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Introduction

Fractals are used as models of shapes in nature. Hence studying physical phenomena in
nature requires some kind of ” Analysis on Fractals”. In particular, we need ” Laplacians” on
fractals to study waves and diffusions. In this paper, we will show how to define Laplacians
on finitely ramified fractals including post critically finite self-similar sets, (which are
mathematical justification of finitely ramified self-similar sets), dendrites and cantor sets.
Laplacians are defined as scaling limits of discrete Laplacians on finite graphs. Also we will
study the eigenvalues and the eigenfunctions of those Laplacians. Our main interest will
be focused on the eigenvalue counting functions, in particular, an analogy of the classical
Weyl’s theorem for the Laplacians on bounded domains in Euclidean spaces. We will
define the notion of spectral dimension and establish a relation between the Hausdorff and
spectral dimensions on fractals.

In this direction of ”analysis on fractals”, the pioneering work was the construction
of a diffusion process on the Sierpinski gasket by Kusuoka[21] and Goldstein[12]. Their
diffusion process is a scaling limit of random walks on graphs which approximate the
Sierpinski gasket. (See §1 for the Sierpinski gasket.) Furthermore, Barlow-Perkins[6)
obtained a detailed estimate of the probability transition density (heat kernel) of this
diffusion process which is called the ”Brownian motion on the Sierpinski gasket”. The
essential idea of these works are as follows. ”In general, it is difficult to consider the notion
of derivatives of a function on a fractal. We may, however, construct a diffusion process as
a scaling limit of random walks on graphs which approximate the fractal. The ”Laplacian”
should be the infinitesimal generator of such a diffusion process.”. From this probabilistic
approach, Lindstrgm|25] constructed ”Brownian motions” on a class of highly symmetric
self-similar sets named nested fractals. Also Kumagai[20] obtained the detailed estimate
of the probability transition density (heat kernel) of this Brownian motions.

On the other hand, Kigami[14] gave a direct definition of the "Laplacian” on the Sier-
pinski gasket (See §1.) as a limit of natural difference operators and studied harmonic
functions, an expression of solutions of the Poisson’s equation and the counterpart of the
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Gauss-Green’s formula. Later, using these results, Fukushima-Shima[ll] and Shima[29]
determined the eigenvalues and the eigenfunctions for the standard Laplacian on the Sier-
pinski gasket. (See §4.) This direct approach for constructing Laplacians is called analytic
approach or potential theoretic approach.

These two approaches deal with the same problems from different aspects and the results
are complementary. In this paper, we will reviews results on post critically finite (finitely
ramified) self-similar sets from analytic approach.

Remark. It is much difficult to construct a diffusion process or a Laplacian in infinitely
ramified fractals like the Sierpinski gasket. Barlow and Bass[3,4] constructed and studied
” Brownian motion on the Sierpinski carpet”. Also Kusuoka-Zhou[23] constructed Dirichlet
forms on infinitely ramified but "recurrent” self-similar sets.

§1 Laplacian on the Sierpinski gasket

In this section, we will explain results and ideas in Kigami[l4] to define a Laplacian on
the Sierpinski gasket as an introduction to the general theory of Laplacians on self-similar
sets. The Sierpinski gasket is a self-similar set defined as follows.

Definition 1.1 (the Sierpinski gasket). Let p;, p2, ps be vertices of a equilateral trian-
gle in C. Define F; : C — C by F;(2) = %(z—p,-)+pi for any z € C. Then the Sierpinski gas-
ket is the unique non-empty compact set K C C that satisfies K = F}(K)UF;(K)UF3(K).
Moreover, set

V= |J Ful{p1,p2,p3})
we{l1,2,3}™
and
En= | {(Fu@),Fu(p2)),(Fu(p2), Fu(ps)), (Fu(ps), Fu(p1))},

we{1,2,3}m

where F,, = F,,, o F, 0o--oF,,  for w = wyws - -wn € {1,2,3}™. In particular, Vo =
{PI,P27P3} and EO = {(p17p2)a (P27P3)7 (p3ap1)}'

(Vin, Er,) is a graph where V,,, is the set of vertices and E,, is the set of edges. As
K = Upn>oVm, we can think (V,,, E,,) as a sequence of approximating graphs of the
Sierpinski gasketK.

How can we define a natural "Laplacian” on the Sierpinski gasket? Recall the fact that
the Laplacian A = d?/dz? on R can be expressed as a scaling limit of difference operators;
that is,

(Af)(@) = lim h~*(f(z + b) + f(z — ) - 2/(x)).

