
BRANCHING OF SINGULARITIES FOR SOME
THIRD ORDER MICROHYPERBOLIC OPERATORS

MULTIPLY CHARACTERISTIC AT $x_{1}=0$

HIDESHI YAMANE
$\iota \mathrm{L}$ $\tau 6<_{\backslash }*\dashv f\urcorner\tilde{\triangleright}$

Department of Mathematical Sciences, University of Tokyo

\S 1 INTRODUCTION

In this brief report, we consider the branching of the support of microfunction solu-

tions to a microhyperbolic equation of third order, triply characteristic over the initial

surface $x_{1}=0$ . Branching of singularities has been studied by many authors. Alinhac

and Taniguchi-Tozaki made researches into second order hyperbolic operators in the
$C^{\infty}$ -category. Hanges and Oaku treated operators of the form $x_{1}D_{1}-(\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r})$ , in the
$C^{\infty}-$ and $C^{\omega}$-categories respectively. Amano-Nakamura studied an operator of arbi-

trary order and reduced the problem of branching of $C^{\infty}$ -singularities to that of Stokes

phenomena.

\S 2 RESULTS

Let

お

$P(x, D)=D_{1^{-X_{1n}}}^{322}DD1+2(a-b)DD1+ \{n2(a+b)-3\}_{X}1D^{2}+\sum nl=0\alpha_{-l}(_{X_{1}^{2\prime}}, x, D/)_{X_{1}D_{1}^{l}}l+1$
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be a microdifferential operator defined near a point $p$ in $\{(x, i\xi)\in iT^{*}\mathbb{R}^{n})x_{1}=0,$ $\xi_{n}>$

$0\}$ . Here we assume that $\mathrm{o}\mathrm{r}\mathrm{d}\alpha_{-^{\iota}}\leq-l-1$ and that $\alpha_{-l}$ is an polynomial in $t= \frac{1}{2}x_{1}^{2}$

and $x_{n}$ .

Here we write $x=(x_{1}, x_{2,\ldots,n}X)=(x_{1}, X’),$ $D_{j}= \frac{\partial}{\partial x_{j}}(1\leq j\leq n)$ ,

$a$ and $b$ are constants such that

$a\not\in \mathbb{Z},$ $a+b \not\in\frac{1}{2}+\mathbb{Z},$ $b\not\in \mathbb{Z}$ .

$\sigma(P)$ , the principal symbol of $P$ , has the factorization

$\sigma(P)=(\xi 1-X_{1}\xi n)\xi_{1}(\xi_{1}+X_{1}\xi n)$ .

Hence $P$ is microhyperbolic and triply characteristic at $x_{1}=0$ . In $x_{1}\neq 0$ , it is simply

characteristic and we can apply a propagation theorem of SKK. That is, the support

of a solution to $P$ is a union of bicharacteristic strips, each of which is parametrized by

$x_{1}$ . Let $b_{j}^{\pm}$ be the half bicharacteristic strip in $\pm x_{1}>0$ issuing from $p$ , contained in

$\xi_{1}=x_{1}\xi_{n},$ $\mathrm{o},$ $-X_{1}\xi_{n}$ for $j=1,2,3$ respectively. A microfunction solution $u$ to $P$ , defined

in the intersection of a neighborhood of $p$ and $\{(x;i\xi dx);x_{1}>0\}$ , is said to be j-pure

if $u=0$ on $b_{k}^{+}(k\neq j)$ and $u\neq 0$ on $b_{j}$ . Remark that according to the general theory

due to Kashiwara- Kawai on microhyperbolic operators, we have the isomorphism

$(\Gamma_{\{x_{1}}0\}{}_{>}C_{M}^{PP})_{p}\simeq C_{M,p}$

where $M=\mathbb{R}_{x}^{n}$ and $C_{M}^{P}$ is the solution sheaf. It means unique extendability of solutions

across $x_{1}=0$ .

Now we pose the following problem.

PROBLEM 1 (branching of singularities).

What is the support of the extension of a $j$-pure solution?

Let $N=\{x;x_{1}=0\}\subset \mathbb{R}^{n},$ $\rho$ be the pull-back $N\cross_{M}iT^{*}Marrow iT^{*}N$ and $p’=\rho(p)$ .

We have the boundary value (iso)morphism

$b.v.$ : $(\Gamma_{\{}x10\}{}_{>}C^{P}M)_{p}\simarrow\oplus cN,pl3$

$u\mapsto(D_{1}^{k}u(+0, X’))k=1,2,3$ .

Our next problem is
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PROBLEM 2 (boundary value $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\ln$ with purity). Let $f(x’)$ be an element

of $C_{N,p’}$ . Consider

$(*)$
We give answers to the two problems above. First we have

ANSWER TO PROBLEM 2. $(^{*})$ is uniquely solvable for a generic $(a, b)$ . More

precisely, there is a holomorphic function $G$ in $\{(a, b)\in \mathbb{C}^{2} ; a\not\in \mathbb{Z}, a+b\not\in\frac{1}{2}+\mathbb{Z}, b\not\in \mathbb{Z}\}$,

not vanishing identically, such that $(^{*})i_{\mathit{8}}$ uniquely solvable if $G(a, b)\neq 0$ .

REMARK
$G$ can be written explicitly in terms of integrals which resemble that defining Beta

function.

Next, we have

ANSWER TO PROBLEM 1(GENERIC CASE).

