BRANCHING OF SINGULARITIES FOR SOME THIRD ORDER MICROHYPERBOLIC OPERATORS MULTIPLY CHARACTERISTIC AT $x_1=0$

HIDESHI YAMANE 山根英司

Department of Mathematical Sciences, University of Tokyo

§1 INTRODUCTION

In this brief report, we consider the branching of the support of microfunction solutions to a microhyperbolic equation of third order, triply characteristic over the initial surface $x_1 = 0$. Branching of singularities has been studied by many authors. Alinhac and Taniguchi-Tozaki made researches into second order hyperbolic operators in the C^{∞} -category. Hanges and Oaku treated operators of the form x_1D_1 – (lower), in the C^{∞} - and C^{ω} -categories respectively. Amano-Nakamura studied an operator of arbitrary order and reduced the problem of branching of C^{∞} -singularities to that of Stokes phenomena.

§2 RESULTS

Let

$$P(x,D) = D_1^3 - x_1^2 D_n^2 D_1 + 2(a-b)D_n D_1 + \{2(a+b) - 3\}x_1 D_n^2 + \sum_{l=0}^{\text{finite}} \alpha_{-l}(x_1^2, x', D')x_1^{l+1} D_1^l$$

be a microdifferential operator defined near a point p in $\{(x, i\xi) \in iT^*\mathbb{R}^n; x_1 = 0, \xi_n > 0\}$. Here we assume that $\operatorname{ord}_{a-l} \leq -l-1$ and that α_{-l} is an polynomial in $t = \frac{1}{2}x_1^2$ and x_n .

Here we write $x = (x_1, x_2, \dots, x_n) = (x_1, x'), D_j = \frac{\partial}{\partial x_j} (1 \le j \le n),$ a and b are constants such that

$$a \notin \mathbb{Z}, a+b \notin \frac{1}{2} + \mathbb{Z}, b \notin \mathbb{Z}.$$

 $\sigma(P)$, the principal symbol of P, has the factorization

$$\sigma(P) = (\xi_1 - x_1 \xi_n) \xi_1 (\xi_1 + x_1 \xi_n).$$

Hence P is microhyperbolic and triply characteristic at $x_1 = 0$. In $x_1 \neq 0$, it is simply characteristic and we can apply a propagation theorem of SKK. That is, the support of a solution to P is a union of bicharacteristic strips, each of which is parametrized by x_1 . Let b_j^{\pm} be the half bicharacteristic strip in $\pm x_1 > 0$ issuing from p, contained in $\xi_1 = x_1 \xi_n, 0, -x_1 \xi_n$ for j = 1, 2, 3 respectively. A microfunction solution u to P, defined in the intersection of a neighborhood of p and $\{(x; i\xi dx); x_1 > 0\}$, is said to be j-pure if u = 0 on $b_k^+(k \neq j)$ and $u \neq 0$ on b_j . Remark that according to the general theory due to Kashiwara- Kawai on microhyperbolic operators, we have the isomorphism

$$(\Gamma_{\{x_1>0\}}\mathcal{C}_M^P)_p \simeq \mathcal{C}_{M,p}^P$$

where $M = \mathbb{R}_x^n$ and \mathcal{C}_M^P is the solution sheaf. It means unique extendability of solutions across $x_1 = 0$.

Now we pose the following problem.

PROBLEM 1 (branching of singularities).

What is the support of the extension of a j-pure solution?