On the analogy of the above fact, we may define a Laplacian on the Sierpinski gasket as a
scaling limit of discrete Laplacians on the finite graphs (V,,,, E,,).

Definition 1.2. For f € RY™ and p € V,,

Hpnpf= ) (fl@ - f0),

qEVm,p
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where Vinp = {q: ¢ € Vin,(¢,p) € Emor(p,q) € En}. Also we define a linear operator
H,, from RV to itself by (Hmf)(p) = Hmpf.

Vin,p is the collection of the neighboring vertices of pin (Vp, Ep). Hp is the natural
discrete Laplacian on the graph (Vi,, Ey). So we might be able to give a definition of a
»Laplacian” A on the Sierpinski gasket by Af(p) = limy, oo @™ Hp, pf for some a. The
big question is a proper value of a. On the direct analogy of the Laplacian on R, it should
be 4 because h is the distance between two neighboring points and is equal to 1/2™ for
(Vin, Em). 5 is, however, the correct value.

Definition 1.3. Let C(K) be the collection of real valued continuous functions on the
S.G.. For f € C(K), if there exists ¢ € C(K) such that

im  sup [5™Humpf — 0(p) =0

then we define A f = . The domain of A is denoted by D.

Remark. We may define A(®) by using @ > 0 in place of 5 in the above theorem. However,
if « = 5, it would be nonsense. In fact , we can see that

(1) For 0< a < 5, KerA® is dense in C(K). »

(2) For 5 < a, D) is a 3-dimensional subspace of C(K) and for all f € D@ Al f =0,

The above A is now called the standard Laplacian on the Sierpinski gasket.

Now we explain a little about the secret of the correct value 5. As a matter of fact,
the sequence of discrete Laplacians {(Vin, Hm) }m>o is invariant under a kind of renormal-
ization and the ”eigenvalue” of the renormalization determines the scaling constant. In
other words, {(Vn, (5/3)™H,)} becomes a sequence of ” compatible networks”. Here 5/3
corresponds to the eigenvalue of renormalization. We will give the concrete definition of
” compatible networks” in the next section.

In §2, we will define resistance networks and introduce the notion of a sequence of
compatible resistance networks. Also we will explain how to construct a Dirichlet form (
and Laplacian ) as a limit of such a sequence. In §3, we will apply the theory in §2 to
p.c.f. self-similar sets including the Sierpinski gasket and give a definition of Laplacians on
p.c.f. self-similar sets. In §4, we will discuss eigenvalues and eigenfunctions of Laplacians
on p.c.f. self-similar sets. In particular, we are interested in eigenvalue counting functions
and their asymptotic behavior.
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§2 Electrical Networks

In the previous section, we said ”the sequence of difference operators H,, on V,,, has some
compatibility (invariant under a renormalization) and this property plays a crucial roll in
defining the Laplacian on the Sierpinski gasket.” In this section, we will review the theory
of resistance networks in Kigami[17] to give an exact definition to the above notion of
” compatibility”.

Notation. Let U and V be sets.
(1) £V)={flf:V — R}. We use f, or (f), to denote the value of f € £(V) at pe V.
For pe V, xp € (V) is defined by

1 for g =p,

xp(q) = {

0 otherwise.

(2) Let A:€(V)— £(V) be a linear map. Then we use Apq or (A),q to denote the value
(AXq)p-

Definition 2.1. Let V be a finite set. For a symmetric linear map H: £(V) — £(V), we
define a symmetric bilinear form €y by Ex(u,v) = —uHv for u,v € £(V). Then (V, H) is
called a resistance network (r-network for short) if £g(u,u) > 0 and the equality holds if
and only if u is constant on V.

The difference operator H is thought as a discrete Laplacian on V. Why do we call
the above notion an "resistance” network? The next characterization of an r-network will
provide an answer to such an question.

Proposition 2.2. For a finite set V', let H(V') be a collection of linear maps from £(V)
to itself such that H € H(V) if and only if
(1) 'H=H,
(2) H isirreducible, that is, for each (p,q) € V x V, there exists a sequence {p;}™_, with
P1=D,Pn=qand Hy,p,.., #0 foralli=1,2,--,n—1,
(3) Hpp<O0and}: oy Hpg=0foreachpeV,
(4) Hpy>0ifp+#gq.
Then (V, H) is an r-network if and only if H € H(V).