For a generic $(a, b)$ , we have the following: If a solution $u$ is pure, its $exten\mathit{8}ion$

across $x_{1}=0$ has three branches: $u\neq 0$ on each $b_{j}^{-}(j=1,2,3)$ .

If $\alpha_{-l}=0$ for all $l$ , we can consider the case $(a, b)\in \mathbb{N}\cross \mathbb{N},$ $\mathbb{N}=\{1,2,3, \ldots\}$ .

This non-generic case is interesting in that we encounter a different kind of branching

phenomenon.

ANSWER TO PROBLEM 1 (NON-GENERIC CASE).

Under the condition above, we have: (1) If a solution $u$ is 1-pure, then $u\neq 0$ on $b_{1}^{-}$ ,

$u\neq 0$ on $b_{2}^{-}$ and $u=0$ on $b_{3}^{-}$ .

(2) If $u$ is 2-pure, $u=0$ on $b_{1}^{-}\cup b_{3}^{-}$ and $u\neq 0$ on $b_{-}^{-},$ .

(3) If $ui_{\mathit{8}}\mathit{3}$ -pure, $u=0$ on $b_{1}^{-},$ $u\neq 0$ on $b_{2}^{-}$ and $u\neq 0$ on $b_{3}^{-}$ .

Roughly speaking, it means that $b_{-}^{-},$ is ”priviledged”. Under other conditions, it

happens that another half-bicharacteristic strip is priviledged in a similar sense. In

fact, we can prove that if $b\in \mathbb{N}$ and $a+b \in\frac{3}{2}-\mathbb{N}$ , then $b_{1}^{-}$ is priviledged and that if

$a\in \mathbb{N}$ and $a+b \in\frac{3}{2}-\mathbb{N}$ , then $b_{3}^{-}$ is.
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\S 3 SKETCH OF THE PROOF

The problems are solved by constructing a”$\mathrm{j}$ -pure fundamental solution”. That is,

we construct a morphism

$E_{j}$ : $C_{N,p’}arrow(\Gamma_{\{x_{1}}{}_{>0\}}C_{M}^{P})p$

$f(x’)\mapsto(E_{j}f)(X)$

such that $E_{j}f$ is a $\mathrm{j}$ -pure solution. Once we know the boundary values

$D_{1}^{k/}(E_{j}f)(+\mathrm{o}, X)$ $(k=0,1,2,j=1,2,3)$ ,

we immediately obtain the results in the previous section. We perform the change of

variables $t= \frac{1}{2}x_{1}^{2}$ for $x_{1}^{3}P$ , and apply the quantized Legendre transform with respect

to $(\mathrm{t}, \mathrm{x}’)$ . Then the operator to be considered is

$Q(\zeta, x’, \partial_{\zeta}, D_{x’})=J(\zeta, \partial_{\zeta})+J/(\zeta, X\partial/,D_{x}’)\zeta$,

where

$J( \zeta, \partial_{\zeta})=(\zeta^{3}+\zeta)\partial_{\zeta}^{3}+\{\frac{15}{2}\zeta^{2}-i(a-b)\zeta+a+b+\frac{3}{2}\}\partial_{\zeta}^{2}+\{12\zeta-2i(a-b)\}\partial_{\zeta}+3$

finite $m-2$

$J^{/}= \sum\sum\alpha_{m,j}(X^{/}, D’)\zeta j\partial_{\zeta}m\in \mathcal{E}(-1)$

$m=2j=0$

$\mathrm{o}\mathrm{r}\mathrm{d}\alpha_{m,j}\leq-m-1$ .

$J$ is an ordinary differential operator of Fuchs type called Jordan-Pochhammer hyper-

geometric operator. Its solutions have Euler integral representation. A suitably chosen

path gives us a solution with a desired singularity. Such a solution roughly corre-

sponds to a $\mathrm{j}$ -pure solution. Of course we have to deal with the perturbation $J’$ . This

is performed by successive approximation. We construct a microdifferential operator

$\tilde{E}_{j}(\zeta, xD’/,)$ of order $0$ such that :
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$\tilde{E}_{j}$ is defined in (a neighborhood in $\mathbb{C}_{\zeta}$ of $\{\zeta;{\rm Re}\zeta\geq 0,$ $\zeta\neq a_{j}\}$ ) $\cross(\mathrm{a}$ conic neighborhood

in $iT^{*}N$ of $p^{l}$ ). Here $a_{j}=i,$ $0,$ $-i$ if $j=1,2,3$ respectively.

$(\tilde{E}_{j}f)(\zeta, x)/\in C\mathcal{O}_{+}^{\infty}$ for all $f\in C_{N,p’}$

$\tilde{E}_{j}\in\zeta^{-1}\mathcal{E}(\mathrm{o})+\zeta^{-}\frac{3}{2}\mathcal{E}(\mathrm{o})$ at $\zeta=\infty$

$Q(\zeta, x’, \partial_{\zeta}, D’)x\tilde{E}_{j}(\zeta, xD/,’)=0$

Here $\partial_{\zeta}=[D_{\zeta}$ , $\bullet$ $]$ . Obviously, for any $f(x’)\in C_{N,p’}$ , we have

$Q(\zeta, x’, D_{\zeta,x}D’, )[\tilde{E}_{j}(\zeta, xD’)/,f(X’)]=0$

According to [Kat], $\tilde{E}_{j}f$ defines a $\mathrm{j}$ -pure solution, which is the definition of $(E_{j}f)(X)$ .

Its boundary values are calculated from the expansion coefficients of $Q$ at $\zeta=\infty$ .
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