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Abstract. The paper presents a study of semicontinuity of set-valued maps.
The Berge definitions of upper and lower semicontinuities of set-valued maps are
improved into weaker and slightly strong conditions, respectively, which have
a theoretically conformable duality of semicontinuity of set-valued maps. The
improved definitions of upper and lower semicontinuities are defined in terms
of both neighborhoods and sequences in a metric space. As the result of this
research, we understand the reason why certain conditions are needed to guar-
antee the equivalence between Berge’s upper semicontinuity and Hogan’s upper
semicontinuity.
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1. Introduction

A set-valued map ( $\mathrm{p}_{\mathrm{o}\mathrm{i}-\mathrm{t}}\mathrm{n}\mathrm{t}\mathrm{o}$-set map or multifunction) from a set $X$ into a set $\mathrm{Y}$ is a map
which associates a subset of $\mathrm{Y}$ with each point of $X$ . The notion of semicontinuity for a set-

valued map is very important in the area of optimization as well as in other fields of applied
mathematics. In particular, upper semicontinuity of a set-valued map is indispensable for
fixed-point theorems and stability theory in mathematical programming.

The concepts of semicontinuous maps have been introduced in 1932 by G. Bouligand and
K. Kuratowski; see [1] and the references therein. There are various different definitions of
upper semicontinuity and lower semicontinuity so far, and they are classified into two cate-

gories; those defined in terms of neighborhoods and those defined in terms of sequences; see
[1, 2, 3, 4] and $[6, 7]$ . They are not always equivalent with each other without any conditions.
Nevertheless, upper semicontinuity is considered to be the dual concept of lower semiconti-
nuity in general. This is an incomplete point for theoretical duality, because Berge’s upper
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semicontinuity and Hogan’s upper semicontinuity are not coincident and Berge’s lower semi-
continuity and Hogan’s lower semicontinuity are coincident in a metric space $[3, 4]$ although
those upper semicontinuities are considered to be the dual concepts of those lower semi-
continuities, respectively. Hogan’s upper semicontinuity and lower semicontinuity are called
closed and open, and defined in terms of sequences in his paper [4], respectively. This paper
points out the reason which causes the discrepancy between Berge’s upper semicontinuity
and Hogan’s upper semicontinuity.

The purpose of this paper is to extend classical concepts of upper semicontinuity of set-
valued maps and then to give a theoretical conformable duality between upper semicontinuity
and lower semicontinuity. Also, this paper gives, in terms of sequences, equivalent definitions
for the improved definitions of upper semicontinuity and lower semicontinuity.

The organization of this paper is given as follows. In Section 2, we points out the
difference between Berge’s upper semicontinuity and Hogan’s upper semicontinuity. This
difference is based on both the existence of pathological neighborhoods including an image set
of a set-valued map and the possibility of an unbounded graph of a set-valued map. If a set-
valued map $F$ is uniformly compact near $x$ and if $F$ is closed (Hogan’s upper semicontinuous)
at $x$ , then $F$ is (Berge’s) upper semicontinuous at $x$ . Conversely, if $F(x)$ is a closed set and if
$F$ is (Berge’s) upper semicontinuous at $x$ , then $F$ is closed (Hogan’s upper semicontinuous) at
$x$ . Those two upper semicontinuities are extended into weaker notions, and then relationship
among all of them is given. Moreover, we give an equivalent definition for the weakest one in
the extended upper semicontinuities in terms of sequences. In Section 3, we observe improved
notions of Berge’s lower semicontinuity and Hogan’s lower semicontinuity corresponding to
extended upper semicontinuities, and then we give a theoretical conformable duality between
upper semicontinuity and lower semicontinuity. These improved semicontinuities are defined
in terms of both neighborhoods and sequences in a metric space.