By virtue of the above proposition, we can relate r-networks to actual electrical circuits
as follows. An r-network (V, H) corresponds to an electrical circuit on V' where a resistor
of resistance Hp, ™! is attached to the terminals p and ¢ for p, g € V. For a given potential
v € £(V), the current i € £(V) is obtained by ¢ = Hv. For example, let V = {p1,ps2,ps}
and let r;; be a resistance between p; and p;. (Here we think an electrical network with
three terminals and three resistors.) Then the corresponding r-network (V, H) is given by

1 1 1 1
_(al_}_ m) 1E 1 7—“:11_3

1 1
Ta3 (55 + 79)
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From probabilistic point of view, an r-network (V, H) corresponds to a random walk on
V. The transition probability of the associated random walk is given by

-H,,/H,, ifxs#vy
P($7y) = { Y O

where P(x,y) is the transition probability from z € V toy € V.
Next we formulate the compatibility of two r-networks.

Definition 2.3. Let (V1, Hy) and (V, Ha) be r-networks, then (V1, H1) < (Vz, Hs) if and
only if V; C V5 and, for every v € £(V1),

Eg, (v,v) = min{€m, (u,u) : u € £{(V2),ulv, = v}.

otherwise,

From this standpoint, the concept of "renormalization invariant sequence of difference
operators H,,” corresponds to a sequence of r-networks {(Vim, Hm)}m>o that satisfies
(Viny Hy) < (Vint1, Hmt1). Later in this section, we will see how to construct limits
of sequences of r-networks £ = {(Vi,, Hy) }m>0 satisfying the above compatibility. For
such a sequence we can define a non-negative symmetric form on V, = Upn>oVin.

Definition 2.4.
FL)y={u:uce E(%),Agnooﬁgm(ulvm,mvm) < oo}.

For u,v € F(L),
gﬁ(“’) 'U) = n%grloo gHm (u’lvm?vlvm)'

It would be quite simple if we could derive a kind of "Laplacian” from (¢, F (L)) on
V.. There are, however, several problems. At first, the V, is merely a countably infinite
set at most. Moreover, we have no topology on V,. To solve this problem, we introduce
the notion of effective resistance.

Proposition 2.5. Let L be a compatible sequence of r-networks and let (€, F) = (€., F(L)) R
For p, q € V,, the effective resistance between p and q with respect to L, R.(p, q) is defined
by

Rc(p,q) = min{€(u,u) : u € F,u(p) = 1,u(g) = 0}.
(The above minimum exists and is finite.) Then R is a metric on Vi. Moreover,

— u(q)|?
Re(p,q) = max( B =200 € 7,u(p) £ u(@)

By the last equality, we have, for any u € F and any p,q € V,

lu(p) — w(g)|* < Re(p, )€ (u, w).

This shows that, let (2, R) be the completion of the metric space (Vi,Rc), u € F has a
natural extension to a uniformly continuous function on (2, R). So we can think F as a
subset of C(Q, R), where, for a metric space (X, d), C(X, d) is the collection of real-valued
functions on X that are uniformly continuous on (X, d) and bounded on every bounded
subset of (X, d).

Now we have a complete metric space (2, R) and a quadratic form (&€, F).
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Theorem 2.6. Let u be a Borel regular measure on ) that satisfies u(O) > 0 for any
nonempty open set O and u(A) is finite for any bounded Borel set A. Suppose (2, R) is
locally compact and F is dense in L2(), u). Then (€,F) is a regular Dirichlet form on
L*(Q, ).

Please refer Fukushima[10] for the definition and fundamental properties of Dirichlet
forms. All we would know is that there exists an associated Laplacian and an associated
(generalized) diffusion for a regular Dirichlet form. So from the Dirichlet form (£, F), we
have an Laplacian on €. The simplest example of the relation between Dirichlet forms and
Laplacians is the Gauss-Green formula. Let D be an bounded open domain in R? with
0D smooth. Then the standard Dirichlet form on D is

Oudv Oudv
£ = ——t —— .
(u,0) /D (Bsc oz Oy 8y> dody
In this case, the Gauss-Green’s formula is

(2.2) E(u,v) =/ u@—)-ds—/ uAvdzdy.
op On D

Example 2.7: the Cantor set. Let Fi(z) = riz and let Fy(x) = ro(x — 1)+ 1, where r;
and 7y are positive constants that satisfies r; +ry < 1. Then there exists a unique compact
subset K of [0, 1] that satisfies K = F;(K) U Fo(K). If ry = ry = 1/3, K is the Cantor’s
ternary set. We define

Vin = {Fuwywy-wn, (0), Fuyjwsew,, (1) w; € {1,2} fori=1,2- m},

where Fw1w2..wm = le o sz o--0F, . Set Vi, = {p1>p2’ "7p2m—1} where p; < piy1. We
define H,, by, for i # j, ‘

pi —pi| ™" i li gl =1,
Hp)pip, =
(Hum)pip; { 0 otherwise.

