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THE STUDY OF KNASTER — KURATOWSKI - MAZURKIEWICZ
THEORY AND APPLICATIONS TO ABSTRACT ECONOMICS

The University of Queensland - Australia (George X.Z. Yuan)

Abstract
In this paper, we present some recent results of the Knaster - Kuratowski - Mazurkiewicz theory
and their applications. In particular, we focus our attention on the following topics:

(1) The K-K-M Theory.

(2) Topological Intersection Theorems.

(3) Fixed Points and Maximal Elements.

(4) Equilibria of Abstract Economies in Topological Vector Spaces.
(5) Equilibria of Abstract Economies in Frechet Spaces.

(6) Equilibria of Abstract Economies in Finite Dimensional Spaces.
(7) Equilibria of Abstract Economies in Topological Spaces.

(8) Random Equilibria of Abstract Economies.

Finally, we give the outline how the K-K-M theory is used to study the existence of equilibria for ab-

stract economies from the point of view of fixed point theorems.
1. The K-K-M Theory

Since Knaster, Kuratowski and Mazurkiewicz established so-called the K-K-M princi-
ple in 1929, many applications of K-K-M principle have been developed.Today the field
related to the study of the classical K-K-M principle and its applications is often called
KKM Theory. In order to make a clear presentation, we begin with the classical K-K-M
principle and all proofs are omitted for saving spaces. The interested readers can find all
details from Yuan [65-70] and related references therein.

Let F(X) and 2% denote the family of all non-empty finite subsets of X and the fam-
ily of all subsets of X. Let N = {0,1,--- ,n} and Ay =co{e; : 7 € J}.

The K-K-M Principle (1929) in Finite Dimensional Spaces. Let Cy,--- ,C, be
closed subsets of the standard n-dimensional simplex Ay and let {eg,- - ,e,} be the set
of its vertices. If for each J € F(N), Ay C UjesCj. Then N~ ,C; # 0.

The first dual form of the K-K-M Principle was given by Sperner in 1928, the follow-
ing one was formulated by Fan in 1968:

Theorem 1.1 (Fan [1968], see also Sperner [1928]). Let {C;}icn be a closed
covering of Ay such that An\{iy C C;for all i € N. Then N;enC; # 0.

In 1973, Shapley gave a generalization of the K-K-M principle:

Theorem 1.2 (Shapley [1973]). Let {Cs}scr(n) be a family of closed subsets of
Apn such that Ar C UscrCs holds for each T' € F(N). Then there exists a balanced
family B of F(N) for which NsesCs # 0.
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Definition 1.1. A subfamily B of F(N) is called balanced if my € co{ms : § € B},
where mg = 33%’— for each S € F(N) and mg is also called barycenter of S.

In 1988, Ichiishi gave another ‘dual form’ of Shapley’s result above into the following
alternative version of Theorem 1.2:

Theorem 1.2’ (Ichiishi [1988]). Let {Cs}ser(n) be a closed covering of Ay such
that Ay C Uson\7Cs foreach T € F(N). Then there exists a balanced family B for
which NsegCs #0.

Let S = S;1%, -+, XSm, where S; is a simplex in which the coordinate of whose points
are indexed by the number of Ny, that is, for k = 1,--- ,m, St = ANn,, or say, the Sk
is the collection of all real functions z* defined on Ny which satisfy: z*(:) > 0 for all
1 € Ni and EieNkmk(i) =1.

Theorem 1.3 (Peleg [1969]). Let C¥,i € Ny, k = 1,--- ,m be closed subsets of S
such that for each Q C Ni, where k = 1,2,--- ,m, u,-EQCf S{z:z € Sandz*(i) =
0forall i € N\ Q}, ie,, An, X -+ ANy X Ag X ANyy, - X AN, C U,-ech’F. Then
n;:nzl ﬂ'iENk C:c 7é @

Let AYN be a simplex. We denote by F the family of all faces of AN,

Definition 1.2. A set-valued mapping B : F — 28% is called a Shapley-mapping if
for each 7 € F, ,
TU CroperF B(P)

In 1987, Shih and Tan gave another ‘dual form’ of Shapley’s Theorem above:

Theorem 1.4 (Shih and Tan [1987]). If B : F — 22 is a Shapley-map with each
B(p) an open subset of A. Then there exists a balanced set D of faces of A such that

NrepB(r) # 0.

This results shows that both K-K-M principle and Shapley theorem hold if ﬁle word
‘closed’ is replaced by the word ‘open’.

Theorem 1.5 (The K-K-M Principle). Let Cy,--- ,Cr be open or closed subsets
of the standard n-dimensional simplex Ay and let {eg, - ,en} be the set of its vertices.
If for each J € F(N), Ay C UjesCj. Then N C; # 0. Here: N = {0,1,--- ,n} and
Ay=cofej:j€ J}

A number of generalizations of above results and their applications are given by many
authors, e.g., Fan, Told, Shih and Tan, Ichiishi and Idzik, Border, Lassonde, Gwinner,

Granas, Park, Takahashi, Tarafdar --- and so on, we only mention a few names here.
In 1987, Horvath proved the following lemma:

Theorem (Horvath (1987). Let X be a topological space. For each non-empty
subset J of {0,1,--- ,n}, let F; be a non-empty contractible subset of X with Fy C Fy
whenever § # J C J' C {0,1,---,n}. Then there exists a continuous function
f : Any — X such that f(Ay) C Fy for each non-empty subset J of {0,1,--- ,n}.

In 1988, by Horvath’s lemma above, Bardaro and Ceppitelli first introduced a new
kind of spaces (which is among topological spaces and vector topological spaces) called
H-spaces. The definition as follows:
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Definition 1.3. A pair (X,{T'4}) (also called an H-structure) is said to be an H-
space (also called c-space according to Horvath (1991)) if X is a topological space and
{Ta}aex(x) a given family of non-empty contractible subsets I'y of X such that I'y C
Fg whenever A C B. '

Then a number of finite intersection theorems have been given by Bardaro and Cep-
pitelli (1988), Horvath (1991), Kim, Ding and Tan (1990), Tarafdar (1990), Chang and
Zhang (1991), Chang and Ma (1992), Park (1993) Zhou et al. In particular, we have the
following:

Theorem 1.6. Let Cy,Cy, - ,Cr be non-empty closed (resp., open) subsets of a
topological space X such that UjesCj is contractible for each J C {0,1,--- ,n}.
Then N7_,C; # 0.