2. Extensions of Upper Semicontinuity of Set-Valued
Maps

Let $X$ and $\mathrm{Y}$ be two topological spaces, and $F$ : $Xarrow 2^{\mathrm{Y}}$ . The definitions of Berge’s semicon-
tinuities are meaningful in any topological spaces $X$ and $\mathrm{Y}$ , but Hogan’s semicontinuities are
meaningful in any spaces $X$ and $\mathrm{Y}$ where the concept of convergence is defined in terms of
nets or sequences. Since notions of semicontinuity having a theoretical conformable duality
between upper semicontinuity and lower semicontinuity are defined in terms of open balls
with radius $\xi>0$ , we shall assume that $\mathrm{Y}$ is a metric space in those definitions.

First, we begin with classical Berge’s semicontinuities of set-valued maps.

Definition 2.1. (Berge’s u.s.c.) A set-valued map $F$ : $Xarrow 2^{Y}$ is said to be upper
semicontinuous (u.s.c. for short) at $x_{0}$ if for any open set $U$ with $F(X_{0})\subseteq U$ , there exists a
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neighborhood $V$ of $x_{0}$ such that $F(x)\subset U$ for all $x\in V$ .

Definition 2.2. (Berge’s l.s.c.) A set-valued map $F:Xarrow 2^{\mathrm{Y}}$ is said to be lower semi-
continuous (l.s.c. for short) at $x_{0}$ if for any open set $U$ with $F(x\mathrm{o})\cap U\neq\emptyset$ , there exists a
neighborhood $V$ of $x_{0}$ such that $F(x)\cap U\neq\emptyset$ for all $x\in V$ .

The notions of upper semicontinuity and lower semicontinuity are distinct and not equiva-
lent in general except on residual sets in a complete separable metric space $\mathrm{Y}$ ([1, Th.1.4.13]).
We provide the following example.

Example 2.1. Let $X=\mathrm{Y}--R$ and $F_{1},$ $F_{2}$ set-valued maps from $R$ into $2^{R}$ defined by

$F_{1}(x):=\{$
$\{y\in R|0\leq y\leq 1\}$ for $x<0$ ;
$\{y\in R|0\leq y\leq x+2\}$ for $x\geq 0$ ,

$F_{2}(x):=\{$
$\{y\in R|0\leq y<1\}$ for $x\leq 0$ ;
$\{y\in R|0\leq y<x+2\}$ for $x>0$ .

One can verify that $F_{1}$ is u.s.c. at $x=0$ but not l.s.c. at the point, and that $F_{2}$ is l.s.c. at
$x=0$ but not u.s.c. at the point.

In 1973, Hogan [4] gave an alternative to the Berge’s semicontinuities of set-valued maps
in the setting of open and closed maps. He also presented the relationship between Berge’s
semicontinuities and his ones; see $[3, 4]$ .

Definition 2.3. (Hogan’s u.s.c.) Let $X$ and $\mathrm{Y}$ be two metric spaces. A set-valued map
$F$ : $Xarrow 2^{\mathrm{Y}}$ is said to be closed at $x_{0}$ if for any sequences $\{x_{n}\}$ with $x_{n}arrow x_{0}$ and $\{y_{n}\}$ with
$y_{n}\in F(x_{n}),$ $y_{n}arrow y_{0}$ for some $y_{0}\in \mathrm{Y}$ implies that $y_{0}\in F(x_{0})$ .

Definition 2.4. (Hogan’s l.s.c.) Let $X$ and $\mathrm{Y}$ be two metric spaces. A set-valued map
$F:Xarrow 2^{Y}$ is said to be open at $x_{0}$ if for any sequence $\{x_{n}\}$ with $x_{n}arrow x_{0}$ and $y_{0}\in F(x_{0})$ ,
there exists a sequence $\{y_{n}\}$ such that $y_{n}\in F(x_{n})$ and $y_{n}arrow y_{0}$ (i.e., $d_{Y}(y_{\lambda},$ $y\mathrm{o})arrow 0$ ).