Then {(Vin, Hm)} is a compatible sequence of r-networks. In this case, the effective resis-
tance metric coincides with the restriction of the Euclidean distance on R. (£, F) becomes
a regular Dirichlet form with respect to the normalized Hausdorff measure v on K, which
is known to be a self-similar measure. Hence we can define a Laplacian ( and a general-
ized diffusion) on the Cantor set from the Dirichlet form (£, F). Such kind of generalized
diffusion processes has been known in Probability theory. For example, Fujita[8,9] studied
spectrums and heat kernels of these generalized diffusions on the Cantor sets.
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83 P.C.F. self-similar sets

In this section, we will apply the theory of electrical networks in the previous section to
post critically finite (p.c.f. for short) self-similar sets. Ordinarily, self-similar sets are
defined as the invariant sets of collections of contractions: Let f; be a contraction mapping
for i = 1,2,--, N, then the unique non-empty compact set that satisfies K = Ui<n<n fi(K)
is said to be the self-similar set with respect to {f1, f2,, fn}. Roughly speaking, p.c.f.
self similar sets are finitely ramified self-similar sets: If f;(K)N f;(K) is a finite set for any
i = j, then K is called a finitely ramified self-similar set. For example, in the case of the
Sierpinski gasket K (See §1), F;(K) N F;(K) is a single point. To give an exact definition,
we need the notion of self-similar structure, which is a purely topological formulation of
self-similar sets.

Remark. Definitions and results in this section was originally given by Kigami[15] without
using the notion of electrical networks.

Definition 3.1. Let K be a compact metrizable topological space and let S be a finite
set. In this paper, S = {1,2,--,N}. Also, let F;, for © € S, be a continuous injection
from K to itself. Then, (K, S, {F;}ics) is called a self-similar structure if there exists a
continuous surjection 7 : ¥ — K such that F;ox = 7o for every i € .S, where ¥ = SN is
the one-sided shift space and i : ¥ — X is defined by i(wiwows - -) = fwiwews - - for each
WiWaW3 * + € 3.

Notation. W,,, = S™ is the collection of words with length m. For w = wiyws--wy, € Wi,
we define F,,: K - Kby F, =F,, oF,,0--oF,  and K, = F,,(K). Also we define

W, = J Wn.

m2>0

Definition 3.2. Let (K, S, {F.;}ics) be a self-similar structure. We define the critical set
C C ¥ and the post critical set P C X by

c=r(|J&Eink;) and P= U ™ ©),
i#j n>1

“where ¢ is the shift map from X to itself defined by o(wiwsws ) = wawswy--. A self-similar
structure is called post critically finite (p.c.f. for short) if and only if #(P) is finite.

If (K, S,{F;}ics) is p.c.f., then K is called a post critically finite self-similar set. Nested
fractals introduced by Lindstrgm[25] are p.c.f. self-similar sets. '

A p.cf. self-similar set can be approximated by a natural sequence of finite sets Vi,
defined as follows.

Definition 3.3. Vy = n(P). For m > 1,

V= |J Fu(x(P) and V.= | Vi
weW,, m>0
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It is easy to see that V;,, C V;,+1 and K is the closure of V,.. In particular, V4 is thought
as the "boundary” of K.

Now we try to find a compatible sequence of r-networks to construct a DIrichlet form (
or a Laplacian, a diffusion process) by using results in §2. First, regardless of compatibility,
we will define a sequence of r-networks {(Vin, Hr)} from a given r-network on V.

Definition 3.4. Let (5, Ho) be an r-network and let r = (r1, 72, -, 7n) where r; > 0 for
i=1,2,--,N. We define Hy,: {(V;,) — £(V;,) by

Hp= Y r3"'RyHoR.,
weW,,

where, for w = wiws * Wy € Win, Tw = Tw Tw, © Tw,, and Ry : £(Vin) — £(Vp) is defined

by Ry f = foF,.

