A}'$$

このとき $\pi(a)$, $\lambda(\varphi)$, $\varrho(\varphi)$ $(a \in A, \varphi \in A')$ は \mathcal{H}_h で dense な A を定義域に持ち、A を不変にする閉作用素である。

$$\pi(a^*) \subset \pi(a)^*, \ \lambda(\varphi^{\sharp}) \subset \lambda(\varphi)^*, \ \varrho(\varphi^{\flat}) \subset \varrho(\varphi)^*$$

(注) 結果的には各 $\pi(a)$ $(a \in A)$ は \mathcal{H}_h 上の有界作用素に拡大できるがこれは trivial なことではない。

また

$$\pi(ab) = \pi(a)\pi(b)$$
$$\lambda(\varphi * \psi) = \lambda(\varphi)\lambda(\psi)$$
$$\varrho(\varphi * \psi) = \varrho(\psi)\varrho(\varphi)$$

 $(a, b \in A, \varphi, \psi \in A')$ が定義より明らかに成立する。

さて $\xi \in \mathcal{H}_h$ に対して

$$\varphi_{\xi}(a) = (\xi, a^*) \ a \in \mathcal{A}$$

で $\varphi_{\xi} \in A'$ を定義すると、 $\varphi \in A'$ に対して

$$\varphi = \varphi_{\xi}$$
 for some $\xi \in \mathcal{H}$
 $\Rightarrow \varphi \ \exists L^2$ -bounded i.e.
 $|\varphi(a^*)| \leq \lambda ||a|| \quad (a \in \mathcal{A})$ for some const. λ

 L^2 -bounded $\varphi_{\xi}, \ \varphi_{\eta} \in \mathcal{A}'$ に対して

 $\varphi_{\xi} * \varphi_{\eta}$ はまた L^2 -bounded,

従って

$$\varphi_{\xi} * \varphi_{\eta} = \varphi_{\zeta} \text{ for some } \zeta \in \mathcal{H}_h$$

この ζ を $\xi*\eta$ とかくことにする。

事実 1) H_h は積 * と Hilbert space norm の下で Banach 環

- 2) A は \mathcal{H}_h の両側イデアル、特に $A * A \subset A$
- 3) $a \in \mathcal{A}$ に対して $a^{\sharp} = \kappa(a)^{*}, \ a^{\flat} = \kappa(a^{*})$ と定義すると

$$arphi_a^\sharp = arphi_{a^\sharp}, \;\; arphi_a^\flat = arphi_{a^\flat},$$

特に $a \to a^{\sharp}, \ a \to a^{\flat}$ はそれぞれ * を積とする algebra ${\cal A}$ の involution となる。

* を積とし、 \sharp (またはり) を involution とする *-algebra $\mathcal A$ を Hopf *-algebra $\mathcal A$ と区別するため、 $\tilde{\mathcal A}$ とかき、これを left (または right) convolution algebra ということにする。同一視 $a\in\mathcal A\leftrightarrow\varphi_a\in\mathcal A'$ により left (right) convolution algebra $\tilde{\mathcal A}$ は left (right) involution を持つ dual *-algebra $\mathcal A'$ の subalgebra と考えることができる。

事実 1)
$$\varepsilon(b^{\sharp}*a)=(a,b)=\varepsilon(a*b^{\flat})$$
 $(a,b\in\tilde{\mathcal{A}})$ が成立 $(\varepsilon$ は $\tilde{\mathcal{A}}$ 上の Plancharel weight)

- 2) $\tilde{\mathcal{A}}^2$ は $\tilde{\mathcal{A}}$ で dense。従って left (right) convolution algebra $\tilde{\mathcal{A}}$ は \mathcal{H}_h の内積に関して left (right) Hilbert algebra である。
- 3) $\hat{\pi}(\xi)\eta = \xi * \eta = \hat{\pi}'(\eta)\xi$ と定義すると $\hat{\pi}(\tilde{\mathcal{A}})'' = \hat{\pi}'(\tilde{\mathcal{A}})''$.

