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Abstract. In this paper, we consider the instability of a class of neutral
nonlinear differential difference systems with infinite delays. A practical suf-
ficient criterion for instability is presented by using the method. of Liapunov
functions and a nonlinear differential difference inequality.
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1. Introduction

One of the most useful techniques in stability theory for ordinary differen-
tial equations and differential difference equations is the method of differential
inequalities or so called the comparison method. The main idea of this tech-
nique is to determine the stability properties of a higher dimensional equation
from those of a low-dimensional equation which is usually called a comparison
system, through the appropriate choice of a group of Liapunonv functions or
Liapunov functionals (for example, see [17]). In our recent paper [20], a class
of rather general nonlinear differential difference inequality with infinite de-
lays was established, and at the same time, this inequality was applied to the
instability analysis of retarded nonlinear differential difference large scale sys-
tems. The purpose of this paper is to extend the inequality analysis technique
developed in [20], together with the method of Liapunov functions, to the in-
stability analysis of a class of nonlinear neutral differential difference systems
with infinite delays. :
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As usual, let R™ represent n dimensional real Euclidean space. For any
vector z € R™, z > 0(> 0) means that all elements of z are nonnegative (pos-
itive), respectively. Let R} denote the set {z|z € R*,2 > 0}. Conventionally,
we use R and Ry to denote R! and R}, respectively. The notation a < +o0
(or @ > —o00) means that a is a real constant or +o0o (or a real constant or
—00), respectively. For any b € R, the notation [0,b)" denotes the product
of n intervals [0, b), i.e., [0,b) X ... x [0,b).

The following definitions and lemma follow from [3] and [20], which we
require for this paper.

Definition 1. [3] An n X n real constant matrix C = (¢;j)nxn With
¢i; <0(¢ # 4, 1,5 =1,2,...,n) is said to be an M-matrix, if there is a vector
v > 0 such that Cv >0 or CTv > 0.

Some other equivalent conditions for an M-matrix can be found in [3].

Definition 2. [20] Let D} be an open subset of R} with © = 0 € D7.
The continuous function

F(z,y,2) = (fi(z,y,2), oy [l y,2))T D} x Dy x D} — R"

is said to have Property (LM), if fi(z,y,2) = fi(T1, s Tn; Y1, s Yn} 215 ey Zn)
is nondecreasing with respect to argument z; and nonincreasing with respect to
ATGUMENES Ty, ..y Tim1y Tiglyeees T} Y1y ooy Ynj 215 oy Zn; and there exists a group
of positive constants dy, ...,d, such that for 0 < u < § < +o0,

fi(dlua "-adnu;dlu7"'7dnu;dluv '-'7dnu) = fz(u) > 07 fz(o) = 0’ (1)

for i = 1,2,...,n. If, in addition, D} = R} and 6 = 400, then, function
F(z,y, z) is said to have Property (M).

Remark 1. The functions with Property (LM) or Property (M) and the
well known M-functions (see [1,22,27]) are natural nonlinear generalizations
of an M-matrix.

The following nonlinear differential difference inequality is a simple gener-
alization of the inequality in [20] and will play an important role in instability
analysis of neutral nonlinear differential difference systems in the present pa-
per.

Let p(t) = col(pi(t),...,pn(t)) : R — R% is a continuous function which
satisfies the following nonlinear differential difference inequality for ¢t > ¢, > 0
and p;(s) < q(s<t, 0<g<4o0; 7 =1,2,...,n.),

kD pi(t) = ri(t)bi(pi()) fi(pr(2), -, Pa(t); Pa(2), oy Bu(t);
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S [ ARG 0 R ).
/A(k)tuR(k) JW)du), i=1,2..n,  (2)

where D¥p;(t) denotes Dini right-hand upper derivative of p;(t) at the time ¢,

pi(t)= sup pi(t+s),
—=A(t)<s<0

—o00 < 8 < 0; k; is a nonnegative constant with &y +...+ %, > 0; m is a positive
integer; ri(t) : [tﬂv +OO) - R+> bz(u) : [O’JO) - R+7 fi(mla""xn;yla---? Yns
2y za) ¢ [0,00)" X [0,00)" x [0,00)" — R, AP(t,u) : [to,+00) x R —
R, Rff)(u) : [0,02) — Ry and A(¢) : [to,+00) — R4 are continuous func-
tions satisfying the following conditions for all ¢ > ¢y and any s > 0,