It is easy to see that (V,,,, H,,) is an r-network. Please refer Kigami[l5].

m

Example 3.5(the Sierpinski gasket). We will use the notations in §1. In this case,
Vo = {p1,p2,ps} and Hp is written exactly the same as (2.1) using the electrical circuit
analogy: we attach an resistor of resistance r;; to the edge (p;,p;) where i # j. For
(Vin, Hm), the correspondent electrical circuit is quite simply. For w = wyws - -wm, € Wiy,
the resistance of the resistor on the edge (Fu, (pi), Fu(Pj)) 1S Twrsj, where 1y = ry Tw, - T, -

In general, H,, is thought as a self-similar extension of the original r-network (Vp, Ho)
where, for each symbol i € 1,2,--) N, r; is the scaling ratio of resistance.
Now a big question is when the {(V,, H,,)} becomes a compatible sequence.

Proposition 3.6. {(Vin, A™Hp,)}m>0 becomes a compatible sequence of resistance works
for some positive A if and only if

(3.1) (Vo, Ho) < (V1, AH1).

Definition 3.7. If there exists A > 0 such that (Hoy, r) satisfies (3.1), then (Hy, r) is called
a harmonic structure. Furthermore, if r; < A for i = 1,2,--, N, then (Hop,r) is called a
regular harmonic structure.

Replacing r = (r1,72,-,7N) by (r1/A, 72/, --,7n/A) for a harmonic structure (Ho,r),
we have (Vp, Ho) < (Vi, Hy) and {(Vin, Hm)}m>0 is a compatible sequence of r-networks.
In this manner, we always normalize A = 1 hereafter.

Remark(Existence of harmonic structures). Here a natural question is ” Is there any har-
monic structure on a give p.c.f. self-similar set?” Unfortunately we don’t have an complete
answer to this question. If we fix r, then we can easily see that (3.1) is equivalent to a fixed
point problem of some non-linear dynamical system. ( Hattori et al[13] and Kusuoka[22]
has considered essentially the same equation from other formulations. In [13], it is shown
that there exists a p.c.f. self-similar set which doesn’t have any harmonic structure for
some r.) Lindstrgm[25] showed that there exist a harmonic structures for a nested fractal,
which is a class of highly symmetric p.c.f. self-similar sets, when r = (1,1,--,1). So far,
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this is the best result about existence of harmonic structures. Barlow[2] obtained some
result about the uniqueness of harmonic structures on nested fractals. Recently Metz[26]
applied the theory of Hilbert projective metrics to this problem.

Now suppose there exists a harmonic structure on (Ho, 7). Then {(Vin, Hn)}m>o0 is a
compatible sequence of r-networks. By the discussions in §2, we have a quadratic form
(€,F) and a complete metric space ({2, R), which was the completion of V, = U,,>0V;n
under the effective resistance metric R. On the other hand, the p.c.f. self-similar set K
is a compact metrizable space and Vi is a dense subset of K with respect to the original
topology. Can we identify {2 with K7 The answer is

Proposition 3.8. If a harmonic structure (Hy, 1) is regular then we can extend the iden-
tity mapping from V, to itself to a homeomorphism between (2, R) and (K, d) where d is
the original metric on K.

Hereafter, we consider only regular harmonic structures. Hence by the above propo-
sition, {2 can be identified with K. In this manner, we will always use K instead of ().
Consequently, F is thought as a subset of C(K);the continuous functions on K. Moreover,
we can show that F is a dense subset of C(K). Now the following theorem is an immediate
corollary of Theorem 2.6.

Theorem 3.9. Let (Hy,r) be a regular harmonic structure and let u be a Borel prob-
abilistic measure on K that satisfies u(0) > 0 for every non-empty open set of K and
u(F) = 0 for any finite subset F C K. Then (£,F) is a local regular Dirichlet form on
L*(K, p).

Bernoulli measures (i.e. self-similar measures) are a familiar example of measures that
satisfies the conditions in Theorem 3.9. Choose {p;}i=12. n so that y; > 0 for 7 =
1,2,--, N and Zf\;l pi = 1. Then there exists a unique Borel probability measure y on K
that satisfies

WK w) = flw = By s * Mo,
for any w = wiws - -wp, € W,. This u is called a Bernoulli (or self-similar) measure on K.

Remark. Even if a harmonic structure (Hp, ) is not regular, the above theorem is known
to be true for a Bernoulli measure p that satisfies p;r; < 1 for all ¢ = 1,2,--,N. See
Kumagai[19] for the details.

By using the theory of Dirichlet forms, we have a Laplacian and a diffusion process
associated with (£,F). In this case, however, we can define the associated Laplacian
directly as a limit of discrete Laplacians on V;,.

