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ABSTRACT. The notion of infinitely renormalizable diffeomorphisms is given. It is
discussed that the regularity of such diffeomorphisms is closely related to Hausdorff
dimension of certain Cantor sets, and checked moreover that no such diffeomorphism
with C? is able to construct under our definition.

In two-dimensional dynamics we consider some questions for the dynamics of
infinitely renormalizable diffeomorphisms, which is studied in [B-G-L-T], inspired
by Denjoy’s theorem and Falconer’s Book|[F].

A construction of an infinitely renormalizable diffeomorphism is found in [B-F]
and [F-Y]. By making use of the construction they gave answers for a problem of
whether there exist Kupka-Smale diffeomorphisms of the sphere with neither sinks
or sources, rasied by Smale[S]. For C'*¢-infinitely renormalizable diffeomorphisms
the dynamics of the Cantor set founded by them was characterized in [B-G-L-T)].
It was proved [S-W] that a homeomorphism of a Cantor set with some conditions
is topologically conjugate with the restriction to a Cantor set of an example con-
structed in [B-F].

Before describing our result taken aim at this paper for infinitely renormalizable
diffeomorphisms we define an orientation preserving diffeomorphism which is called
infinitely renormalizable.

Let D denote the unit disk centered at the origin of R? and £ be an arbitraly
integer more than one. Take an infinite sequence {p?|n > 1, 1 <1 < £"} of points
belonging to D.

First we define a sequence {D?|n > 1, 1 < ¢ < £"} of subdisks of D and a
sequence {r,|n > 1} satisfying the conditions:

(D1) 0<r1 <1/2and 0 < rpyq < 7p/2forn >1,

(D2) for fixed n > 1 and all ¢ with 1 <7 < £*, D? is a disk centered at p? with
radius 7y,

(D3) DIND} =@ fori# jand n > 1,

(D4) U'Zg Dty C D forn>1and 1<i < €7

Next we define a sequence {f,} of diffeomorphisms satisfying the conditions: for
everyn > 1

(F1) fn:D — D is a C*-diffeomorphism,
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(F2) DP = fi-Y(D?}) for 1 < i < £* and f£ (D}) = D7,
(F3) fnt+a and f, agree on the complement of Uf=1 D7, ie.

frtluer, ppye = Faluez, prye

i=1

(here E° denotes the complement of E),
(F4) For 1 < i < £® fo|pr is a composition of a rotation and translation such
that fn(pj.) = pt and fa(p}) =pfy, for 1 <i <A™ -1

Figure 2.

Under the above notations we need the following assumption to obtain our de-
sired diffeomorphism.

(A) There exists a constant C > 0 such that for n > 1

up {max{nnzfnﬂ ~ 1|, 1Dk — 111}

~
z € UD;*} <c/e.

i=1

The assumption (A) implies that {f,} is a C*-Cauchy sequence. Thus we have
a limit f : D — D which is called an infinitely renormalizable diffeomorphism.

Obviously K = (),>; Uf;1 D? is a f-invariant Cantor set in D. Our results
which will be made precise later depend heavily on the properties of the set K.

Remark 1. The topological entropy of f|x is zero, i.e. h(f|x) = 0.
Indeed, for m > 0 denote as r,,, (¢, E) the smallest cardinarity of the finite subset
{y1,-+ ,yr} C E satisfying that for z € E there is y; (1 <4 < k) such that

max{|f7(z) - f/(y:)] : 0<j <m -1} <e.



By (D1) - (D4), for € > 0 we can choose N > 0 such that |D}| = 2ry < ¢ for
1<i< ¢V, Thus
ZN
rm(e, K) < rple, U DMy <N

=1

for m > 0. Since the topological entropy of f|x is given by
hflg) = lin(l)IiEm_,oo(l/m) log rm (e, K),

we have h(f|g) < lim._o limy,—o0(1/m)logéN =0. O

Remark 2. f|k is minimal, i.e. for any z € K the orbit O(z) = {f™(z) : n > 0} is
dense in K.
Indeed, since r,, — 0 (n — o0), for € > 0 there is N > 0 such that 2ry < e.