(1) t—A()— 4+o0 as t— +oo,

(1) r(t) >0, [Fror(t)dt=

(v32) Rff)(u) is nondecreasmg7 R,(j)(O) =0 and b(u) > 0 (0 < u < 0y);

(v)  J; Agf)(t,u)du < sgf) = const., lim;_. 4o Ag?)(t,u)du =0,
where 0 < 0 < 400 ,0=0,1,2, ¢,7=1,2,..,nand k=1,2,...m

Lemma 1. Assume that (i) — (tv) hold, and
(v)  the function

F(.’I?,y,Z) = (fl(wlv'"vxn; Y1y ooy Yns Zsﬁ) Zs(k) (k)
k=1

ooy @1y oy T Y1y Uy Y SR (21), 0, S sBRB)(2,)))F

k=1 k=1
has Property (LM). Then, while max{p;(t),...,p(t)} > 0 is nondecreasing
on (—oo,to], and ||¢|| = maxicicn {SUP_cocics, Pi(t)} s small enough, there

exist a time t > to and a positive constant M whzch are mdependent of ||¥]]
such that
pl(i) + .. +pn(t—) Z M

If, in addition, ¢ = 09 = 0y = 03 = +o0 and F(z,y,2) has‘Property (M),
then
limsup(pi(2) + ... + pa(t)) = +o0.

t—+4o00



Remark 2. Asshown in [20], the functions f; and A;;(t,u) (41 = 1,2,...,n)
satisfying the assumptioms of Lemma 1 are rather general. For example, while
fi(: = 1,2, ...,n) satisfy the following nonlinear inequality:

n

Sz oaat®) - L0+ [ Ayl —wpl @), )

j=1

for i = 1,2,...,n, where a; > 0, b; > 0, o; > 0, B;; > 0 and v;; > 0 are
constants; A;;(u) is a continuous nonnegative function for 7,5 = 1,2,...,n, it
easily follows from Definitions 1 and 2 that the assumptions (:v) and (v) of
Lemma 1 can be satisfied if the following conditions hold:

(') o < mingcn{Biss Yis}s

(13") [+ Aij(u)du < s;; = const.;

(i4i')  there exists a group of positive constants dy, ..., d, such that

aidis = Y (bibij + 5i5655)d5* > 0,

i=1

where _
6 B) =1 o i =fy (=)
0 if a;< ﬂij (Oli < "ﬁj)

fori,j =1,2,...,n. Further, if the assumption (2') is replaced by the following
stronger condition (¢"):

(7:”) Qo = malxl<2<n{az} < mln1<z,y<n{ﬂz]7 '71,]}
then it follows from Definition 1 that the above condition (7i¢') can be replaced
with the following more practical condition (z¢¢"):

(112") The matrix D — (B+S) is an M-matrix, where

D = dia‘g(ah -")a'n)a B = (bijnij)nxn7 S = (Sijﬁij)nxnv

- _ _ 1 if Oto=ﬂi' (0‘0'—'-"71" .o
Mij (ni')—{ 0 if Olo<ﬁij' (a0<%j; , 4,7 =1,2,..,n.

2. Instability Analysis on Neutral Nonlinear Differen-
tial Difference Systems with Infinite Delays

In this section, we will apply the inequality of the preceding section, together
with the method of Liapunov functions, to the instability analysis of a class of
nonlinear neutral differential difference systems with infinite delays and present
a easily verifiable sufficient criterion. For differential difference systems with
infinite delays, there exist some well developed fundamental theories. For
example, for the case of retarded type, we refer to [5,6,11,23] and the Lecture
Notes [12]; for the case of neutral type, we refer to [15,19,26,29]. In fact,
[15,19,26] also contain excellent works with respect to boundedness, stability
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and periodic solutions etc. of neutral differential difference equations with
unbounded and infinite delays.

Let C™ denote the space C"((—00,0], R*) consisting of the real continuous
functions mapping the interval (—oo, 0] into R™.