In what follows, we shall discuss the K-K-M principle in infinite vector topological
spaces.

Throughout this section, we shall denote by TVS the topological vector space.

Definition 1.4. Let X be a non-empty subset of a real vector space E. A set-valued
mapping G : X — 2% is called a Knaster- Kuratowski- Mazurkiewicz mapping or simply a
KKM-mapping if co{z1,z2, - ,2n} C UL ,G(z;) for each zy,23, -+ ,2, € X.

Theorem 1.7 (K-K-M-Fan Theorem (Fan [1961]). Let E be a vector space, X
be an arbitrary subset of F and G : X — 2F a KKM-map with finitely closed val-
ues!. Then the family {G(z) : € X} of sets has the finite intersection property, i.e.,
NzeaG(z) # O for each A € F(X).

This result was further generalized by Brezis, Nirenberg and Stampacchia (1972),
Dugundji and Granas (1978), Tarafdar and Thompson (1978), Yuan (1993), and many
others in different ways in the setting of T'VS.

In 1961, it was Fan, who first generalized the classic K-K-M principle to infinite vec-
tor topological space and established an elementary but very basic ‘geometric lemma’ for
set-valued mapping:

Fan’s Geometric Lemma (1961). Let X be a non-empty convex subset of TVS E
and A C X x X such that

(1) the set {z € X : (z,y) € A} is closed for each y € X;

(2) the set {y € X : (z,y) ¢ A} is convex or empty for each z € X;

(3) (z,z) € Aforallz € X.
Then Jzy € X such that {z¢} x X C A.

By introducing the concept ‘generalized HKKM map’; we have the following charac-
terization of a generalized HKKM mapping in topological spaces:

Theorem 1.8. Let X be a non-empty set and Y a compact topological space. Let
G : X — 2Y be transfer closed valued on X. Then the intersect N.e¢xG(z) is non-empty
if and only if the mapping ¢lG is a generalized HKKM mapping.

Definition 1.5. Let X be a non-empty set and Y a topological space. A mapping
G : X — 2Y is said to be a generalized HKKM mapping (in short, GHKKM) if for

1 A subset A in E is finitely closed if its intersection with each finite dimensional linear subspaces L C E
is closed in the Euclidean topology of L.
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each finite subset A = {z;, -+ ,za} of X, there exist a corresponding finite subset
B = {y1,¥2 " ,Yn} (y's need not be distinct here) in Y and a family {T'c}cer(m) of
non-empty contractible subsets of Y such that T'¢ C T'¢r whenever C C C' € F(Y) such
that '

Ty :eqy C Uj=1G(2s;)

for @ #J c {0,1,--- ,n}.

2. Topological Interesection Theorems

The study of ‘Topological Intersection Theorems’ is motivated by the fact that

(a): Many existence questions in mathematics can be reduced to the Intersection
Problem:

Let Y be a non-empty set, X an index set and {®(z) : z € X} a family of non-empty
subsets of Y. Now the question is that when the family has non-empty intersection, i.e.,

Nzex @( ) # 07 :

(b): Applications to Economics, e.g., the topological characterization of Market equi-

libria and social choice (see Chichilnisky [1993], Takahashi [1994], Yuan [1994] and refer-

ences therein.

Let X and Y be two topological spaces and let ® : X — 2Y be a set-valued mapping.
Then F* : Y — 2% is defined by F*(y) = {z € X : y ¢ F(z)} for each y € Y is called the
dual of F.

In 1993, Kindler established the following characterization for a set-valued mapping
which has finite intersection property:

Theorem 2.1 (Kindler [1993]). Let X ad Y be two non-empty sets and F' : X —
2Y with non-empty values. Then the following are equivalent:
(a) Neex F(z) # 0.
(b) there exist topologies on X and Y such that
(i) Y is compact; (ii) F' is upper semicontinuous with closed values; (iii) the set
NzeaF(z) is connected or empty for each A € F(X); and (iv) the set NyepF*(y) is
connected or empty for each B € 2Y.

Theorem 2.2 (Kindler [1993]). Let X and Y be two non-empty sets and F' : X —
with non-empty values. Then the following are equivalent:

(a) NzeaF(z) # 0 for each A € F(X).

(b) there exist topologies on X and Y such that

(i) F is lower semicontinuous with open values; (ii) the set N4 F(z) is connected or
empty for each 4 € F(X); and (iii) for each closed subset B C Y, the set NyepF*(y) is
empty or connected.?

2Y

As an immediate consequence of Theorem 2.1, we have

Theorem 2.3. Let X and Y be topological spaces and F : X — 2¥ be a set-valued
mapping with non-empty values such that

(1) the graph of F'is closed in X x Y}

(i) Y is compact;

(iii) for each A € F(X), the set Nzc4F(z) is non-empty or connected;

(iv) for each B € 2¥, the set Nyep F*(y) is empty or connected.

2The condition (iii) is equivalent to the following (iii)’: the set {z € X : F(z) C F(z1) U F(z3)} is
connected for each z,,z5 € X.
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Then the family {F(z) : z € X} has the finite intersection property, i.e., NzeaF(z) # 0
for each A € F(X). '

Clearly the condition (i) implies the following (i)':
(i)' F(z) and F~'(y) :={z € X : y € F(z)} are closed for each z € X and y € Y.

Motivated by the study of minimax theorems for separately upper (or lower) semicon-
tinuous functions, Kindler asked the following question:

Question (Kindler [1993]): Does the conclusion of Theorem § above remain true, if
the conditions (i) is replaced by the condition (i)' ?