Since K C Uf:l va, for two points z,y € K we have = € Dﬁ and y € Df.\zr for
some % and 5. Thus we have |f"(z) — y| < € since f*(DY) = DY for some n (by
(F2)). This implies the minimality of f|x. O

For our definition we remark that the choice of subdisks D} to n-th stage is
ruled by £" number. Now we can describe one of our results as follows.

Theorem A. Let f : D — D be an infinitely renormalizable diffeomorphism and
K be the Cantor set constructed as above.

If f is of C11¢ then € < dimy(K) where dimy(K) denotes the Hausdorff di-
mension of K. Moreover if f is of C?1¢ then 1+ ¢ < dimg(K).

The converse of Theorem A will be proved for infinitely renormalizable diffeo-
morphisms constructed without the assumption (A). We shall describe it later on.
The following lemma, plays an important role to show Theorem A.

Lemma. Let {D"|n > 1, 1 < i < £} be the subdisks satisfying (D1)-(D4) and
f : D — D be the infinitely renormalizable diffeomorphism. Then there exist a
constant C; > 0 and a sequence of points x,, in Ule D} satisfying

IDa, f = I|l 2 C1/€*  (n21).

If we establish Lemma, then Theorem A is concluded as follows.

Proof of Theorem A. Let C; and {z,} be as in Lemma. Then, for n > 0 there is
1 < i, < £" such that z, € D] . For n > 0 we can take g, € 0D} . We remark
that D2 f = 0 by (F4) and D, f = id by (A). From the mean value theorem we
have that ||D,, f — Dy, f|| < ||D2_fl| - |2n — ¢a]| for some y,, € D} . Thus,

ID2_f|| > ||Ds,, f = Dg, fll/|1&n — gn| > C1/2€%r,. ®

Since f is of C?*¢, there is a constant C > 0 such that ||D2f — D2f|| < Clz — y|°
for z,y € D, and so

C(2rn)° 2 Clyn — aul > |ID f — D3 fll > C1/(2€"rn)

15
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from which we have
ra > (Cy/Caltegn)t/0te)

Forn >1and: with1 < < £" let Df be a disk centered at p? (which is the

center of D?) with radius (C; /621+5£")1/(1+€). Then K' = ,»,(U~; D?) has
the Hausdorff dimension which is calculated as -

dimg(K') = —log£/log(1/)"/(+e) =1 t ¢,
(for the details see Remark 6 described later on) and therefore
dimg(K) > dimg(K') =1 +e¢.

O

Remark 3. Under our definition, no infinitely renormalizable diffeomorphism with
the C? is able to constructed.

Indeed, suppose f is of C3. Let C1, {z,} be as in Lemma and let {i,}, {y.}, {an}
be as in the proof of Theorem A. Then we have (*). Use the mean value theorem.
Then, ||D? f — D2 f|| < ||D?_fI|- |yn — gn| for some z, € D} , from which

ID2 £l > ||D2 § — D2 §|/lyn — aul > ||D2, f|/2rn > C1/(4£7r2).

Take a subsequence {z,;} of {z,} such that lim;_, 2,; = 2 € K. Since D3f =0,
we have lim;_, ||D? f|| =0, and thus

0= lim [[D} f||> lim Cy/(4€%r2).
J—00 J J—00

Since £™io "'12;,-0 > 1 for some jo > 0, we have T, > 1 /V£€"o. Let X denote Lebesgue
measure of R2. Then we have

= XD)> A (UkD:j") = ("o Wrijo > T,

thus contradicting. Remark 3 was proved. O

A C*°-Kupka-Smale diffeomorphism of the sphere with neither sinks or sources
was constructed in [G-S-T]. The main step of it is to obtain an embedding of the
2-disk without using the technique of [B-F] and [F-Y]. Thus the method of [G-S-T]
is justified by Remark 3.