Definition 3.10. For p € V,,,, 9 p is the unique function in F that attains the following
minimum, min{€(u,u) : u € F,ulv,, = xp}- For u € C(K), if there exists f € C(K) such
that

o max |t (Hmw) (p) — f(P)] =0,

where fim,p = [ ¥m pdp, then we define the y-Laplacian A, by A, u = f. The domain of
A, is denoted by D,,.

The next theorem relate the above definition of the u-Laplacian with the Dirichlet form
(€, F).
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Theorem 3.11(the Gauss-Green’s formula). D, C F and, foru € F and v € D,,
Ew ) = 3 u@) @)~ [ ubvdn
pEVH K

where (dv),, is the Neumann derivative at a boundary point p defined by (dv), = lim,,,—cc —(Hmv)(
which dose exist forv € D,,.

Please compare the above theorem with the ordinary Gauss-Green’s formula (2.2). We
also have the Green’s function g(z,y) for (£, F).

Theorem 3.12. There exists a non-negative continuous function g: K x K — R with
g(z,y) = g(y, x) for all z,y € K that satisfies, for all f € F with f|v, =0, E(¢*, f) = f(x)
where g% (y) = g(x,y). Also for given ¢ € C(K), there exists a unique f € D, which

satisfies
{ Auf =@
f |Vo =0
Furthermore, f is given by

flz) = - /K 9, 1) (W)u(dy).

Example 3.13 (the Sierpinski Gasket). We will use the same notations in §1. The
self-similar structure associated with the Sierpinski gasket is post critically finite. In fact,

C ={12,21,13,31,23,32} and P ={i,2,3},
where k = kkkk - . Now let

Hy=11 -2 1 and 7 =(

ol w
ot w
ot w
Y

Then (Hp,r) is a harmonic structure. Also let u be the Bernoulli measure that satisfies
p1 = p2 = p3 = 1/3. Then A, coincides with the standard Laplacian A defined in §1 up
to constant multiple.

Example 3.14 (Pentakun). Let {p1,p2,--,ps} be vertices of a regular pentagon in C.
Then for i = 1,2, -, 5, we define a contraction F; by

3—-5
2

The pentakun! is the self-similar set with respect to (C, {F;}2_;). The self-similar structure
that corresponds to the pentakun is post critically finite. In fact

Fi(z) = (z —pi) + ps.

¢ = (J{lk - 2)lk + 1], [k +2][k — 1]},

k=1

In the same way, we can also define hexakun, heptakun, octakun and so on. ’kun’ is a Japanese which
means 'Mr.’.
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qe = m((k — 2k + 1)) = «([k + 2]k - 1)),
P=1{i,2-,5} and pi=7n(k)
for k =1,2,-,5, where [i] € {1,2,--,5} is defined by [i] =i mod 5.
The pentakun has a strong symmetry and it is a nested fractal. Here we will focus on

harmonic structures that have the same symmetry as the shape of the pentakun. Therefore,
we assume that '

. . a if]i—j|==+1 mod 5
(3.2) ( 0)mpj_ b if|i—j|=%2 mod5

and r = (@,--, ). Lindstrgm([25] showed existence of a harmonic structure which satis-
fies the above assumptions. Moreover Barlow[2] showed uniqueness of such a harmonic
structure.

§4 Eigenvalue problems

In this section, we consider eigenvalues and eigenfunctions of Laplacians on p.c.f. self-
similar sets. Hereafter, (K, S, {F;}ics) is a p.c.f. self-similar structure and (Hp,r) is a
regular harmonic structure on K. (A is normalized to 1 as in §3. r = (r1,72,-,7n) and
r; < 1lforalli=12 - N because (Hp,r) is regular.) Then as in the last section, we can
‘construct a Dirichlet form (€, F) on L?(K, u) where p is a Borel probability measure on
K that satisfies 4(0) > 0 for every non-empty open set of K and u(F) = 0 for any finite
subset F' C K.

Definition 4.1(Eigenvalues and Eigenfunctions). For u € D, and k € R, if

{ Ayu=—ku
ulvo = 0.

then k is called a Dirichlet eigenvalue (D-eigenvalue for short) of —A, and w is said to
be a Dirichlet eigenfunction (D-eigenfunction for short) belonging to the D-eigenvalue k.
Also, if

{ Apu = —ku

(du)p =0 for all p e Vp,

then k is called a Neumann eigenvalue (N-eigenvalue for short) of —A, and w is said to be
a Neumann eigenfunction (N-eigenfunction for short) belonging to the N-eigenvalue k.

It is known that the D-eigenvalues (and also N-eigenvalues) are non-negative, of finite
multiplicity and the only accumulation point is co. See Kigami-Lapidus[18].