The map $F_{1}$ in Example 2.1. is closed at $x=0$ but not open at the point, and the map
$F_{2}$ in Example 2.1. is open at $x=0$ but not closed at the point. As known from this, the no-
tions of closedness and openness have meanings similar to upper and lower semicontinuities,
respectively. Actually, openness and lower semicontinuity are coincident, but closedness and
upper semicontinuity are not equivalent; see [4, Th.l], [1, p.39], and the following example.

Example 2.2. Let $X=Y=R$ and $F_{3},$ $F_{4}$ set-valued maps from $R$ into $2^{R}$ defined by

$F_{3}(x):=\{y\in R|0\leq y<1\}$ ,

$F_{4}(x):=\{$
$\{y\in R|0\leq y\leq 1\}$ for $x\leq 0$ ;
$\{y\in R|\frac{1}{x}\leq y\leq\frac{1}{x}+1\}$ for $x>0$ .

One can verify that $F_{3}$ is u.s.c. at $x=0$ but not closed at the point, and that $F_{4}$ is closed at
$x=0$ but not u.s.c. at the point.
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We shall observe the reason why this discrepancy is caused although upper semicontinuity
and closedness are considered to be the dual concepts of lower semicontinuity and openness,
respectively. To this end, we extend the two notions into weaker ones, and then present the
relationship among all of them.

Definition 2.5. (w-u.s. $\mathrm{c}.$ ) A set-valued map $F$ : $Xarrow 2^{Y}$ is said to be weakly upper
semicontinuous (w-u.s. $\mathrm{c}$ . for short) at $x_{0}$ if for any open set $U$ with cl $F(x_{0})\subset U$ , there
exists a neighborhood $V$ of $x_{0}$ such that $F(x)\subset U$ for all $x\in V$ .

Of course, an upper semicontinuous map is also weakly upper semicontinuous. Con-
versely, if $F$ is weakly upper semicontinuous at $x_{0}$ and $F(x_{0})$ is a closed set, then it is upper
semicontinuous at the point. Weakly upper semicontinuity is a slight extension of upper
semicontinuity, which takes in some pathological non-u.s. $\mathrm{c}$ . maps.

Example 2.3. Let $X=\mathrm{Y}=R$ and $F_{5}$ a set-valued map from $R$ into $2^{R}$ defined by

$F_{5}(x):=\{$
$\{y\in R|0\leq y<1\}$ for $x\leq 0$ ;
$\{y\in R|0\leq y<x+1\}$ for $x>0$ .

One can verify that $F_{5}$ is weakly u.s.c. at $x=0$ but not u.s.c. at the point.

However, there is another example of a pathological set-valued map which is similar to
an u.s.c. map in image values but not u.s.c.

Example 2.4. Let $X=R_{+},$ $\mathrm{Y}=R^{2}$ , and $F_{6}$ a set-valued map from $R_{+}$ into $2^{R}2$ defined by

$F_{6}(x):= \{(_{ZZ}1,2)\in R^{2}|z_{2}\geq\frac{1}{z_{1}+x},$ $z_{1}\geq 0\}$ .

Consider an open set
$U:= \{(z_{1}, z_{2})\in R^{2}|z_{2}>\frac{1}{2z_{1}},$ $z_{1}\geq 0\}$ ,

which includes the set cl $F_{6}(0)$ but does not include any sets $F_{6}(x)$ for $x>0$ . This shows
that $F_{6}$ is not weakly u.s.c. at $x=0$ although it is similar to an u.s.c. map in image values.

To overcome this incompleteness, we introduce a more weaker notion of upper semicon-
tinuity of set-valued maps. It is presented also in [1, p.39] when $F(x_{0})$ is a compact set in
Y.

Definition 2.6. (equally w-u.s. $\mathrm{c}.$ ) Let $\mathrm{Y}$ be a metric space. A set-valued map $F:Xarrow$

$2^{Y}$ is said to be equally weak upper semicontinuous (equally w-u.s. $\mathrm{c}$ . for short) at $x_{0}$ if for
any $\epsilon>0$ there exists a neighborhood $V$ of $x_{0}$ such that $F(x)\subset B_{Y}(F(x_{0}), \mathit{6})$ for all $x\in V$ ,
where $B_{Y}(F(x_{0),)}6:=\{y\in \mathrm{Y}|d_{Y}(y, F(x\mathrm{o}))<\epsilon\}$ .