Remark 4. If a C-diffeomorphism f : D — D constructed by Bowen-Franks is of
C'*¢, then ¢ < dimg(K).
Indeed, the construction of an infinitely renormalizable diffeomorphism done in

[B-F] does not require the assumption (A). Therefore Theorem A concludes Remark
4. O

Proof of Lemma. Since f*" (D}) = f£"(D}) = D? for n > 1 (by (F2)), we can find
T, € DT such that
|Ds, 1" — I|| > 1/¢.
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Indeed, from Brouwer’s theorem it follows that f‘"+1 (™) = p" for some p" €
D}t Remark that p" is a periodic point with period £ of Fadll Dr-

For simplicity we fix n > 1 and write D = DP, f=f pr, by = P" and
B=7 (7)) (2<i<0).

Put ¢; = P(iy1)moar — P; for 1 < ¢ < £. Then each of ¢; is non-zero and can be
calculated as

lgsl = / G)ldt (1<i<)

where ¢;(t) = (1 — t)P; + tP(it1)mode- Since g; = f(®;) — P = P(it1)moar — P; for
1 < i </, obviously

Z% (P2 —P1) + (P —P2) + -+ + (Pr — Pr) = (0,0).

Remark that (F — id)(c;(0)) = ¢; and (f — id)(ci(1)) = g(i+1)moas- Then we have
that for 1 <: <4

1
|¢; — q(i+1)moat| < /0 |(De; ey f — I)éi(t)|dt

1
< / 1Decey T = Il - é5(2)dt
= 51[1P ”DC.(t)f I|| - lasl,
from which

sup ||Deieyf — Il 2 |9i — q(i+1ymoacrl/lil-
tef0,1]

17
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Thus, to obtain the conclusion it suffices to show that there is 1 < 7 < £ satisfying

lqi - Q(H—l)modll
|ai|

2 1/¢L. (1)

To do so if () is false, and put |g;,| = max{|g;| |1 < ¢ < £}, then we have that for
1<i<¢

9: — €io] < la1 — g2} + -+~ + lge — a1
<lgl/e+---+|qel/t
S Iqiol‘

Let £ - g;, denotes the sum of £ time of ¢;, (i.e. £-qi, = giy + -+ + gi,)- Since
Zf=1 ¢; = (0,0), we have

|e'qi0| =

£
D ai—L-g
=1

f4
< Zlqi - Qiol < Ie Qiol’
i=1

thus contradicting.
Therefore, for n > 1 there is 7,, € D} such that ||Dz, f&" — I|| > 1/L.
We now are a position to show the lemma. Since ||Dyf|| < 1+ C/L™ for y €

Uf:l D? (by the assumption (A)), by the choice of Z,, € D} we have that for n > 1

-1
1/£<||Ds,, " = 1| < Y |ID5,, £1 = Da, £
1=0
-1 '
< Z I|Dfi(z,)f = Il - || Dz, £*l|
=0
AR | i—1
< Y IDgianf = I [T 11Pss @ Fl
=0 7=0
-1 .
< Y IDgia f = Il - A+ C/E7)
=0
zn
(since ||Dyf]| < 1+ C/€" for y € | ) D})
=1
-1
<e® Y IDgianf — 1,
=0

from which we can find 0 <32y < £™ — 1 such that

1
D gir (z,)f — I|| > cognt 1



Putting =, = f* (&,) and C; = (¢°¢)”", we have the conclusion of the lemma. O

For a question of whether the converse of Theorem A is true, we can give an
answer for infinitely renormalizable diffeomorphisms constructed concretely as fol-
lows.