Definition 4.2. For * = D, N, let {k(u)}i=1,2,.., where K} (u) < ki (p) foralli =1,2, -,
be the set of x-eigenvalues of —A,,, taking the multiplicity into account. The eigenvalue
counting function p,(x, u) is defined by p.(x,u) = #{i : kX (1) < z}.

In the rest of this section, our interest is focused on the eigenvalue counting functions.
For a bounded domain D C R™, the eigenvalue counting function of the ordinary Laplacian
has a remarkable properties shown by Weyl[30,31].
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Theorem 4.3(Wey!’s theorem). Let k; be the i-th eigenvalue of the Dirichlet eigenvalue
problem of —A on §); that is,
{ Af =—kf
f

lap =0
Also let p(z) = #{i: k; <z}, then as x — oo,

p(z) = (21) "By |D]nz™? + o(z™/?)

where | - |, is the n-dimensional Lebesgue measure and By, = |{z : |z| < 1}|,.

Remark. Weyl proved the above result under some conditions on the domain D. Now,
it is known that the above result is true for any bounded domain. Please refer to the
introduction of Lapidus[24].

How about Laplacians on p.c.f. self-similar sets? Is there any analogy of the Weyl’s
theorem? For the standard Laplacian A on the Sierpinski gasket, Fukushima-Shima[l1]
showed

Theorem 4.4. Let dg = }ggg’

0 < liminf p? (2)z~%/2 < limsup p2 (x)z~%/? < .
T—00 T—00
Also for any open subset 0 C K, there exists an D-eigenfunction whose support is contained
in O. (Such kind of eigenfunctions are called localized eigenfunctions.)

The constant dg is sometimes called the spectral dimension.

Remark. There were several physical works (Dhar[7], Alexander-Orbach[l], Rammal[27],
Rammal-Toulouse[28]) on the eigenvalue counting function (i.e. integrated density of
states) on the Sierpinski gasket before Fukushima-Shima[11]. They had obtained the value
on dg and observed existence of the localized eigenfunctions.

Comparing the above theorem with the Weyl’ theorem, we can find several interesting
problems. FlIrst the value of dg doesn’t coincide with the Hausdorff dimension of the
Sierpinski gasket , log3/log?2 unlike the case of D C R™. In other word, there exists
a gap between the spectral dimension ( the dimension from analytical viewpoint) and
the Hausdorff dimension (dimension from geometrical viewpoint). Secondly, there is no
lim; oo pu(z)/2%/2. And the third one is existence of localized eigenfunctions. We never
expect such an eigenfuction for the ordinary Laplacian on D C R™. So for eigenvalue
counting functions of Laplacians on p.c.f. self-similar sets,

Problems. (A) How to calculate an asymptotic order dg of eigenvalue counting func-
tions as x — oo?

(B) Is pu(z)/x%/? convergent as z — 00?

(C) ds =dg? Is there any relation between analytic and geometric dimensions?

(D) Are there localized eigenfunctions?

Hereafter we will consider the above problems when u is a Bernoulli measure (which
was defined right after Theorem 3.9). Kigami-Lapidus[18] obtained the following answer
to Problem (A) and (B).
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Theorem 4.6 ([18, Theorem 2.4 |). Let d, be the unique real number d that satisfies
Zf\;1 %d = 1, where v, = \/Tift;- Then

d./2

0 < liminf p, (z, u)/z%/? < limsup p, (z, 1) /z < 00
r—00

I—>00

for ¥ = D, N. d, is called the spectral exponent of (€, F, u). Moreover

(1) Non-lattice case : If Zf\il Zlog; is a dense subgroup of R, then the Iimit lim, _,oo p, (x, ) /z%/
exists. :

(2) Lattice case:If Zfil Zlog~y; is a discrete subgroup of R, let T > 0 be its genera-

tor. Then, p.(z, 1) = (G(logz/2) 4+ o(1))x%/?, where G is a (right-continuous) T-periodic
function with 0 < inf G(z) < sup G(z) < oo and o(1) is a term which vanishes as x — oc.

Remark. More concrete expressions for the value of the limit in the non-lattice case and
the function G in the lattice case are obtained in [18]. In particular, these limits are
independent of x = D or N.

For the lattice case, we still don’t know if there exists the limit p, (z, u) /x%/? as £ — oo
or not because G might be a constant. Barlow-Kigami[5] found a relation between this
problem and Problem (D).