Theorem 2.1. Let $X$ and $\mathrm{Y}$ be a topological space and a metric space, respectively. If a
set-valued map $F$ from $X$ into $2^{Y}$ is w-u.s. $\mathrm{c}.$ , then it is also equally w-u.s. $\mathrm{c}$ . Conversely, if
$F$ is equally w-u.s. $\mathrm{c}$ . at $x_{0}$ and cl $F(x_{0})$ is a compact set, then it is w-u.s. $\mathrm{c}$ . at the point.
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Proof. The first part is obvious. We prove only the second part. Let $F$ be equally w-u.s. $\mathrm{c}$ .
at $x_{0}$ and cl $F(x\mathrm{o})$ a compact set, and let $U$ be an open set including cl $F(x_{0})$ . For each
$y\in \mathrm{c}1F(x\mathrm{o})$ , there is $\epsilon(y)>0$ such that $B_{\mathrm{Y}}(y, \epsilon(y))\subset U$ , and hence

cl $F(x0)\subset$ $\cup$ $B_{Y}(y, \epsilon(y)/2)\subset U$.
$y\in \mathrm{c}1F(x0)$

Since cl $F(x_{0})$ is compact, there exist $y_{1},$ $\ldots,$
$y_{m}\in \mathrm{c}1F(x\mathrm{o})$ such that

cl $F(x_{0)} \subset\bigcup_{i=1}^{m}B_{Y}(y_{i}, \mathcal{E}(yi)/2)$ .

Let $\epsilon^{*}:=\min_{i=1,\ldots,m}\epsilon(yi)>0$ , then there is a neighborhood $V$ of $x_{0}$ such that $F(x)\subset$

$B_{Y}(F(x\mathrm{o}), \mathcal{E}^{*}/2)$ for all $x\in V$ . Therefore, we have that $F(x)\subset U$ for all $x\in V$ . In

fact, let $z\in F(x)$ , then it follows from $z\in B_{Y}(F(x\mathrm{o}), \mathit{6}^{*}/2)$ that there exists $z^{*}\in F(x_{0})$

such that $d_{Y}(z, z^{*})<\epsilon^{*}/2$ . Since $z^{*}\in B_{\mathrm{Y}}(y_{i_{0}}, \mathcal{E}(y_{i_{0}})/2)$ for some $i_{0}$ , we have $d_{Y}(z, y_{i}\mathrm{o})\leq$

$d_{Y}(Z, z^{*})+d_{Y}(z^{*}, y_{i}\mathrm{o})<\epsilon(y_{i_{0}})$ , and hence $z\in B_{Y}(y_{i_{0}}, \epsilon(yi0))\subset U$ . This completes the proof.

I
As known from this theorem, whenever $\mathrm{Y}$ is a metric space and $F(x_{0})$ is a compact set,

three notions of u.s.c., w-u.s.c., and equally w-u.s. $\mathrm{c}$ . at $x_{0}$ are coincident with each other.

When $Y$ is a topological vector space or more generally a topological group, the notion

of equally w-u.s. $\mathrm{c}$ . is coincident with the following one.

Definition 2.7. (properly u.s.c.) Let $Y$ be a topological vector space. A set-valued map
$F$ : $Xarrow 2^{\mathrm{Y}}$ is said to be properly upper semicontinuous (p-u.s. $\mathrm{c}$ . for short) at $x_{0}$ if for

any open neighborhood $G$ of the origin $\theta$ , there exists a neighborhood $V$ of $x_{0}$ such that
$F(x)\subset F(x\mathrm{o})+G$ for all $x\in V$ .

Next, we provide another definition of equally w-u.s. $\mathrm{c}$ . in terms of nets (sequences).