Let D and £ be as before and take a finite sequence {p; |1 < i < £} of points
belonging to D. Define a sequence {D; |1 < ¢ < £} of subdisks included in D such
that

(D’1) for i, D; is a disk centered at p; with radius 0 < r < 1/2,

(D’2) DinDj =g fori #j,

(D,3) Uf:l Di - D.

We consider an C-isotopy h; : [0, 1] x R? — R? satisfying

(H1) ho(z) = z for z € R? and hy(D) = D ,hy(D°) = D€ for t € [0,1],

(H2) h]_(D,) = Di+1 for 1 S 1 S £—1 and h]_(Dl) = Dl,

(H3) for a fixed & > 0 and ¢ € [0, 1], h¢|pe is a rotation of the angle to which is
centered at the origin of R2,

(H4) fix 1 <: < ¥, and for t € [0,1], h¢|p, is a composition of a translation and
a rotation of the angle ta/¢ which is centered at p;.

By using the isotopy h; : [0,1] x R2 — R? we can define a C* diffeomorphism
g(i,N): D — D by

g(, N) = hyno }1«(1'_1)/N—1 (NeN,1<i<N).
Then it follows that ’
hy =g(N,N)og(N—1,N)o---g(1,N).

From now on we construct a sequence {D?*|n > 1, 1 < i < £} of subdisks of D
satisfying (D1)-(D4) and a sequence {f,} of C°°-diffeomorphisms of D satisfying
(F1)-(F4). These constructions are inductively done as follows.

First put f; = hy. Obviously f; : D — D is a C°°-diffeomorphism. We write
D} = D; and p} = p; for 1 <1 < £. Then

D} =fiY (DY (1<i<e), fHDY) =D

By (H2) and (H4) we have that fi(p}) = p},; (1 <i < £-1)and fL(p}) = pl,
which satisfy conditions (F2) and (F4).
Next put

¢ pt
fz(-’E): { fl(.’ll) (w¢Ui=1D1)

r- g(’L,Z) ((:12 - p:‘)/?") +p%i+1)modl ((E € D'})

where

1+1 for1<:<f-1

1 for s = L.

Define a map B : D — D} by Bz2(z) = r -z + p}. Then D? = B,(D7) is a disk with
radius rZ. Write

(i + 1)modt = {

D} =j7Y(D}) (2<i< €%

[
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and denote as p? the center of D? for 1 < i < /2.
Obviously, f : D — D is a C*°-diffeomorphism and for z € D} (1 <i < ¥¢)

fg(x) =r'g(£7£)°g(£"‘ l,f)O“'Og(l,e) {(m’"pzl)/r} +p%
=r-hy ((x—p})/r) +p;.

Thus the sequence {D? |1 < i < £2} satisfies the conditions (D1)-(D4), and the
diffeomorphism f; : D — D satisfies the conditions (F1)-(F4).

Continuing this process we obtain a sequence {f, |n > 1} of C*°-diffeomorphisms
of D satisfying

fosla) = { fn(@) (z ¢ Uiz, DY)
m - g(5,%) (& = PP)/™) + PPy 1ymoarn (% € DP)
where
i+1 (1<i<em-1)
1 (i =€),

and a sequence {D?|n > 1, 1 < ¢ < £"} of subdisks centered at p! with radius r®
satisfying

(¢ + 1)mode™ = {

DI* = fia (D)
Dyt =f3i(D1)  (2<i<et)
where fnt1 : DF' — D} is defined by Bnyi(z) = 7 - (¢ — p" 1) + pP.

The sequence {D}|n > 1, 1 < i < £"} satisfies (D1)-(D4), and the sequence
{f.} satisfies (F1)-(F4).