Recently we have proved the following results which partially answer Kindler’s ques-
tion in the affirmative.

Theorem 2.4 (Yuan [1994]). Let X and Y be both topological spaces. Suppose
that F : X — 2Y is a set-valued mapping with non-empty compact values such that

(1) for each z,y € X, there exists a continuous mapping v : [0,1] — X with f(0) = <,
f(1) =y and F((u(t)) C F(u(t1)) U F(u(tz)) for each t € [t;,%2] C [0,1];

(2) for each A € F(X), if the set Nyzc4F(z) is non-empty, then N ¢4 F(z) is con-
nected;

(3) for each y € Y, the set F~(y) ={z € X : y € F(z)} is closed in X.
Then Nzex F(z) # 0.

Let X be a non-empty convex subset of a vector space E, we shall denote by [z;,z;]
the line segment {tz; + (1 — t)z; : t € [0,1]}, equipped with the Euclidean topology.
A function f : X — R U {—o0,+00} is said to be segment upper (respectively, lower)
semicontinuous if the function ¢ — f(tz; + (1 — t)z;) is upper (respectively, lower)
semicontinuous on [0, 1] for each given z;,z3 € X.

We also have the following:

Theorem 2.5. Let X be a convex of a vector space E and Y be a topological space.
Suppose that F : X — 2Y is a set-valued mapping with non-empty compact values such
that

(1) for each z,y € X, F(z) C F(z) U F(y) for each z € [z,y];

(2)* for each A € F(X), if the set Nz 4 F(z) is non-empty, then N c 4 F(z) is con-
nected;

(8) for each y € Y, the set F~(y) is closed in the line segment [x;,z;] for each
z1,z2 € X.

Then Nzex F(z) # 0.

Theorem 2.6. Let X and Y be two topological spaces and ¥,® : X — 2 be both
set-valued mappings with non-empty values. Suppose the following conditions are satis-
fied:

(1) for each z € X, ¥(z) C ®(z) and N,c4®(z) is empty or closed (respectively,
open) and connected values for each 4 € F(X);

(2) NyeB®*(y) is connected or empty for each B € 2Y;
(3) the set ¥~1(y) is open for each y € Y;

(4) for each A € F(X), if Nze4®(z) # 0 implies that Nyc 4P (z) # 0.

Then the family {®(z) : ¢ € X} has the finite intersection property, i.e., Nzec2®(z) # 0
for each 4 € F(X).3

3The condition (2) is equivlent to the following: The set {z € X : ®(z) C ®(z1) U ®(z2)} is connected
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The following example shows that the conclusion of Theorems 2.6 does not hold if we
withdraw the condition (4):

Example 2.1. Let X = [0,27) and Y = {¢* : 0 < § < 27}. Define F,G: X — 2Y by
FO)={e¥:0-1<yp<6+1}
for each § € X and

. . 2
'{e"”: —1§¢5-2-é7-r-+1} ifae[o,—:;];
. 2T 47 27 4w
G(8) = W, 1<y < — if e (=—, —];
. 4
G %—19/:51} ifﬂe(—g—,%-)

for each 8 € X. Then it is easy to verify that

(1) ¥(8) C ®(8) and NgeaP(P) is closed and connected or empty for each 4 € F(X);
(2) T (¢)={0:% -1 <8 <+ 1}, which is open in X for each ¢ € Y;
(3) the set {8 € X : ®(6) C &(6,) U ®(0;)} is connected.

But the condition (4) of Theorem 6 does not holds, so that the family {®(6)

. 10 e X}
does not have the finite intersection property, e.g., ®(¥) N @(27"' + )N G(& + 5=

0.

Before we close this section, we should mention the following topological intersection
theorem given by Chichilnisky in 1981 (for survey article, see Chichilnisky [1993} in Bull.
AMS.) which also includes K-K-M principle, Caratheodory, Helly, Brouwer fixed point
theorem as special cases.

Theorem 2.7 (Chichilnisky [1993]). Let {Us}aer be an excisive family of £ > 2
sets. Then the following are equivalent:

(a) the set N;caU; is non-empty and acyclic for each 4 € 2T \ {0}.

(b) the set U;eaUs; is acyclic for each A € 2T \ {0}.

Note: Let {U;}ier be a family of space X. Then {U;}icr is said to be excisive fam-
ily provided
UierU; = Uier (intu, Us),

where inty,.(U;) denotes the relative interior of U; in the set Ur = UserUs.
As an application of Theorem 2.7, we have

Theorem 2.8 (Horvath [1987]). Let Cy,C1,-- ,C, be non-empty closed (resp.,
open) subsets of a topological space X such that UjesC; is contractible for each J C
{0,1,--- ,n}.

Then N2_,C; # 0.

In 1961, it was Fan, who first generalized the classic KKM principle to infinite vector
topological space and established an elementary but very basic ‘geometric lemma’ for
set-valued mapping:

The F-K-K-M Theorem (Fan [1961]). Let E be a vector space, X be an arbi-
trary subset of E and G : X — 2% a KKM mappin with finitely closed values*. Then the

for each z;,z; € X.
4 A subset A in FE is finitely closed if its intersection with each finite dimensional linear subspaces L C E
is closed in the Euclidean topology of L.
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family {G(z) : # € X} of sets has the finite intersection property, i.e., NzcaG(z) # 0 for
each 4 € F(X).

As an application of F-KKM theorem, Fan proved the following intersection theorem
in TVS and this result could be regarded as the equivalent form of the existence of maxi-
mal elements for set-valued mappings which have open inverse values:

Theorem 2.9 (Fan [1961]). Let X be a non-empty compact convex subset of a
TVS and F : X — 2% with non-empty closed values such that

(i) the set X\ F~1(y) is convex (where, F~1(y) = {z € X : y € F(a)}) for each y € X;
and

(ii) ¢ € F(z) for each z € X.
Then Nzex F(z) # 0.

