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1. Introduction and statement of results
We consider the oscillation problem for the second order nonlinear differential

equation

(1) t*z” + g(z) = 0, t>0,

where g(z) satisfies locally Lipschitz continuous on R and
zg(z) >0 if z#0.

A nontrivial solution of (1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise, the solution is said to be nonoscillatory. In the theory of oscillations,
the number % very often appears as a critical value. The following result is a good

illustration of this fact: all nontrivial solutions of Euler’s equation
(2) 22" + Az =0

are oscillatory if and only if \ > %. Other examples are found in [3, 6] and the
references cited therein.

Because of Sturm’s separation theorem, the solutions of second order linear dif-
ferential equations are either all oscillatory or all nonoscillatory, but cannot be both.
Thus, we can classify second order linear differential equations into the two types.
However, the oscillation problem for (1) is not so easy, because g(z) is nonlinear.

Judging from the oscillation result for Euler’s equation (2), we see that all non-
trivial solutions of (1) have a tendency to be oscillatory according as g(z) grows

larger in some sense; and we must consider the case



125

© 9e)

as |zx| — oo
x

SN

to solve completely the oscillation problem for (1).
The purpose of this report is to give our answer to this delicate problem. Our

main results are stated in the following:

Theorem 1. Let A > 0. Then all nontrivial solutions of (1) are oscillatory if

A
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for |z| > R with a sufficienlty large R > 0.

Theorem 2. Suppose that there exists a A with 0 < \ < 41 such that

©) ) <3+ (52)

x log |z|

forz > R or x < —R with a sufficiently large R > 0. Then all nbntrivia,l solutions

of (1) are nonoscillatory.

Remark. We note that condition (3) is satisfied in either case

with A >0

()= lx + A2
IE=7 log |z|

or
2

1 A ) . 1
for |z| sufficiently large.

2. Some lemmas

The change of variable ¢ = e® reduces (1) to the equation

Z—1z+g(x)=0, seR,
where "= d%. This equation is equivalent to the system
T=y+z
(6)
j=—g(z)

which is of Liénard type. Note that every solution of (6) exists in the future.
We give some results on the asymptotic behavior of trajectories of (6). We write

v (P) for the positive semitrajectory of (6) starting at a point P € R2.
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Lemma 1. For each point P = (p,—p) with p > 0, the positive semitrajectory

vt (P) crosses the negative y-axis.

Lemma 2. For each point P = (—p,p) with p > 0, the positive semitrajectory

vt (P) crosses the positive y-azis.

We here introduce a new important concept which is useful in the theory of
oscillations. We say that system (6) has property (X¥) in the right half-plane
(resp., left half-plane) if, for every point P in the region {(z,y): z > 0 and y >
—a:} (resp.,{(x,y): z<0and y < —x}), the positive semitrajectory v+ (P) crosses
the curve y = —=z.

In [1] the authors went into details about property (X*) and gave some necessary
conditions and some sufficient conditions for property (X*). We state below special

cases of those results. Let

Gloo) = /O Tg©de and  G(-o0) = /0 g6,

Lemma 3 [1, Theorem 4.1]. Assume G(00) < oo (resp., G(—00) < 00). Then
system (6) fails to have property (X1) in the right half-plane (resp., left half-plane).

Lemma 4 [1, Theorem 5.4]. Assume G(c0) = 0o (resp., G(—o0) = 00). Then
system (6) fails to have property (X ) in the right half-plane (resp., left half-plane)
if

(7 |z| > 2+/2G(z) — («/2G(x ) for |z| .s;uﬁiciently large,

where h(r) is a continunous function on [0,00) such that for r sufficiently large

——= is non-increasing and non-negative,

©) , (/ h§<§>d§)2 < 1h(r).



Lemma 5 [1, Theorem 5.2]. Assume G(c0) = 0o (resp., G(—o0) = 00). Then
system (6) has property (X) in the right half-plane (resp., left half-plane) if

(10) |z| < 2x/2G(x («/2(}'(3; ) for |z| sufficiently large,

where h(r) is a continunous function on [0,00) with
h(r
—— is non- zncrea,smg, non-negative
(11) r

and is not greater than 2 for r sufficienlty large,

12 | '/°° h(r)d _

3. Proof of the theorems

Proof of Theorem 1.1. Each solution of (1.1) exists in the future. Suppose that
system (6) which is equivalent to (1) has property (X%) in the right and left half-
plane. Then it follows from Lemmas 1 and 2 that every solution of (6) keeps on
rotating around the origin except the zero solution. Hence, all nontrivial solutions
of (1) are oscillatory. Thus, to prove Theorem 1.1, it is enough to show that system
(6) has property (X ™) in the right and left half-plane. We will demonstrate this
fact by means of Lemma 5. Note that (4) implies G(£o00) = 0o |

Let 0 <v < X and
vr

h(r) = logr

for r sufficienlty large. Then it is clear that conditions (11) and (12) are satisfied.