Theorem 4.7. wu is said to be a pre-localized eigenfunction of —A,, if u is both Dirichlet
and Neymann eigenfunction for a (Dirichlet and Neymann) eigenvalue. For the lattice
case, there exists a pre-localized eigenfunction of —A,, if and only if G is discontinuous.

If G is discontinuous, py(z, i) /x%/? doesn’t converge as T — oo.

Remark. Let u be a pre-localized eigenfunction. For w € W, define u,, by

() = w(FNz)) ifz € Ky,
Ywl®) = 0 otherewise.

Then u,, is also a pre-localized eigenfunction belonging to the eigenvalue g where

P = W(Kw) = Py Py * “Mw,, TOr W = wiwy - ‘Wy,. Therefore we can easily see that there
exists a pre-localized eigenfunction of —A,, if and only if for any non-empty open subset
O C K, there exists a pre-localized eigenfunction f such that suppf C O.

So the next problem is existence of a pre-localized eigenfunction. Barlow-Kigami ob-
tained a sufficient condition. Roughly speaking if K and (£, F, u) have two different kinds
of symmetry, then we can find a pre-localized eigenfunction.

Definition 4.8(Symmetry). A function g: K — K is a symmetry of K with respect to
(€, F,p) if »

(a) g is bijective and continuous. (Hence g is a homeomorphism.)

(b) g:Vo—W,

() wog™lt=up,

(d) Ifp € F then Typ € F and E(p, ) = E(Typ, Typ) for all o, i € F.

G denotes the group of symmetries of K with respect to (€, F, u).
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Theorem 4.9 (Barlow-Kigami[5]). Set S(g9) = {x € K : g(z) = z} for g € G. Suppose
G is a finite subgroup of G which is vertex transitive on Vy, and that there exists h € G,
h ¢ G, such that

(4.1) U sktg) =K

geG

Then there exist pre-localized eigenfunctions.

The condition (4.1) looks a little troublesome to verify. This condition is, however,
always satisfied if K € R™ and G and h are contained in affine transformations.

Example 4.10 (Pentakun). Recall Example 3.14. We may assume p; + - - +ps = 0.
There exits a unique harmonic structure (Ho,r) that satisfies (3.2). (€,F) is defined as
the corresponding form. Let u be the Bernoulli measure that satisfies y; = 1/5 for all 4.
Then the spectral exponent of (€, F, i), ds(u) equals log 5/(log5 — log a). Obviously this
is a lattice case. Let g be the rotation by 27/5 abound 0. Then G = {¢’ : j = 1,2,--,5}
is a subgroup of G which is vertex transitive on Vp. Let h be the reflection with respect
to the line {z = tp; : t € R}, then h € G and h ¢ G. Also we can easily verify (4.1).
Hence by Theorem 4.9, there exists a pre-localized eigenfunction. Moreover, by Theorem
4.7, pu(zx, u)/x%/? doesn’t converge as r — oo.

In fact, the above example is a special case of the following corollary of Theorem 4.9.

Corollary 4.11 (Barlow-Kigami[5]). Let K be a nested fractal with #(Vo) > 3 and
let (Hy,r) be the harmonic structure associated with Lindstrgm’s Brownian motion on K
where 1, = 19 = - = rn. Also let u be a Bernoulli measure on K with p; = pp = -+ =
pun = 1/N. Then there exist pre-localized eigenfunctions of —A,,.

Immediately by Theorem 4.7, p,(z, u)/z%/% doesn’t converge as x — oo for nested
fractals with #(V5) > 3.
Finally we will mention some result about Problem (C).

Theorem 4.12 (Kigami[16]). Let dg be the Hausdorff dimension of K with respect
to the effective resistance metric R and let v be the corresponding normalized Hausdorff

measure. Then
2dg

ds(v) = dg +1

Remark. In general, v is not a Bernoulli measure even in the case of the Sierpinski gasket.
Also the F, are not linear contractions with respect to the effective resistance metric.
Hence to calculate values of dg(v) and dy is not an immediate corollary of known results.
For example, the Hausdorff dimension of the Sierpinski gasket with respect to the effective
resistance metric is log3/(log5 — log3), which is different from the Hausdorff dimension
with respect to the Euclidean metric. See Kigami[16] for details.

The effective resistance metric is thought as an ”intrinsic” metric for (£, F). Also v
is thought to be a natural measure of the metric space (K, R). Hence we may call ds(v)
the spectral dimension of (K, R). From this point of view, Theorem 4.12 gives a relation
between the Hausdorff and the spectral dimensions of (K, R).
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