Definition 2.8. (equally w-u.s. $\mathrm{c}.$ ) Let $Y$ be a metric space. A set-valued map $F:Xarrow$

$2^{Y}$ is said to be equally w-u.s. $\mathrm{c}$ . at $x_{0}$ if for any nets $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and $\{y_{\lambda}\}$ with
$y_{\lambda}\in F(x_{\lambda})$ , there exists a net (sequence) $\{z_{\lambda}\}$ such that $z_{\lambda}\in F(x\mathrm{o})$ and $d_{Y}(z_{\lambda}, y_{\lambda})arrow \mathrm{O}$ .

Theorem 2.2. Definitions 2.6. and 2.8. are coincident.

Proof. Assume that $F$ is equally w-u.s. $\mathrm{c}$ . at $x_{0}$ defined by Definition 2.6.. Let $\{x_{\lambda}\}$ with

$x_{\lambda}arrow x_{0}$ and $\{y_{\lambda}\}$ with $y_{\lambda}\in F(x_{\lambda})$ be nets in $X$ and $\mathrm{Y}$ , respectively. By the assumption, for
$\epsilon=1/n,$ $n=1,2,$ $\ldots$ , there exists a neighborhood $V_{n}$ of $x_{0}$ such that $F(x)\subset B_{Y}(F(X_{0}), 1/n)$

for all $x\in V_{n}$ . Since $x_{\lambda}arrow x_{0}$ , for each $n=1,2,$ $\ldots$ there exists $\lambda_{n}$ such that $xx\in V_{n}$ for

all $\lambda\geq\lambda_{n}$ , and hence $y_{\lambda}\in F(x_{\lambda})\subset B_{\mathrm{Y}}(F(X_{0}), 1/n)$ for all $\lambda\geq\lambda_{n}$ . This means that
$d_{Y}(y_{\lambda}, F(x\mathrm{o}))<1/n$ for all $\lambda\geq\lambda_{n}$ . Therefore, we can take a net $\{z_{\lambda}\}\subset F(x_{0})$ such that
$d_{\mathrm{Y}}(y_{\lambda,\lambda}Z)arrow 0$ .
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Conversely, assume that $F$ is equally w-u.s. $\mathrm{c}$ . at $x_{0}$ defined by Definition 2.8.. Sup-
pose to the contrary that there are $\epsilon_{0}>0$ and a net $\{x_{\lambda}\}$ in $X$ such that $x_{\lambda}arrow x_{0}$ and
$F(x_{\lambda})\not\subset B_{Y}(F(x_{0}), \epsilon 0)$ , which implies that there exists a net $\{y_{\lambda}\}$ such that $y_{\lambda}\in F(x_{\lambda})$ and
$d_{Y}(y_{\lambda}, F(x\mathrm{o}))\geq\epsilon_{0}$ . By the assumption, we can take another net $\{z_{\lambda}\}\subset F(x\mathrm{o})$ such that
$d_{Y}(y_{\lambda}, z_{\lambda})arrow \mathrm{O}$ , which is a contradiction to $d_{Y}(y_{\lambda}, F(x\mathrm{o}))\geq\epsilon_{0}$ . This completes the proof. I

Now, we turn to the discrepancy between upper semicontinuity and closedness of set-
valued maps. In [4, Th.3] and [3], uniformly compactness near $x_{0}$ guarantees the coincidence
between upper semicontinuity and closedness at the point as follows: if $F$ is uniformly
compact near $x_{0}$ , i.e., there is a neighborhood $V$ of $x_{0}$ such that the closure of the set
$\bigcup_{x\in V}p(x)$ is compact, then $F$ is closed at $x_{0}$ if and only if $F(x_{0})$ is compact and $F$ is u.s.c.
at the point. To observe this, we extend Hogan’s closedness in Definition 2.3..