We next define continuous functions k(z), K (z) and L(z) on R by

z?

k(z) = 2log ||

|| K(z) = / k(E)de and L(z) =

for |z| sufficiently large, respectively. Then we have

K(z)> L(z)— M  for some M >0

and by (4)
G(z) > %xz + K(x)— N  for some N > 0.
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Since z K (z) is increasing for |z| sufficiently large, we get

v vu? vu?
K| 2u— - > -—
( Y log |u|> 2log u| ~ K(u) 2log |u|
2
vy
> M-
2 Lw)-M 21log |u|
_ Qo
~ 2log |u]

which tends to 0o as |u| — co. Hence, for |u| sufficiently large

1, 1, vu vu? viy?
“u2 < = % — _ _ _ru
2" = 3" +K(“ mat) ~ SogRl ~ + Steglal?
1 vu \? vy
= 2 (ou- 2% L
8(“ 10glU|) +K(u logIUI) N
<Gfou- 22 ),
log |u

namely,
1 2<{G(2u—h(u)) if u>0
—U
2 7 | G(2u+h(—u) if u<O.
Letting
v/ 2G(x) if £>0
U =
—/2G(z) if z<0,
we have

2] < 24/2G(z) — h(\/2_G(aT))

for |z| sufficiently large, that is, condition (10) is also satisfied. Thus, by Lemma
5 system (6) has property (X%) in the right and left half-plane. The proof is

complete.
- To prove Theorem 2, we need Lemmas 6 and 7 below.
Lemma 6. FEvery solution of (6) are unbounded except the zero solution.

Let

Viz,y) = 337 + C(@)

and consider the curve

V(.’I), y) = V(an yO)a



where 2o > 0. Then there exist two points of intersection of the curve with the line

y = —z. In fact, the equation
V(z,—z) = V(zo,¥0)

has exactly two roots because V(z, —z) is increasing for z > 0 and decreasing for
z <0, and V(0,0) = 0. Let (—a,a) and (b, —b) be the intersecting points, where
a > 0 and b > 0. Define

S={(z,9): —a<z<c and V(z,y) < V(2o,%0)}

in which ¢ = max{b,zo}. Then it is clear that S is a bounded set. Lemma 6 shows
that every solution of (6) starting in S\ {0} does not remain in S. Take note of

the vector field of (6) and the fact that
Vie)(@,y) =zg(x) >0 i z#0.

Then we also see that every solution of (6) starting in S°, the complement of S in

R2, stays in S€ for all future time.. Thus, we have

Lemma 7. Every solution of (6) starting in S\ {0} enters S¢ which is a positive

invariant set with respect to (6).

Proof of Theorem 1.2. We prove only the case that condition (5) is satisfied for
x > R, because the other case is carried out in the same way.

First, we will show that system (6) fails to have property (X 1) in the right half-
plane. If G(00) < 00, then this fact is clear because of Lemma 3. Suppose that
G(00) = 00. To use Lemma 4, we will check that conditions (7)—(9) hold.

Let

r

") = Togry

for r sufficiently large. Then Mrﬂ is non-increasing and non-negative; and we have
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that is, conditions (8) and (9) are satisfied. Define continuous functions k(z) and

L(z) on R by 2 ]
0= (5gz) = 0 10- (55)

for z > R with \2 < 202 < %. Then

K@)= [ Kot
is increasing for £ > R, and there exist constants M > 0 and N > 0 such that
L(z)+ M > K(z)

and

Glz) < éxﬁ +K(z)+ N

for £ > 0. Hence, we obtain

1 1 9 u? u?
_2 - % — < 2
2uh(u) + 8(h(u)) + K(2u — h(u)) < S{log u)? + 138(log 0" + K(2u)
u? u? M
< —
—  8(logu)? + 128(log u)* + L(2u) +
(1 —32v%)u? u?
Slogu)? T 128(ogu)t M
— —00  as u — 00,

and therefore, for u sufficiently large

Let u = 1/2G(z). Then we have
z > 2./2G(x) — h( 2G(x))

for = sufficiently large. Thus, condition (7) is also satisfied, and so system (6) fails

to have property (X%) in the right half-plane by Lemma 4. Hence, there exists



a point Py(zo, yo) with o > 0 and yo > —zp such that v+ (F,) runs to infinity
without intersecting the curve y = —z.

We here suppose that (1) has a oscillatory solution. Let y*(Q) be the positive
semitrajectory which corresponds to the oscillatory solution of (1). By virtue of
Lemma 7, we see that y*(Q) eventually goes around the set S inifinity many times.
Hence, it crosses the half-line {(z,y): z =120 and y > Yo} at a point Pj(zg,y:) with
Y1 > Yo. From the uniqueness of solutions for the initial value problem, it turns

out that
(i) Y*(Q) coincides with v+ (P;) excepf for the arc QP;.
(ii) v+ (Py) lies above v+ (Py). |
Hence, vt (Q) runs to infinity without crossing the curve y = —a: This contradicts

the fact that y+(Q) circles the set S. The proof is now complete.
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