(注) anti-linear operator $a \to a^{\sharp}$ $(a \to a^{\flat})$ in \mathcal{H}_h の閉包を S(F) とかけば、定義域 $\mathcal{D}(S)$ $(\mathcal{D}(F))$ は achieved left (right) Hilbert algebra となる。また $S=F^*$, $F^*=S$ が成立。

コンパクト Hopf *-代数に対する convolution algebra \tilde{A} の(簡単に判るが)顕著な性質は

$$\hat{\pi}(a), \; \hat{\pi}'(a) \; \; (a \in \mathcal{A}) \;$$
が finite rank operators となる

ことである。これより次の定理が示せる。

定理 Banach algebra \mathcal{H}_h の minimal closed two sided ideal からなる族 $\{A_\gamma:\ \gamma\in\Gamma\}$ が存在して

$$\mathcal{H}_h = \sum_{\gamma \in \Gamma}^{\oplus} A_{\gamma}, \quad A_{\gamma} \cong \mathcal{M}(n_{\gamma}, \mathbb{C})$$
 $\tilde{\mathcal{A}} = \bigoplus_{\gamma \in \Gamma} A_{\gamma} \quad \text{(algebraic direct sum)}$

さて 各 $A_{\gamma} \cong M(n_{\gamma}, \mathbb{C})$ 上の trace τ_{γ} に対して、

$$\varepsilon(a) = \tau_{\gamma}(h_{\gamma} * a) \ a \in A_{\gamma}$$

を満たす $h_{\gamma} = h_{\gamma}^{\sharp} \in A_{\gamma}$ 、さらに h_{γ} を対角化する matrix unit $\{u_{ij}\}$

$$e_{ij}^{\gamma} * e_{k\ell}^{\gamma} = \delta_{jk} e_{i\ell}^{\gamma}, \quad e_{ij}^{\gamma^{\sharp}} = e_{ji}^{\gamma}, \quad h_{\gamma} = \sum_{i=1}^{n_{\gamma}} \lambda_i e_{ii}^{\gamma}$$

がとれる。

$$u_{ij}^{\gamma} = h_{\gamma}^{-\frac{1}{2}} * e_{ij}^{\gamma} * h_{\gamma}^{-\frac{1}{2}} \quad (i, j = 1, \dots, n_{\gamma})$$
 $U^{\gamma} = (u_{ij}^{\gamma}) \in M(n_{\gamma}, \mathbb{C}) \otimes \mathcal{A}$

とおけば U^{γ} は A の既約 unitary corepresentation となる。従って Peter-Weyl の定理に相当する次の定理が成立。

定理 Hopf *-代数 A に対して次は同値

- (i) A はコンパクト
- (ii) 有限次元既約な \mathcal{A} の unitary corep. の族 $U^{\gamma}=(u_{ij}^{\gamma})$ $(\gamma\in\Gamma)$ が存在して

$$\mathcal{A} = \bigoplus_{\gamma \in \Gamma} \text{ Span } \{u_{ij}^{\gamma}\}_{i,j}$$

- (注) Dijkhuizen-Koornwinder [1] は余代数の基本定理を用いて上の事実を示している。
- §3. Remarks
 - 1. コンパクト Hopf *-代数 $\mathcal{A} = \bigoplus_{\gamma \in \Gamma} \operatorname{Span}\{u_{ij}^{\gamma}\}_{i,j}$ に対して、

$$\begin{split} \|\pi(u_{ij}^{\gamma})b\|^2 &= h(b^*u_{ij}^{\gamma*}u_{ij}^{\gamma}b) \\ &\leq \sum_{k=1}^{n_{\alpha}}h(b^*u_{kj}^{\gamma*}u_{kj}^{\gamma}b) = \|b\|^2. \end{split}$$

任意の $a\in\mathcal{A}$ は $\{u_{ij}^{\gamma}\}$ の一次結合で書けるから、 $\pi(a)\in\mathcal{B}(\mathcal{H}_h)$ 。