Definition 2.9. Let $X$ and $\mathrm{Y}$ be two metric spaces. A set-valued map $F:Xarrow 2^{Y}$ is said
to be weakly closed ( $\mathrm{w}$-closed for short) at $x_{0}$ if for any sequence $\{x_{n}\}$ with $x_{n}arrow x_{0}$ and
$\{y_{n}\}$ with $y_{n}\in F(x_{n}),$ $ynarrow y_{0}$ for some $y_{0}\in \mathrm{Y}$ implies that $y_{0}\in \mathrm{c}1F(x_{0})$ .

Remark 2.1. This definition is a slight extension of closedness, and a closed set-valued map
is also $\mathrm{w}$-closed. Conversely, if $F$ is $\mathrm{w}$-closed at $x_{0}$ and $F(x_{0})$ is a closed set, then it is closed
at the point. Moreover, we can verify, by using Definition 2.8. in terms of sequences, that
any equally w-u.s. $\mathrm{c}$ . set-valued map is $\mathrm{w}$-closed, and hence any u.s.c. map is also w-closed.
If $F(x\mathrm{o})$ is a closed set, then upper semicontinuity implies closedness.

Conversely, we can verify that closedness at $x_{0}$ implies upper semicontinuity at the point
if the set-valued map is uniformly compact near $x_{0}$ ; see [4, Th.3]. Similarly, any w-closed
map is also w-u.s. $\mathrm{c}$ . under the uniformly compactness, and therefore the three notions of
weakly upper semicontinuity, equally weak upper semicontinuity, and weakly closedness at
$x_{0}$ are equivalent with each other whenever the set-valued map is uniformly compact near
the point.

Remark 2.2. We can verify that if a set-valued map $F$ is closed and w-u.s. $\mathrm{c}$ . at $x_{0}$ , then
$F$ is u.s.c. at the point. Actually, the graph of $F$ is closed by [4, Th.2], and hence $F$ is a
closed-valued map, i.e., $F(x_{0})$ is a closed set. Also, the maps $F_{3}$ in Example 2.2. and $F_{5}$ in
Example 2.3. are $\mathrm{w}$-closed and equally w-u.s. $\mathrm{c}$ . at $x=0$ but not closed at the point. On the
other hand, the map $F_{4}$ in Example 2.2. is closed at $x_{0}$ but not equally w-u.s. $\mathrm{c}$ . at the point,
and the map $F_{6}$ in Example 2.4. is closed and equally w-u.s. $\mathrm{c}$ . but not w-u.s. $\mathrm{c}$ . at the point.
Moreover, Example 2.6. shows the existence of a set-valued map which is equally w-u.s. $\mathrm{c}$ .
but neither closed nor w-u.s. $\mathrm{c}$ .

Thus, the notion of weakly closedness of set-valued maps is a considerable large class of
maps similar to upper semicontinuous maps.

6



Figure 1: Relationship among Various Upper Semicontinuities of Set-Valued
Maps.

Example 2.5. Let $X=\mathrm{Y}=R$ and $F_{7}$ a set-valued map from $R$ into $2^{R}$ defined by

$F_{7}(x):=\{$

$\{y\in R|0\leq y\leq 1\}$ for $x<0$ ;
$\{y\in R|0\leq y<1\}$ for $x=0$ ;
$\{y\in R|\frac{1}{x}\leq y\leq\frac{1}{x}+1\}$ for $x>0$ .

One can verify that $F_{7}$ is $\mathrm{w}$-closed at $x=0$ but neither closed nor equally w-u.s. $\mathrm{c}$ . at the
point.

Example 2.6. Let $X=R_{+},$ $\mathrm{Y}=R^{2}$ , and $F_{8}$ a set-valued map from $R_{+}$ into $2^{R}2$ defined by

$F_{8}(x):= \{(z_{1}, z_{2})\in R^{2}|z_{2}>\frac{1}{z_{1}+x},$ $z_{1}\geq 0\}$ .

One can verify that $F_{8}$ is equally w-u.s. $\mathrm{c}$ . at $x=0$ but neither closed nor w-u.s. $\mathrm{c}$ . at the
point.