The neutral nonlinear differential difference systems considered in this pa-
per are assumed to be of the following form,

%Z(t, ) =H(t,Z(t,.))+ F(t,z(t), z(t — A(t)), z:), (4)
where Z(t,.) is a difference operator of the form
2(t,.) = 2(t) — D(t,2(t), (¢ — A(D), 22, )

r€R", o =z(t+3)(—o00 <0 <s<0); Hit,z): R XxXR* - R"is a
continuous function; D(t,z,y,9), F(t,z,y,¢) : Ry x R* x R* x C* — R"
are continuous functionals with respect to their all arguments such that

H(t,0) = D(t,0,0,0) = F(£,0,0,0) = 0

for all t € Ry; the delay function A(¢): R, — R, is continuous such that
t — A(t) = 400 (t = 400).

Clearly, while F(t,z,y,¢) = 0 for all (¢,z,y,¢) € Ry X R* x R™ x C™,
system (4) is reduced to the following special form

L 2(t,) = H(t, 2(,.)) (©
which is called a completely integrable system in [15]. The instability of the
completely integrable system (6) and system (4) in general metric space M
were considered in [14] and [15] by using the methods of Lyapunov functionals
and the inversion theorem for Chetaev’s theorem.

The initial condition of (4) is given as follows,

z(to +3) = ¢(s), —o00<s<0, (7)

wherety > 0and ¢ € BU = {¢| ¢ € C™ is bounded and uniformly continuous
on (—o0,0]}.

As usual, we say a continuous function z(t)(t € R) is the solution of (4)
with the initial condition (7), if Z(¢,.) = z(t) — D(t,z(t), z(t — A(2)),z) is
continuously differentiable and satisfies (4) on [to, +00) and z(t) satisfies the
initial condition (7). Clearly, (4) possesses the trivial solution z(t) = 0.

The main reasons for choosing the admissible Banach space BU with the
uniform norm [|@|| = sup,<, ||¢#(s)|| for ¢ € BU as the initial function space
of (4) are that: (i) our purpose in this paper is to consider the instability of
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the trivial solution of (4); (77) the fundamental theory of the initial problem
(4) and (7) have been considered in [15], [19] and [29]; and (44¢) the space BU
can be included in some important phase spaces, for example, the admissible
Banach spaces UC'g,C and the Banach space BC' (see [2,4,5,8,11-13,18] for
details ).

The instability of the trivial solution of (4) is defined as follows.

Definition 3. The trivial solution z(¢) = 0 of (4) is said to be unsta-
ble, if there exists some constant € > 0 such that for any small 6 > 0 and any
to > 0, there exist ¢ € BU and > t, such that ||¢|| < é and ||z(Z, , %0, 4)|| > €

We use the same symbol ||.|| to denote the norms in R* and BU, but no
confusion will occur.
Let us list the following assumptions before we proceed further.

(A). Fort >0 and ||z(s)|] < hs (s <t, 0 <hy < +00),

m

ID(t, z(t), 2(t — A(2)), 2:)] E (ce(®llz (@)1 + /Alk (&, u)l|z(w)[["*du),

1F (¢, 2(t), 2(t — A(t)), )| < Z(bk (®)l1z(2)11%= +/ Ak (2, u)||z(u)|[** du),
k=1

where [|Z(¢)]| = sup_apy<aco l12(t + S)I; Br(t), ci(t), Aux(t,u) and Age(t, u)

are nonnegative continuous functions; B and 7y are positive constants for

l=1,2and k=1,2,....m

(B). There exists a continuous function V(¢,z) : Ry x R® — R such that
for t > 0 and ||z|] < k2 (0 < hy < +00),

oV(t,z) 7 0>
5 ) I < a(®)lz][*  and

(allel)™ < V(t,z) < u(llzl), I(

oV (t,z) OV(tx)
ot + Oz
where a > 0, 6; > 0, 6, > 0 and 03 > 0 are constants such that 6,03 —0; > 0;
the function u(s) : [0,h;) — R4 is continuous and nondecreasing such that
u(s) > 0 for s > 0 and u(0) = 0; the functions r(t) : R, — R4 and
q(t) + Ry — R4 are continuous such that for ¢ > 0,

H(t,z) 2 r(t)V>(t,2);

+00
r(t)>0 and / r(t)dt = +o0.
0
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Assume further that for all ¢ > 0, any s > 0 and k = 1,2,...,m,
q(t)be(?)

r < by = const., ck(t) < ¢, = const.,
r

(2)

t ' ' t g(t)Aqy(t .
/ Agr(t,u)du < sy = const,, / %ﬂdu < 395, = const.;
6 9 r

)

(i2) lim S(Alk(t,'u,) + q(t) Az (t, u)

toieo Jo 'I‘(t) )du = O

We are now in a position to state and prove our main result.