3. Fixed Points and Maximal Elements

Theorem 3.1. (Fan (1961) - Browder (1968) Fixed Point Theorem). Let X
be a non-empty compact convex subset of a topological space E and F : X — 2% be
such that

(a) for each ¢ € X, F(z) is non-empty convex; and

(b) the set F~ (y):={z € X :y € F(z)} is open in X for each y € X.

Then F has one fixed point.

Definition 3.1. Let X and Y be two topological spaces and a mapping F : X —
2Y U {0} is said to be

(i): F is transfer open inverse valued on X if foreachy € Y and z € X with
¢ € F7l(y) = {x € X : y € F(z)}, there exist some y' € Y and a non-empty open
neighborhood N(z) of z in X such that N(z) C F~1(y').

It is clear that F' : X — 2¥ U {0} is transfer open inverse valued on X if and only if
the mapping G : ¥ — 2% U {0} defined by G(y) = X \ F~'(y) for each y € Y is transfer
closed valued. '

(ii) a point z € X is said to be a maximal element of the mapping F provided F(z) =
0.

The following example shows that a transfer open inverse valued mapping may be not
open inverse valued.

Example 3.1. Let X = [0,1] and define a mapping F : X — 2(0:1] by

F(z) = { [z,1], if z is rational

[0,1], if z is irrational

The Exampel 3.1 shows that following Theorem 3.2 is really a genralization of Fan-
Browder fixed point theorem above.

Theorem 3.2 (Yuan [1993]). Let X be a non-empty compact convex subset of a
topological space E and F : X — 2% a mapping with non-empty values such that

(a) for each z € X, F(z) is non-empty convex; and

(b) F is transfer open inverse valued.

Then F has a fixed point.

Theorem 3.3 (Maximal Element). Let X be a non-empty compact convex subset
of a topological space E and F : X — 2% a mapping such that
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(a) for each ¢ € X, F(z) is non-empty convex;
(b) F is transfer open inverse valued; and
Then there exists z € X such that F(z) = 0.

4. Equilibria of Abstract Economies

In this section, we shall discuss some existence results of equilibria for abstract

economies in the settings of
(1) in Topological Vector Spaces;
(2) in Locally Convex Spaces;
(3) in Frechet Spaces; and

(4) in Finite Diemensional Spaces.

For the backgroun of study for general equilibria of abstract economies (resp., gener-
alized games), the interested readers are referred to references such as Hildenbrand and
Sonnenschein [29], Mas-Colell and Zame [45], Yuan [69-70] and reference therein. Now
we need following definitions and notions.

Definition 4.1. Let X be a topological space, Y be a non-empty subset of a vector
space E, 6 : X — E be a map and ¢ : X — 2¥ be a correspondence. Then

(1) ¢ is said to be of class Up if (a) for each z € X, 0(z) & ¢(z) and (b) ¢ is upper
semicontinuous with closed and convex values in Y/, ‘

(2) ¢ is an Up-majorant of ¢ at z if there is a open neighborhood N(z) of z in X
and ¢, : N(z) — 2Y such that (a) for each z € N(z), ¢(z) C ¢z(2z) and 8(z) ¢
#z(2) and (b) ¢, is upper semicontinuous with closed and convex values;

(3) ¢ is said to be Ug-majorized if for each ¢ € X with ¢(z) # 0, there exists a
Ug-majorant ¢, of ¢ at z.

Definition 4.2. Let X be a topological space, Y be a non-empty subset of a vector
space E, 8 : X — E be a map and ¢ : X — 2¥ be a correspondence. Then

(1) ¢ is said to be of class Lg if for every z € X, cog(z) C Y and 0(z) ¢ cod(z) and
foreachy e Y, ¢71(y) ={z € X : y € ¢(z)} is compactly open in X;

(2) a correspondence ¢, : X — 2Y is said to be an Lg—majorant of ¢ at z € X if
there exists an open neighborhood N, of z in X such that (a): for each z € N,
#(2) C ¢=(z) and 6(z) ¢ cod,(z); (b): for each z € X, cop.(z) C Y; and (c): for
each y € Y, ¢-1(y) is compactly open in X;

(3) ¢ is Lo—majorized if for each z € X with ¢(z) # 0, there exists an Lo—majorant
of ¢ at z in X.

Definition 4.3. A generalized game (an abstract economy) is a family of quadruples
[' = (X;; As, Bi; Pi)ier where I is a (finite or infinite) set of players (agents) such that for
eachz € I,

X; is a non-empty subset of a topological space;

A;, B; : X — 2% are constraint mappings;

P; : X — 2% is a preference mapping.

An equilibrium of T' is a point £ € X such that for each 2z € I,

;= Wi(i) € E(i:) and Ai(:f:) n P,;(:f:) = 0.

Theorem 4.0. Let X be a non-empty compact convex subset of a topological vector
space. Suppose the mapping P : X — 2% is L, -majorized. Then there exists an 2 € X
such that P(&) = 0, i.e., & is a maximal element of P.
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Theorem 4.1 (One-Person Game). Let X be a non-empty compact and convex
subset of a topological vector space. Let P : X — 2% be an L-majorized and 4,B: X —
2% be such that

(a) for each = € X, A(z) # 0 and coA(z) C B(z);

(b) for each y € X, A~(y) is compactly open in X.

Then there exists an equilibrium point Z € X, i.e.,

& € B(2) and A(2) N P(&) # 0.

Theorem 4.2 (Qualitative Game). Let I' = (X;, P;):er be a qualitative game.
Suppose the following conditions are satisfied for each ¢ € I:

(a) X; is a non-empty compact convex subset of a topological vector space E;; (b)
P;: X — 2% is F-majorized;

(c) User{z € X : Pi(z) # 0} = Usjerintx{z € X : P;(z) # 0}.
Then I' has an equilibrium point in X.