Remark 5. We can check that the sequence {f,} constructed concretely as above
satisfies (A).
Indeed, by Lemma 3 of [F-Y], there is C' > 0 such that for N € Nand z € D
D29, N) — I < C'/N.
Thus, forc € D? (1<: <", n>1)
1D fats = I = IDf (o ppy rn} 93, £7) = 11| < C'/27.
By the same way we can find C" > 0 such that for N € Nand z € D
1Dag(i, N) ™" — I|| < C"/N,
and forz € D (1<i<{™ n>1)
1De foi — Il < C"/ 27,

which shows (A). O

20
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Therefore we see that the class of infinitely renormalizable diffeomorphisms con-
structed under the first definition contains that of diffeomorphisms done under the
second definition.

By Remark 5 the sequence {f,} is a C'-Cauchy sequence, and so its limit f :
D — D is an infinite renormalizable diffeomorphism constructed by using isotopys.

The set K1 =, Uf:l D? is a Cantor set and f-invariant. For the diffeomor-
phism we have the following second result of this paper.

Theorem B. Let f : D — D be an infinitely renormalizable diffeomorphism con-
structed by using isotopys and K, be the Cantor set related to f.
(1) Suppose that 0 < dimg(K1) < 1. Then f is of C'*¢ if and only if € <
dzmH(Kl)
(2) Suppose that 1 < dimg(K1). Then f is of C2, and moreover f is of C***
if and only if e +1 < dimg(K7).

Remark 6. The Hausdorff dimension of K; is —log£/logr.
For the proof put s = —log £/ logr. Then Hausdorff measure of K 1 is calculated
as

H* (K1) = lim (inf {Z |U; 0 K;|® : {U;} is a §-cover of D})
- i=1
‘eﬂ.
< limp—oo Z |K1nDP|* < 2811m,,_,°°(e P =29
i=1

Thus we have dimg(K;) < s. To see dimg(K;) > s define a sequence space
I=T12,{1,--- ,£}, and let {1,--- , £} have the discrete topology. Obviously I is a
compact metric space under the product topology. For k > 1 denote as

Ly = {01, sk @, +) 1155 <8, § 2 b+ 1}
a subset of I with initial terms (iy, - - ,ix), and define a set function p of I by
ks

”’(Iil o aik) =r
Because of »

£

£
ll'(Iil,'“ ,'l:k) = Tks = rks(’e * :,-s) = Z(rk+1)s = Z !‘I'(Iily"' ,ikvj)
=1

shows that u is a Borel probability measure of I.
For k > 1 we write J;, = {(i1, -+ ,4)| 1 < ¢; < £, 1 < j < k} and for convenience

Dn,iz, D‘L1+f vigtefR—1g, ((il’i% te ’Zk) € Jk)
Since, for 1 = (31, - ,ik), i = (3, i) € J
Di’ kg1 C Di

Dﬂ]D,-::Qifi;éﬁ
UJD -—UJkD



(the notation z,%r4; means that 4,451 = (21, %k, %k+1)), We have that
{Df|1 <i <}y ={D;, .. 0|1, - ,ix) € Ji}.
For (i3,42,--) € I there exists a unique point Ziy iy, € Ky such that ; ;, .. =

Ng=1Diy - ir,- Thus, by h((41,%2,-+)) = &;, 4,,... a continuous bijection h : I — K,
is defined, and thus for any ball B

W(k'B) = p(h= (B N Ky))
= ({32, - )iy ig,. € K1 BY}) (1)
Let B be an ball of radius u < 1 and let ko = min{k > O|r* < u}. Then we have
r - u < radius of D;, ... kg S Uy
and the cardinarity of
Q1 = {11, ,4ko) € Jko| Dy . 4, N B # @}

is equal to 9/4 (see Lemma 9.2 of [F]). Thus,

u(h™*B) < p({J L, iay)  (from (t1))
&
<Y orker <3 ur < (9/4)w,
Q1 Q1

from which we have 1*(K;) > 0 (see Mass distribution principle [F]), and therefore
dimg(Ky) > 5. O

Remark 7. The C? diffeomorphism f : D — D constructed in [F-Y] belongs to the
class of infinitely renormalizable diffeomorphisms defined by using isotopys. Thus
the example of Franks-Young satisfies Theorem B.