Theorem 1. Assume that (A),(B),(¢) and (i) hold, and
(132) 60103 —0; < min{_ﬂ%, You}, Pk =>1, v =15
(iv)  XFoi(ckbir + s1kbie) < 1, and

Eiy (s + Sdan) < afits
(1 — 7 (ckbik + S1561%)) 0100 )

where 1, if B 1( 1)
N I =Lk =

61k (O1k) = { 0, if )31k > 1 (’)’1: >1) 7

(

s (5 ) — 1, zf 0,03 — 05 = Bo (0103 — b, = "}’2k)
2k T2k 0, if 0103 — 0 < Por (01603 — 02 < Yar) ’

fork=1,2,....m. Then, z(t) =0 of (4) is unstable.

Proof.  Let us choose ¢ € (0,+00] and the constant vector { € R”
satisfying

¢ < min{h?, (aks)}, ®)

¢ + :Zl(cw%f +s1rg %) < b, (9)

0 < |Iéll < min{h, g%}, (10)

Jell+ 3 (ealeIP + sellP™) < (11)

and N |
el + LI + sallel™) <o (12)

For any to > 0, let z(t) = z(t,10,£) be the solution of (4) with the initial
condition: z(to+ s) =€ (—o0 < s < 0). '
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In the following discussion, we shall show that the trivial solution of (4) is
unstable by considering the above solution z(t) with sufficiently small ||£]].
Set

. >
= [ 12 e, cen o
From (A),(B) and (13), it is easy to see that the functions p;(t) and ps(?)
are continuous on R and that the function max{p;(¢),p2(¢)} is positive and
nondecreasing on (—oo,tg]. Moreover, from (A), (B) and (10) — (13), we also
have that p;(¢) and p3(¢) can be made arbitrarily small on (—o0,?] as long as
l|¢]| is chosen small enough and that pi(t) < ¢ (t < to, [ =1,2).

Since, in view of (5),(8) and (9), pi(s) < ¢ (s <t, t >to, [ =1,2) imply
[lz(s)|| £ k1 and ||Z(s,.)|| < ha (s <&, t 2 tp), it follows from (A), (B),(13)
and (¢) that for ¢t > ¢p and pi(s) < ¢ (s <t 1=1,2),

Drp(t) = 1OV (5,200 + ZETED pie o), ot — ), )
> (VA (L Z0,0) = 120 ) b a0

+ [ Ant, )l du)

> r(O)R (D) - b (1= S (Bisst (1)
k=1
+ 28 [ At uns® (i)
= WP (W {p T () o ezg(bkpff (t)
+% / t A2k(t7“)P;91 (u)du)}
= r(t)p? () u(*), (14)

where pi(t) = sup_a<s<o pl(t +s) forl=1,2.
On the other hand, again from (A), (B),(5),(8),(9) and (z), we have for
t>tyand p(s) < ¢ (s <t l=1,2),

0 > [le@)ll = 12¢, )~ ID(t z(t — A(2)), )]l
> [le@I = 12(t ) = 2o (ex®IlZ()]1

k=1

+ [ At ()l
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by - Lo - S
> P21() -o-z_ 1 (t)—Z(Ckpzl(t)
k=1

+/0lt Alk(t,u)pf?f(u)du)
= fox). | (15)

Clearly, from (A),(B),(¢) and (it) of Theorem 1, it is easy to see that the
inequalities (14) and (15) satisfy (:¢) — (iv) of Lemma 1 with n = 2, k; =
1, ky =0, ri(t) = r(t), r2(t) = 1, bi(u) = ug% and by(u) = 1 . In the
following, let us show that (14) and (15) also satisfy (v) of Lemma 1, i.e., the
function (fi(x), f2(*))T has Property (LM).