Theorem 4.3 (Abstract economy). Let I' = (Xj; A;, B;i; P;)icr be an abstract
economy. Suppose that the following conditions are satisfied for each < € I:

(1) X; is a non-empty compact convex subset of a topological vector space;

(ii) for each ¢ € X, Ai(z) is non-empty, 4;(z) C coB;(z);

(iii) for each y € X;, A7!(y) is compactly open in X

(iv) for each € I, A; N P; is F-majorized;

(v) B; ={z € X : Ai(z) N P;(z) # 0} is open in X.

Then I’ has an equilibrium & in X.

Defintion 4.4. Let I' = (X, A;, B;, P;)icr be an abstract economy. I is said to
have approzimate equilibria if for each for non-empty open convex neighborhood V;
of the topological vector space E; for each i € I, the abstract economy game [' =
(X, Aiy By;, P;)ier has an equilibrium point, i.e., there exists a point ¢ = (z;)ier € X
such that

Ai(z) N Pi(z) = 0 and z; € By,(z),

where the mapping By. : X — 2%¢ is defined by

By, (z) = (Bi(z) + Vi) N X;

for each £ € X and for each z € I.

Theorem 4.4 (Approximate Equilibria). Let I' = (X, 4;, B;, Pi)icr be an ab-
stract economy such that X = [] X;. Suppose that the following conditions are satisfied
i€l
for each z € I:
(1) X; is a nonempty compact and convex subset of a topological vector space E;;

(2) A; is lower semicontinuous with non-empty values and for each z € X,
co(Ai(z)) C Bi(z);

(3) 4; N P; is F-majorized;

(4) B*={z € X : (4; N P;)(z) #} is open in X.
Then I' has approzimate equilibria, i.e., for give any V = I;c;V; where for each i € I, V;
is a convex open neighborhood of zero in E;, there exists a point v = (Zv; )ier € K such
that for each 7 € I,

and
A,‘(:f:v) N Pi(f:v) =.

where By;(z) = (Bi(z) + V;) N X for each i € I and for each z € X.
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Theorem 4.5. Let I' = (X;, Ai, B;, P;)icr be an abstract economy such that X =

I1 Xi. Suppose the following conditions are satisfied for each i € I:
iel

(1) X; is a nonempty compact convex subset of a locally convex topological vector
space E;;

(2) A; is lower semicontinuous such that for each z € X, 4;(z) is nonempty and

co(A4i(z)) C Bi(z);

(3) A; N P; is F-majorized,;

(4) the set E* = {z € X : (4:N P;)(z) #} is open in X.
Then I' has an equilibrium point in X.

Theorem 4.6. Let X be a non-empty convex subset of a locally convex topologi-
cal vector space and D be a non-empty compact subset of X. Let P : X — 2P be U-
majorized and A : X — 2P be upper semicontinuous with closed and convex values.

Then there exists a point & € coD such that either & € A(z) and P(2) = Qor & ¢
A(Z) and A(2) N P(2) = 0.

Theorem 4.7. Let I' = (X, P;)icr be a qualitative game such that for each ¢ € I,
(a) X; is a non-empty convex subset of a locally convex topological vector space E;
.and D; is a non-empty compact subset of X;;
(b) the set E* = {z € X : P;(z) # 0} is open in X;
(c) P; : E* — 2P¢ is U-majorized;
(d) there exists a non-empty compact and convex subset F; of D; such that F; N
P;(z) # 0 for each z € E'.
Then there exists a point ¢ € X such that P;(z;) = 0@ for all i € I.

Theorem 4.8. Let I' = (X;; Ai, B;; P;)icr be a generalized game (an abstract econ-
omy) where I is any (countable or uncountable) number of players (agents) such that for
each 1 € I:

(i) X; is a non-empty compact and convex subset of a locally convex topological vec-
tor space Ej; '

(i) each z € X, A;(z) is non-empty, 4;(z) C B;i(z) and B;(z) is convex;

(iii) the set E* = {z € X : A;(z) N P;(z) # 0} is paracompact (which is satisfied if X
is metrizable) and open in X;

(iv) the mapping 4; N P; : X — 2% is Y-majorized.

Then T' has a equilibria point.

Example 4.1. Let X = [0,1] and define 4, B, P : X — 2% by
1 .
[5,1],1f z €[0,1/2);

[0,%],ifa: € (1/2,1].

and

{Z}7lf z e [1/2’1];

P(z) =
@ 0 ,ifze[0,1/2).

It is easy to see that A and P are both upper semicontinuous with closed and convex
values and z ¢ P(z) for each ¢ € X; thus A N P is U-majorized. Note that the subset



40

E ={z € X : A(z) N P(z) # 0} = [1/2,1] is closed in [0,1] and 4, B and P satisfy
the hypotheses (i), (ii), (iv) but not (iii) of Theorem 4.8. However, at the unique fixed
point 1/2 of the correspondence A, we have A(3) N P(3) = [0,1] N {1/8} # 0. Thus the
generalized game ([0,1]; 4, B; P) has no equilibrium point.

5. Equilibria in Frechet Spaces

In this section, we shall give several existence theorems of equilibria for generalized
games in Frechet spaces in which the strategy sets are compact and convex.

Theorem 5.1. Let I' = (X;, 4;, P;)ier and X = Il;¢1X;, where I is any set. Suppose
that for each 1 € I, the following conditions are satisfied:

(i) X; is a non-empty compact and convex subset of a Frechet space E;;

(i) A; is lower semicontinuous with non-empty closed convex values;

(iii) for each z € X, mi(z) ¢ Ai(z) N Py(z);

(iv) the set U; := {& € X : A;(z) N P;(z) # 0} is closed in X.

(v) the mapping A4; N P; is lower semicontinuous on U; such that for each z € Uj,
A;i(z) N P;(z) is closed and convex.
Then I'" has an equilibrium point.