 $\pi(\mathcal{A})$ を作用素ノルムにより完備化して得られる C^* -代数を $\overline{\pi(\mathcal{A})}$ と書く。このとき \mathcal{A} の coproduct δ は連続に

$$\Phi: \ \overline{\pi(\mathcal{A})} \to \overline{\pi(\mathcal{A})} \ \overline{\otimes} \ \overline{\pi(\mathcal{A})}$$

に拡張でき、 Φ は C^* -代数 $\overline{\pi(\mathcal{A})}$ の coproduct となる。さらに

 $(\overline{\pi(\mathcal{A})}\otimes 1)\Phi(\overline{\pi(\mathcal{A})}), \quad (1\otimes\overline{\pi(\mathcal{A})})\Phi(\overline{\pi(\mathcal{A})})$ は $\overline{\pi(\mathcal{A})}\otimes\overline{\pi(\mathcal{A})}$ で dense。従って $(\overline{\pi(\mathcal{A})},\Phi)$ は Woronowicz の意味でのコンパクト量子群となる。

逆に Woronowicz の意味でのコンパクト量子群があれば、その dense な subalgebra でコンパクト Hopf *-代数となるものがとれる。c.f. [6]

2. \tilde{A} を left convolution algebra for compact Hopf *-algebra A とする。 $\tilde{A} \subset A'$ と考え、A と \tilde{A} の pairing を $<\cdot,\cdot>$ とかく。a \in \tilde{A} に対して

$$\langle x \otimes y, \ \hat{\delta}(a) \rangle = \langle xy, a \rangle \quad x, y \in \mathcal{A}$$

で $\hat{\delta}(a)$ を定義すると、

$$\hat{\delta}: \ \tilde{\mathcal{A}} \to M(\tilde{\mathcal{A}} \otimes \tilde{\mathcal{A}})$$

は *-homomorphism で、 \tilde{A} の coproduct を与える。ただし $M(\cdot)$ は multiplier algebra を表わし、 $\tilde{A}=\bigoplus_{\gamma\in\Gamma}M(n_\gamma,\mathbb{C})$ より

$$M(\tilde{\mathcal{A}} \otimes \tilde{\mathcal{A}}) = \prod_{\alpha,\beta \in \Gamma} M(n_{\alpha},\mathbb{C}) \otimes M(n_{\beta},\mathbb{C}).$$

さらに

$$a \otimes b \longrightarrow \hat{\delta}(a)(1 \otimes b)$$

 $a \otimes b \longrightarrow (a \otimes 1)\hat{\delta}(b)$

は $\tilde{A}\otimes \tilde{A}$ 上の bijection となる。従って $(\tilde{A},\hat{\delta})$ は multiplier Hopf *-algebra となり、 Van Daele [8] の意味で discreat quantum group. ([2] も参照) 実は、逆に multiplier Hopf *-algebra としての discreat quantum group から compact quantum group (compact Hopf *-algebra) を構成することもでき、両者の間の双対性が成立。極最近、discreat, compact quantum group を特別な場合として含む multiplier Hopf *-algebra のクラスの中で group dual に相当する双対性が成立することが Van Daele により示された。

文献

- [0] Abe, ホップ代数, 岩波書店
- [1] Dijkhuizen-Koornwinder, CQG algebras: A direct algebraic approach to compact quantum groups, Letters. Math. Phys. 32, 315-330 (1994).
- [2] Effros-Ruan, Discrete quantum groups, I., preprint (1993), to appear in Internat. J.
 Math.
- [3] Koornwinder, General compact quantum groups, a tutorial, preprint (1994).
- [4] K-Nakagami, Compact Hopf *-algebras, quantum enveloping algebras and dual Woronowicz algebras, in preparation.
- [5] Masuda-Nakagami, A von Neumann algebra flamework for the duality of the quantum groups, Publ. RIMS, Kyoto Univ., 30, 799-850 (1994).
- [6] Woronowicz, Compact quantum groups, preprint (1992).
- [7] Van Daele, Private communications.
- [8] ——, Discreat quantum groups, preprint (1993).
- [9] Yamagami, On unitary representations of compact quantum groups, preprint (1993).