Proof of Theorem B. Proof of (1) is very similar to that of (2). Thus we give the
proof of (2) and will be omit it of (1).
By Remark 6 we know that dimy(K;) = —log£/logr, and so write

s = —log4/logr.

We claim that C*°-diffeomorphisms g(i,ﬂ") have the property that for n > 1 and
1 <2 < £" there is C' > 0 satisfying

IDZg(, )| < C/e

ID3g(i,¢™)|| < C /e €9

This is obtained by applying Lemma 3 of [F-Y]. From the construction of f it
n+41
follows that for & € D} \ Uiy D7) andn > 1,1 <i < £

f(@) = fata(@) =" - 9(, %) (= = P7)/7™) + Bl 1)moden

22



and thus
Dif = Difppa=71""" D?(w—pn)/rn}g(i’zn)
Dsf D fn+1 =r —in D{(z_pn)/rn}g(z o )
We use (f) and have then
ID3FIl < C/(r0)", |ID3fII < C/(FPO)™. (1)

Therefore we can conclude that f is of C?, since r£ > 1.

Next we prove that if ¢ + 1 < dimg(K;) then f is of C?T¢. To do so we divid
into three parts the proof. Pick up points z,y from D.

Part (a): If z,y € K, then we have D2f = D2f = 0. Obviously

|ID2f - D2f||=0< |z —y|*""

Part (b): If there exist n > 1 and 1 < ¢ < £ such that z,y € D? \(Uf:f D;-H'z),
by the mean value theorem

ID2f — D2 f|| = || D2 fnt2 — D2 friell < sup 1D frell - |2 — yl.
zeD}

Since dimg(K7) < 2, we have £r? < 1 and so by (it)

o, ID3 fus2ll < C/(r20)"*,

from which

ID2f = D2fII < (E/(20)™*) |2 = y*~ - | — "™

A T y|2_s -1
< 2 —y°
< (61) Gag st

Since r°f =1 and |z — y| < r™, we have (rsle)n %’—;Jz—s < 1 and therefore

ID2f - D2l < (C/r2e) Jo — yl" ™. (119

Part (c):When the points z,y do not satisfy (a) and (b), we have z ¢ K; or
z ¢ K;. Define the integer

[n.+1 [n+1

ng = min n>0m€UD”\(UDn+1), oryELJD"\(LJDn+1 )

=1 i=1

and for the case when z € Ut S DM\ (Ul o D;“"H) it suffices to show (11 1). In

fact it follows that = € D::" for some 1 < ¢g < £"°. The point y satisfies one of the
two cases
(C-1) y € D;® for some 1 <43 < £ with i3 # 4o,

ln0+2 n
(C-2) ye D n(Uj=; Dj**).
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Figure 5 (Case (C-1)). Figure 6 (Case (C-2)).

Let h; : [0,1] x R? — R? be the C*-isotopy and {D; |1 < i < £} be the subdisks
appeared in the construction of f. We define

5= trer[%n {min {d(h:(D;), ht(D;)), d(D°, he(D;))| 1 < i # j < £}}.

Obviously, § > 0. The shadow parts of Figures 5 and 6 is a copy shrmkmg the
shadow part of the following Flgure

Figure 7.

The Figures 5 and 6 made r™ ™! and ™! times as large respectively. Thus we
have
srrett <z —y).



In any case of (C-1) and (C-2) we have by using (}}) that

\D35 — DifIl < ID2 £l + 11 Dy 7|

« 2 C
< ng < no+1lys—1
<2007 < 2 (™)
2é s—1
1 lz —y|" .

Therefore we conclude that f is of C?*¢ when ¢ < s —1 = dimy(K;) — 1. The part
of ”only if” was proved. The proof of ”if part” is clear by Theorem A. [

[B-F]

[B-G-L-T]

[F]

[F-Y]

[G-S-T]

[S-W]
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