Theorem 5.2. Let I' = (X, 4;, P;)ier be a generalized game, where I is any set.
Suppose for each i € I, the following conditions are satisfied:

(1) X; is a non-empty compact and convex subset of a Frechet space E;;

(ii) A; is upper semicontinuous with non-empty closed convex values;

(i) the set U; = {z € X : Ai(z) N Pi(z) # 0} is paracompact and open in X;

(iv) the mapping 4; N P; is lower semicontinuous on U; such that for each z € U,
A;(z) N Pi(z) is closed and convex.
Then there exists z* € X such that for each ¢ € I, either m;(z*) € A;(z*) N P;(z*) or
mi(z*) € Ai(z*) and Ai(z*) N Py(z*) = 0.

- In the case of finite dimensional spaces, we have the following:

Theorem 5.1'. Let ' = (X;, A;, P;)icr. and X = I;erX;, where I is any (countable
or uncountable) set. Suppose that for each 1 € I, the following conditions are satisfied:

(1) X; is a non-empty compact and convex subset of a finite dimensional space E;;

(ii) A; is lower semicontinuous with non-empty convex values (but not necessarily
closed);

(iii) for each z € X, mi(z) ¢ Ai(z) N Pi(z);

(iv) the set U; := {z € X : A;(z) N P;(z) # 0} is closed in X.

(v) A; N P; is lower semicontinuous on U; such that for each z € U;, 4:(z) N Pi(z) is
convex (but not necessarily closed).
Then there exists z* € X such that for each ¢ € I, m;(z*) € 4;(z*) and A;(z*) NP(z*) =
0.

Theorem 5.2'. Let I' = (X;, Ai, P;)icr be a generalized game where I is any set.
Suppose for each i € I, the following conditions are satisfied:

(i) X; is a non-empty compact and convex subset of a finite dimensional vector space
E;;

(1) A; is upper semicontinuous with non-empty closed convex values;

(iii) the set U; := {z € X : 4;(z) N P;(z) # 0} is paracompact and open in X;

(iv) the mapping A; N P; is lower semicontinuous on U; such that for each z € U;,
A;(z) N Pi(z) is convex (but not necessarily closed).
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Then there exists z* € X such that for each i € I, either m;(z*) € Ai(z*) N P(z*) or
mi(z*) € Ai(=*) and Ai(z*) N Py(z*) = 0.

6. Equilibria in Finite Dimensional Spaces

In this section, some results for lower semicontinuous maps and fixed point theorems
are obtained and applied to achieve existence theorems of equilibrium points of a gener-
alized game and of a qualitative game in finite dimensional spaces.

We now first introduce some notations. Let E be a vector space and A C E. We shall
denote by aff(A) the affine span of A and ri(A) the relative interior of A in af f(A).
The subset A is said to be finite dimensional if A is contained in a finite dimensional
subspace of E.

Theorem 6.1. Let S be a topological space and Fy, Fp : § — 2R" be lower semicon-
tinuous at zo € S such that F; is open and convex-valued. Then F; N F; is also lower
semicontinuous at zg.

The following example shows that Theorem 6.1 fails to hold if R™ is replaced by an
infinite dimensional Banach space:

Example 6.1. (Lechicki and Spakowski). Let ¥ = [°, the Banach space of all
bounded sequences £ = (z,)%; of real numbers with ||z||e = sup,en [Za| < oo and

S =1[0,1]. Define G1,G2: § — 2Y¥ by
Gi(t)={z €Y :zy >tz < k—1t}
for £k > 2 and
Ga(t)={z €Y :2y <1—t,zp <k(l—2z;—1t)and z4 <k-+z/k-t/k}

for k > 2. Then G; and G5 are both lower semicontinuous at 0 with closed convex val-
ues and, inty(G1(0) N G2(0)) # 0. But G3 N Gz is not lower semicontinuous at 0.

Theorem 6.2. Let S be a topological space, X be a non-empty subset of a finite di-
mensional topological vector space and Fy,F, : § — 201 f(X) be lower semicontinuous at
z € §. If Fy(z) and F3(z) are convex and ri(Fy(z)) N Fa(z) # 0 or Fi(z) Nri(Fa(z)) # 0
whenever Fy(z) N Fz(z) # 0, then Fy N F} is also lower semicontinuous at z.

Theorem 6.3. Let I be a non-empty countable set. For each ¢ € I, let C; be a non-
empty compact convex subset of a finite dimensional topological vector space E; and
F;:C:=l;erC; — 2E: be lower semicontinuous such that

(a) F;(z) is convex for each z € C|

(b) Fi(z) Nri(C;) # O for each z € C,;

(c) Fi(C) C aff(Cs).

Then the map F := ;¢ F; has a fixed point in C.

Corollary 6.4. Let X be a non-empty subset of a finite dimensional topological vec-
tor space E, C be a non-empty compact convex subset of X and F : X — 2F be lower
semicontinuous such that F(C) C aff(C) and for each ¢ € C, F(z) is convex and
F(z)nri(C) #0.

Then F has a fixed point in X.

By Corollary 6.4, we now have the existence theorem of equilibria for generalized

games:
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Theorem 6.5. Let § = (X;; A;, Bi; P;)icr be a generalized game, where I is count-
able. Suppose that for each ¢ € I, the following properties hold:

(1) X; is a non-empty subset of a finite dimensional topological vector space E;.

(2) 4i,B; : X = ier X; — 2X¢ are lower semicontinuous such that codi(z) C Bi(z)
for each z € X.

(3) P; : X — 2%: is lower semicontinuous on D;, where D; = {z € X : P;(z) N A;(z) #
0} is closed in X.

(4) There exists a non-empty finite dimensional compact convex subset C; of X; such
that

(a) for each z € C := II;¢1Cj, Pi(z) is open in af f(X;);

(b) for each z € C, codi(z) Nri(C;) # 0; v :
(c) for each z € C' N Dy, coPi(z) N cod;i(z) N C; # 0 and (d) codi(z) C af f(C:).

(5) For each z € C, mi(z) ¢ coP;i(z).
Then G has an equilibrium point z* in C.

The following example shows that the condition (3) of Theorem 6.5 could not with-
drawn.