We conclude this chapter with an illustration of the inclusion structure shown in Figure 1
where the number stands for that of each set-valued map in Examples 2.2. to 2.6..
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3. Theoretically Duality between Upper Semiconti-
nuity and Lower Semicontinuity

We shall consider the possibility of extension of Berge’s lower semicontinuity and Hogan’s
lower semicontinuity corresponding to the extended upper semicontinuities in Section 2.

First, we begin with Berge’s lower semicontinuity. Let $X$ and $\mathrm{Y}$ be two topological spaces,
and $F$ : $Xarrow 2^{Y}$ . Since conditions $F(x_{0})\cap U\neq\emptyset$ and cl $F(x\mathrm{o})\cap U\neq\emptyset$ are coincident
for each open set $U\subset \mathrm{Y}$ , we can not extend lower semicontinuity into weaker notions in a
similar way to that of Section 2. Then, we provide an improve notion of lower semicontinuity
corresponding to equally weak upper semicontinuity in Definition 2.6.. The improved lower
semicontinuity is precisely the dual concept of equally weak upper semicontinuity, and also
stronger than lower semicontinuity.

Definition 3.1. (equally w-l.s. $\mathrm{c}.$ ) Let $Y$ be a metric space. A set-valued map $F$ : $Xarrow 2^{\mathrm{Y}}$

is said to be equally weak lower semicontinuous (equally w-l.s. $\mathrm{c}$ . for short) at $x_{0}$ if for any
$\epsilon>0$ there exists a neighborhood $V$ of $x_{0}$ such that $F(x_{0})\subset B_{Y}(F(x), \epsilon)$ for all $x\in V$ .

Theorem 3.1. Let $X$ and $\mathrm{Y}$ be a topological space and a metric space, respectively. If a
set-valued map $F$ from $X$ into $2^{Y}$ is equally w-l.s. $\mathrm{c}.$ , then it is also l.s.c. Conversely, if $F$ is
l.s.c. at $x_{0}$ and cl $F(x_{0})$ is a compact set, then it is equally w-l.s. $\mathrm{c}$ . at the point.

Proof. To prove the first part, let $U$ be an open set satisfying $F(x_{0})\cap U\neq\emptyset$ . Suppose
to the contrary that there is a net $\{x_{\lambda}\}$ in $X$ such that $x_{\lambda}arrow x_{0}$ and $F(x_{\lambda})\cap U=\emptyset$ .
Hence there exist a vector $y_{0}\in F(x_{0})$ and a scalar $\epsilon_{0}>0$ such that $B_{Y}(y_{0,\mathit{6}0})\subset U$ , and
so $y_{0}\not\in B_{Y}(F(x_{\lambda}), \epsilon 0)$ . By the assumption, there exists a neighborhood $V$ of $x_{0}$ such that
$F(x\mathrm{o})\subset B_{Y}(F(x), \epsilon_{0})$ for all $x\in V$ . Since $x_{\lambda}arrow x_{0}$ , there exists $\lambda_{0}$ such that $x_{\lambda}\in V$ for
all $\lambda\geq\lambda_{0}$ , and hence $F(x_{0})\subset B_{\mathrm{Y}}(F(x_{\lambda}),$ $\epsilon_{0)}$ for all $\lambda\geq\lambda_{0}$ , which is a contradiction to
$y_{0}\not\in B_{Y}(F(x_{\lambda}), \epsilon 0)$ .

Next, we prove the second part. Let $\epsilon>0$ , and then

cl $F(x\mathrm{o})\subset$ $\cup$ $B_{Y}(y, \epsilon/2)$ .
$y\in \mathrm{c}1_{F(}x_{0})$

Since cl $F(x\mathrm{o})$ is a compact set, there exist $y_{1},$
$\ldots,$

$y_{m}\in \mathrm{c}1F(x\mathrm{o})$ such that

cl $F(x \mathrm{o})\subset\bigcup_{i=1}^{m}B_{Y}(yi, \epsilon/2)$ .