Let $N = \{x; x_1 = 0\} \subset \mathbb{R}^n$, ρ be the pull-back $N \times_M iT^*M \to iT^*N$ and $p' = \rho(p)$. We have the boundary value (iso)morphism

$$b.v.: (\Gamma_{\{x_1>0\}}\mathcal{C}_M^P)_p \stackrel{\sim}{\to} \stackrel{3}{\oplus} \mathcal{C}_{N,p'}$$
$$u \mapsto (D_1^k u(+0,x'))_{k=1,2,3}.$$

Our next problem is

PROBLEM 2 (boundary value problem with purity). Let f(x') be an element of $C_{N,p'}$. Consider

$$(*) \begin{cases} Pu = 0 & in \quad x_1 > 0 \\ u & is \ j\text{-pure} \\ u(+0, x') = f(x') \end{cases}$$

We give answers to the two problems above. First we have

ANSWER TO PROBLEM 2. (*) is uniquely solvable for a generic (a,b). More precisely, there is a holomorphic function G in $\{(a,b) \in \mathbb{C}^2 : a \notin \mathbb{Z}, a+b \notin \frac{1}{2} + \mathbb{Z}, b \notin \mathbb{Z}\}$, not vanishing identically, such that (*) is uniquely solvable if $G(a,b) \neq 0$.

REMARK

G can be written explicitly in terms of integrals which resemble that defining Beta function.

Next, we have

ANSWER TO PROBLEM 1(GENERIC CASE).

For a generic (a,b), we have the following: If a solution u is pure, its extension across $x_1 = 0$ has three branches: $u \neq 0$ on each $b_i^-(j = 1, 2, 3)$.

If $\alpha_{-l} = 0$ for all l, we can consider the case $(a, b) \in \mathbb{N} \times \mathbb{N}, \mathbb{N} = \{1, 2, 3, ...\}.$

This non-generic case is interesting in that we encounter a different kind of branching phenomenon.

ANSWER TO PROBLEM 1 (NON-GENERIC CASE).

Under the condition above, we have: (1) If a solution u is 1-pure, then $u \neq 0$ on b_1^- , $u \neq 0$ on b_2^- and u = 0 on b_3^- .

- (2) If u is 2-pure, u = 0 on $b_1^- \cup b_3^-$ and $u \neq 0$ on b_2^- .
- (3) If u is 3-pure, u = 0 on b_1^- , $u \neq 0$ on b_2^- and $u \neq 0$ on b_3^- .

Roughly speaking, it means that b_2^- is "priviledged". Under other conditions, it happens that another half-bicharacteristic strip is priviledged in a similar sense. In fact, we can prove that if $b \in \mathbb{N}$ and $a + b \in \frac{3}{2} - \mathbb{N}$, then b_1^- is priviledged and that if $a \in \mathbb{N}$ and $a + b \in \frac{3}{2} - \mathbb{N}$, then b_3^- is.

§3 SKETCH OF THE PROOF

The problems are solved by constructing a "j-pure fundamental solution". That is, we construct a morphism

$$E_j: \mathcal{C}_{N,p'} \to (\Gamma_{\{x_1>0\}}\mathcal{C}_M^P)_p$$

$$f(x') \mapsto (E_i f)(x)$$

such that $E_j f$ is a j-pure solution. Once we know the boundary values

$$D_1^k(E_i f)(+0, x')$$
 $(k = 0, 1, 2, j = 1, 2, 3),$

we immediately obtain the results in the previous section. We perform the change of variables $t = \frac{1}{2}x_1^2$ for x_1^3P , and apply the quantized Legendre transform with respect to (t, x'). Then the operator to be considered is

$$Q(\zeta, x', \partial_{\zeta}, D_{x'}) = J(\zeta, \partial_{\zeta}) + J'(\zeta, x', \partial_{\zeta}, D'_{x})$$

where

$$J(\zeta, \partial_{\zeta}) = (\zeta^{3} + \zeta)\partial_{\zeta}^{3} + \{\frac{15}{2}\zeta^{2} - i(a - b)\zeta + a + b + \frac{3}{2}\}\partial_{\zeta}^{2} + \{12\zeta - 2i(a - b)\}\partial_{\zeta} + 3i(a - b)\}\partial_{\zeta} + 3i(a - b)\partial_{\zeta} + 3i($$

$$J' = \sum_{m=2}^{\text{finite } m-2} \sum_{j=0}^{m-2} \alpha_{m,j}(x', D') \zeta^j \partial_{\zeta}^m \in \mathcal{E}(-1)$$

$$\operatorname{ord}\alpha_{m,i} \leq -m-1.$$

J is an ordinary differential operator of Fuchs type called Jordan-Pochhammer hypergeometric operator. Its solutions have Euler integral representation. A suitably chosen path gives us a solution with a desired singularity. Such a solution roughly corresponds to a j-pure solution. Of course we have to deal with the perturbation J'. This is performed by successive approximation. We construct a microdifferential operator $\tilde{E}_j(\zeta, x', D')$ of order 0 such that:

 \tilde{E}_j is defined in (a neighborhood in \mathbb{C}_{ζ} of $\{\zeta; \operatorname{Re}\zeta \geq 0, \zeta \neq a_j\}$) × (a conic neighborhood in iT^*N of p'). Here $a_j = i, 0, -i$ if j = 1, 2, 3 respectively.

$$(\tilde{E}_j f)(\zeta, x') \in \mathcal{CO}_+^{\infty}$$
 for all $f \in \mathcal{C}_{N, p'}$

$$\tilde{E}_i \in \zeta^{-1}\mathcal{E}(0) + \zeta^{-\frac{3}{2}}\mathcal{E}(0)$$
 at $\zeta = \infty$

$$Q(\zeta, x', \partial_{\zeta}, D'_{x})\tilde{E}_{i}(\zeta, x', D') = 0$$

Here $\partial_{\zeta} = [D_{\zeta}, \bullet]$. Obviously, for any $f(x') \in \mathcal{C}_{N,p'}$, we have

$$Q(\zeta, x', D_{\zeta}, D_{x'},)[\tilde{E}_{i}(\zeta, x', D')f(x')] = 0$$

According to [Kat], $\tilde{E}_j f$ defines a j-pure solution, which is the definition of $(E_j f)(x)$. Its boundary values are calculated from the expansion coefficients of Q at $\zeta = \infty$.

REFERENCES

- [Ao] Aoki T., Symbols and formal symbols of pseudodifferential operators, Group Representation and Systems of Differential Equations, Advanced Studies in Pure Math. 4 (1984), 181–208.
- [Al] Alinhac S., Branching of singularities for a class of hyperbolic operators, Indiana Univ. Math. J. 27 (1978), 1027-1037.
- [A-N] Amano K., Nakamura G., Branching of singularities for degenerate hyperbolic operators, Publ. RIMS, Kyoto Univ, 20 (1984), 225–275.
- [B-S] Bony J.M., Schapira P, Propagation des singularités analytiques pour les solutions des équations aux derivées partielles, Ann. Inst. Fourier Grenoble 26-1 (1976), 81-140.
- [H] Hanges N., Parametrices and propagation of singularities for operators with non-involutive characteristics, Indiana Univ. Math. J. 28 (1979), 87-97.
- [K-K] Kashiwara M., Kawai T., Microhyperbolic pseudo-differential operators I, J. Math. Soc. Japan 27 (1975), 359-404.
- [Kat] Kataoka K. (to appear).
- [K-K-K] Kashiwara M., Kawai T. and Kimura T., Foundation of Algebraic Analysis, Kinokuniya, 1980 (in Japanese); English translation from Princeton, 1986.
- [O] Oaku T., A canonical form of a system of microdifferential equations with non-involutory characteristics and branching of singularities, Invent. Math. 65 (1982), 491-525.
- [S-K-K] Sato M., Kawai T. and Kashiwara M., Microfunctions and Pseudo-differential Equations, Hyperfunctions and Pseudo-Differential Equations, Komatsu H.(Ed.), Proceedings Katata 1971, Lecture Notes in Math. 287, Springer, Berlin-Heidelberg-New York, 1973, pp. 265– 529.
- [Tah] Tahara H., Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math. 5-2 (1979), 245-347.
- [T-T] Taniguchi K., Tozaki Y., A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Japon. 25 (1980), 279-300.
 - 7-3-1 Hongo Bunkyo-ku Tokyo, 113, Japan