Example 6.2. Define 4 : [0,1] — 2[%! by A(z) = [0,1—z] for each z € [0,1]. Clearly,
A is continuous with closed convex values. Now define 4; : [0,1] — 2% by

[ [0,1~2], ifze(0,1];
Ax(e) = { {1}, ifz=0

is also lower semicontinuous. We also define A, : [0,1] — 2% by

co([0,1 — 2] U {3}), ifz e (0,1]
co({1}U{i}), ifz=0,

then A, is also lower semicontinuous and in fact

Ay(z) = {

0,1-2z], ifz e (0,1/2];
[0,1/2], ifz € (1/2,1);
1/2,1], ifz=0;
[0,1/2], ifz=1.

[Sad'y

Ax(z) =

We now define P : [0,1] — 2% by P(z) = [0,2) for each z € [0,1] then for any y €
[0,1], we have P~!(y) = (y,1]. Since {z € [0,1], P(z) N As(z) # 0} = (0,1] and the fixed
point set of Ay is (0,1/2], but for each z € (0,1/2], A2(z) N P(z) # 0.

Finally we shall derive the following existence theorem of an equilibrium point for a
qualitative game.

Theorem 6.6. Let G = (X;; P;)ics be a qualitative game where [ is countable. Sup-
pose that for each i € I, the following properties hold

(1) X; is a non-empty subset of a topological vector space E;.

(2) P; : X = HjerX; — 2% is lower semicontinuous on D;, where D; = {z € X :
P;(z) # 0} is closed in X.

(3) There exists a non-empty finite dimensional compact convex subset C; of X; such
that

(a) for each z € C :=1;¢1Cj, Pi(z) C af f(Cs);

(b) for each z € C'N D;, coP;(z) Nri(C;) # 0;
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(c) for each z € C, mi(z) ¢ coPi(z).
Then G has an equilibrium point * in C.

Before concluding this section, we would like to note that Theorem 6.5 is a non-
compact form of Theorem 5.1'. '

7. Equilibria in Topological Spaces

In this section, we shall present some existence results of equilibria for abstarct eco-
nomics without linear structures. First we have:

Theorem 7.1 (Maximal Element). Let X be a contractible subset of a Hausdorff
compact space Y. Suppose that By,B:Y — 2% U {0} are such that

(a) for each z € X, Bo(z) C B(z) and By '(z) is open;

(b) for each open set S in Y, the set NyesB(y) is empty or contractible; and

(c) for any z € X, z ¢ B(x).
Then there exist yo € Y such that Bo(yo) = 0.

Theorem 7.2. Let I be an arbitrary set and let {X; : 4 € I} and {Y; : ¢ € I} be
families of compact topological spaces and contractible topological spaces respectively.
Suppose there exists a family of mappings {P; : X — 2Y: U {0},1 € I} such that for each
1€ 1, '

(i) Y: Cc Xy

(ii) there exist two mappings A;,B; : X — 2% U {0} such that

(ii): for each z € X, Ai(z) C Bi(z) and {z € X : Pi(2) #0} C{z € X : Ai(2) £ 0}

(i)s: A7'(y) is open in X for each y € ¥; and

(ii)c: for each open subset U of X, the set N ey Bi(z) is empty or contractible;

(iii) for each z € X, z; ¢ Bi(x).

Then there exists £g € X such that P;(zo) = 0 for each 1 € I.

Definition 7.1. Let X and Y be two topological spaces. Let P : X — 2Y U {0} be
a set-valued mapping and § : X — Y be a single-valued mapping. Then two mappings
A,B : X — 2% U {0} is said to be an He-pair of the mapping P provided

(a) for each = € X, 6(z) ¢ B(z) and A(z) C B(z); and

(b) for eachy € Y, A~} (y) is open in X and theset {z € X : P(z) # 0} C {z € X :
A(z) # 0}.

Theorem 7.3. Let I be an arbitrary set and let {X; : 1 € I} and {Y; : i € I} be
~ families of compact topological spaces and contractible topological spaces respectively.
Suppose there exist families {P;, 4;, B; : X — 2¥: U {0},1 € I} such that for each i € I
1) ¥; c Xy
(i) for each z € X, A;i(z) C Bi(z);
(iii) for each z € X, Ai(z) is non-empty and the set A7'(y) is open in X for each
y €Y |
(iv) the mapping 4; N P; has an H-pair mappings %;,¢; : X — 2% U {0} such that the
set Nzevy, Ai(2) N Nezeu, $i(z) is empty or contractible for any subsets Uy and U, of X5,
Then there exists & € X such that 4;(£) N P;(2) = 0 and &; € Bi(&) for each i € I.

8. Random Equilibria

5This property is automatically satisfied if both A; and ¢; are convex-valued provided X and Y; are
convex subset of topological vector spaces.
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I - the set of players and (§2,X) - a measurable space. A random generalized game (or
a random abstract economy) is a collection ' = (Q; X;; A;, B;; P;)ier such that for each
1€ 1,

X is a non-empty subset of a TVS;

AiyB; : Q x X — 2% are random constraint mappings;

P;: Q x X — 2% is a preference mapping

(which are interpreted as for each player (or agent), the associated constraint and
preferences A;, B; and P; have stochastic actions).

Definition 8.1. A random equilibrium of I is a single-valued measurable mapping

2 — X such that for each i € I, mi(¢(w)) € Bi(w,%(w)) and 4;(w,¥(w)) N Pi(w,¥(w)) =
0 for all w € . Here, ; is the projection from X onto X;.

Theorem 8.1. Let (2, %) be a measurable space, ¥ be a Suslin family and ' =
(Q; Xi; Ai, Bi; P;)icr be a random generalized game and X = II;crX;. suppose that T
is countable and Dom(4; N P;) € Q ® B(X), and GraphB; € T @ B(X x X;) for each
1 € I. Suppose that the following conditions are satisfied:

(i) for each 7 € I, X; is a non-empty convex Suslin and compact subset of a locally
convex Hausdorff topological vector space;

(ii) for each i € I and for each (w,z) €  x X, 4; (w z) is non-empty, cod;(w,z) C
Bi(w,z);

(iii) for each i € I and for any given w € Q, A(w,-) : X — 2% is lower semicontinuous;

(iv) for each i € I and w € Q, Ai(w, ) N Pi(w,) is Lo-majorized,;

(v) foreach i € I, Ej(w) = {& € X : A;(w,z) N Pi(w,z) # 0} is open in X for each
w € .
Then T' has a random equilibrium.