Let $U_{i}:=B_{Y}(y_{i}, \epsilon/2)$ , then $F(x_{0})\cap U_{i}\neq\emptyset$ for all $i=1,$ $\ldots,$
$m$ . By the assumption, there

are neighborhoods $V_{1},$
$\ldots,$

$V_{m}$ of $x_{0}$ such that $F(x)\cap U_{i}\neq\emptyset$ for all $x\in V_{i},$ $i=1,$ $\ldots,$ $m$ .
Let $V:= \bigcap_{i=1}^{m}V_{i}$ , then we have that $F(x\mathrm{o})\subset B_{\mathrm{Y}}(F(x), \epsilon)$ for all $x\in V$ . In fact, let
$z\in F(x_{0})$ , then it follows from $z \in\bigcup_{i=1}^{m}B_{Y}(y_{i}, \epsilon/2)$ that there exists $i_{0}$ such that $z\in U_{i_{0}}$ ,
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i.e., $d_{Y}(z, y_{i}\mathrm{o})<\epsilon/2$ . By $x\in V$ , we have $F(x)\cap U_{i_{0}}\neq\emptyset$ , which implies that $d_{\mathrm{Y}}(y_{i_{0}}, z^{*})<\epsilon/2$

for some $z^{*}\in F(x)$ . Therefore, we have $d_{Y}(z, z^{*})\leq d_{Y}(z, y_{i}\mathrm{o})+d_{Y}(y_{i_{0}}, z^{*})<\epsilon$ . This

completes the proof. 1
We can provide another definition of equally w-l.s. $\mathrm{c}$ . in terms of nets (sequences), which

is verified to be equivalent to Definition 3.1. in the same way as the proof of Theorem 2.2..

Definition 3.2. (equally w-l.s. $\mathrm{c}.$ ) Let $\mathrm{Y}$ be a metric space. A set-valued map $F$ : $Xarrow 2^{Y}$

is said to be equally w-l.s. $\mathrm{c}$ . at $x_{0}$ if for any nets $\{x_{\lambda}\}$ with $x_{\lambda}arrow x_{0}$ and $\{z_{\lambda}\}$ with $z_{\lambda}\in F(x_{0})$ ,

there exists a net (sequence) $\{y_{\lambda}\}$ such that $y_{\lambda}\in F(x_{\lambda})$ and $d_{\mathrm{Y}}(y_{\lambda}, z_{\lambda})arrow \mathrm{O}$ .

This notion is precisely the dual concept of equally weak upper semicontinuity in terms

of nets; see Definition 2.8.. Moreover, we can verify easily that the notion is stronger than

openness ( $\mathrm{H}\mathrm{o}\mathrm{g}\mathrm{a}\mathrm{n}^{)}\mathrm{S}$ lower semicontinuity); an equally w-u.s. $\mathrm{c}$ . set-valued map is also open,

and conversely if $F$ is open at $x_{0}$ and cl $F(x\mathrm{o})$ is a compact set, then it is equally w-u.s. $\mathrm{c}$ . at

the point. When $\mathrm{Y}$ is a topological vector space or more generally a topological group, the

notion of equally w-l.s. $\mathrm{c}$ . is coincident with the following one.

Definition 3.3. (properly l.s.c.) Let $\mathrm{Y}$ be a topological vector space. A set-valued map
$F$ : $Xarrow 2^{Y}$ is said to be properly lower semicontinuous (p-l.s. $\mathrm{c}$ . for short) at $x_{0}$ if for

any open neighborhood $G$ of the origin $\theta$ , there exists a neighborhood $V$ of $x_{0}$ such that
$F(x\mathrm{o})\subset F(x)+G$ for all $x\in V$ .

Finally, we obtain a theoretical conformable duality between upper semicontinuity and

lower semicontinuity in terms of both neighborhoods and sequences in a metric space. Fig-

ure 2 illustrates the duality and the relationship among various semicontinuities of set-valued

maps. From the figure we can observe that classical upper semicontinuity is precisely the

dual concept of classical lower semicontinuity whenever the set-valued map is compact-valued

in a metric space.
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