Theorem 8.2. Let (2,X) be a measurable space with ¥ a Suslin family and
= (Q; X;, A;, B;, P;)icr be a random generalized game, where I is a countable and
Dom(A NP;) € Q®B(X), GraphB; € £ ® B(X x X;) for each 1 € I. Suppose that the
following conditions are satisfied:

(a) for each 2 € I, X; is a non-empty convex Suslin and compact subset in a locally
convex Hausdorff topological vector space E;;

(b) for each @ € I and for each fixed w € Q, B;(w,) is compact and upper semi-
continuous with non-empty compact and convex values, and for each (w,z) € 2 x X,
Ai(wam) - Bi(w’m);

(c) for each 7 € I and for each fixed w € Q, P;(w,-) is lower semicontinuous and L¢-
majorized;

(d) for eachi € I and w € Q, E¥(w) = {z € X : Ai(w,z) N Pi(w,z) # 0} is open in X.
Then I' has a random equilibrium.

Theorem 8.3. Let (f2,X) be a measurable space with £ a Suslin family and T’ =
(Q; Xi; Ai, Bi; P;)icr be a random generalized game such that I is countable and
Dom(A; N P;) € £ ® B(X) and GraphB; € £ ® B(X x X;) for each ¢ € I. Suppose
that the following conditions are satisfied:

(i) for each i € I, X; is a non-empty compact and convex Suslin subset in a locally
convex Hausdorff topological vector space E;;

(i) for each ¢ € I, for each (w,z) € 2 x X, Aj(w,z) is non-empty, 4i(w,z) C B;(w, )
and Bj(w,z) is convex;

(iii) for each 1 € I, for each w € , the set E*(w) = {z € X : 4;(w,z) N Pi(w,z) # 0}

is open and paracompact in X;
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(iv) for each fixed w € 2, the mapping Ai(w,-) N Pi(w,-) : X — 2X: is U-majorized on
E(w).
Then I has a random equilibrium.

Theorem 8.4. Let T' = (Q; X;; Ai; P;)ier be a random generalized game with ¥ a
Suslin family and I be countable. Suppose for each 7 € I, the following conditions are
satisfied:

(i) Dom(A; N P;) € T ® B(X) and GraphA; € £ ® B(X x X;);

(ii) X; is a non-empty compact and convex subset of a Frechet space Ej;

(iii) A;(w,-) is lower semicontinuous with non-empty closed convex values for each
fixed w € §;

(iv) for each (w,z) € 2 x X, mi(z) ¢ Ai(w,z) N Py(w,z);

(v) the set U;(w) := {z € X : Ai(w,z) N Pi(w,z) # 0} is closed in X for each fixed
w € (Y

(vi) the mapping A;(w,-)NPy(w,-) is lower semicontinuous on Ui(w) such that for each
z € U;(w), Ai(w,z) N Pi(w,z) is closed and convex.

Then the random generalized game I' has a random equilibrium.

Theorem 8.5. Let I' = (Q; X;; 4i; P;)ier be a random generalized game with ¥ a
Suslin family and I be countable. Suppose for each ¢ € I, the following conditions are
satisfied: _

(i) Dom(A; N P;) € £ ® B(X) and GraphA; € T ® B(X x X;);

(ii) X; is a non-empty compact and convex subset of a Frechet space E;;

(iii) for each fixed w € Q, Ai(w,-) is continuous with non-empty compact convex val-
ues;
~ (iv) the set U;(w) = {z € X : Ai(w,z) N Py(w,z) # 0} is either open or closed in X for

each fixed w € Q; ‘

(v) the mapping A;(w,-) N Pi(w, ') is lower semicontinuous on U;(w) such that for each
z € U;(w), Ai(w,z) N Pi(w,z) is closed and convex for each fixed w € (.

Then the random generalized game I' has a random equilibrium.

Theorem 8.6. Let I' = (£; X;; A:; Pi)icr be a random generalized game with £ a
Suslin family and I be countable. Suppose for each i € I, the following conditions are
satisfied:

(i) Dom(4; N P;) € £ ® B(X) and GraphA; € £ ® B(X x X;);

(ii) X; is a non-empty compact and convex subset of a finite dimensional space E;;

(iii) Ai(w,-) is continuous with non-empty compact convex values for each fixed w €
Q; '

(iv) the set U;(w) := {z € X : A;(w,z)N P;(w,z) # 0} is either open or closed in X for
each fixed w € Q;

(v) the mapping A;(w,-) N Py(w,-) is lower semicontinuous on U;(w) such that for each
z € Ui(w), Ai(w,z) N Pi(w,z) is convex (but not necessarily closed) for each fixed w € 2.
Then the random generalized game I" has a random equilibrium.

9. Conclusion Remarks

At the end of this paper, we would like to point that the the study of general exis-
tence of equilibria for abstact economics and related topics as applications of K-K-M
theory can illustrated by the following diagram and related notions which are not appear
in this paper can be found from [61-70] (in particular, from [69] or [70]) and references
therein.
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The Knaster - Kuratowski - Mazurkiewicz Principle

ft

The Fan’s Geometry Lemma

i
The Fan - Browder Fixed Point Theorem

)
The Maximal Element Theorem of Ky Fan Mappings

ft
Selection Theorem of Ky Fan Majorized Mappings

fi
The Maximal Element Theorem of Ky Fan Majorized Mappings

ft

The One-Person Game

f
The Qualitative Game

ft
The Abstract Economy (resp., Generalized Game) <= Nash - Equilibria

ft
Approximate Equilibria

e A

Lower Semicontinuous Mappings Upper Semicontinuous Mappings.
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