In fact, (fi(x), f2(*))T has Property (LM) if and only if there exist two
positive constants d; and d; such that for sufficiently small u > 0,

6182 —65 1 = - 8 x
(diw)” o > E;(bk(dw)'&" + 5 (dou) )
=1
and o

(dz'll,)sl > — dlu QL Z Ck(dZU 61 +31k(d2u)_ellh)'

By (:i¢) of Theorem 1, the above is clearly equivalent to

6193—62

e1y=0; 1 m _
(d1) >~ E (brbak + S2621)(d3)

and
m

1 = L
()% < afl = D (cxbue + s1461)} ()
k=1

which are clearly equivalent to (:v) of Theorem 1.

Therefore, from Lemma 1, there exist a time ¢ > ¢, and a positive constant
M which are indepentent of the initial vector ¢ such that

pi(t) +p2(F) 2 M. (16)

We claim that (16) implies the trivial solution of (4) is unstable. If not, for
any sufficiently small positive constant ¢ < 1, there exists § = §(o,e) > 0
such that ||€|] < 6 implies ||z(2)]| < € for t > ty. Let € be small enough such
that

m
ch—i-slk < hy, and
k=1

ch-}—.slk +601<M‘.

155



156

Thus, from (7), (2¢),(13), (A) and (B), we have for ¢ > t,,

pi(t) +pat) = V(t,Z(t,.)) + [le@)]]
u(llZ (2, ) + ()11

m

u(e(l + Z(ck + s11))) 4+ ™ |

k=1

IN

IA

M,

A

which contradicts to (16). This completes the proof of Theorem 1.

To illustrate the application of the preceding theorem, let us consider the
neutral nonlinear scalar integro-differential equation

S(e0) = () (1 - AW) - [ Kt 5)7 (5)ds) = alt)e (1) +
(B (= AW) + [ (r(t, )7 () + bl 8)a*())ds, (17)

where z € R; v, B and 7 are positive constants; 6 and A(t) are defined as
in system (4); a(t), b(t), c(t), k(t,s),r(t,s) and p(t, s) are scalar continuous
functions for t > 0 and 0 < s <'t.

Let ¢(t,s) be a continuously differentiable function satisfying

Oq(t
WL _prs), 0ssst, (18)
then, (17) can be written as the following form:

(0 = lt)a (1 = AW) = [(k(t, )27 (5) + 1,2 (5)) s

= g(B)e* (t) + b(t)z™ (1 — A(t)) + /9 “r(t, 8)a™ (s)ds, (19)

where ¢(t) = a(t) — q(t,1).

The above condition (18) was first introduced by Burton (see [4]), which
shows that the function a(t) can be vanished at any t > 0.

Systems (17) and (19) cover a very extensive class of nonlinear neutral
integro-differential equations. For example, while b(t) = c(t) = k(t,s) =
r(t,s) =0 (0 < s < t)and v = 1, (17) is reduced to well known linear
retarded Volterra integro-differential system whose stability and instability
have been studied well (see [4]) based on the mothod of Liapunov functionals.
On the other hand, (17) and (19) may include some important linear and
nonlinear integro-differential systems considered in [4,7,13 — 15,18, 19, 26] as
special cases.



Now, for the most general nonlinear case, let us apply Theorem 1 to inves-
tigate the instability of system (19) under the following assumptions

e
(i) forallt>0, g(t)=a(t)—q(tt)>0, / g(t)dt = +o0;
. to

(i) forallt>0, [c(t)] < c= const.

/+°o |k(t,s)|ds < k = const., /+00 lq(t, s)|d
] , ]
oo r(t, 5)|
J

ds < r = const.;
9(t) ’

(i) foranyu>0, Jim [“((t o)l +lgt,9) + 20

We first rewrite system (19) as the form of system (4)

Lo = 9024+ F (),

where Z(t,.) = z(t) — D(t,.) and

D(t,.) = e(t)a™ (t — A( +/ (k(t, s)27 (s) + g(t, )2*(5))ds,

F(t,.) = ()ﬁw— +/ (t,8)z™
+g(t)(z"(t) — (2(t) — D(¢, )) )-

Clearly,

ID(t,) < IO + [ (kG la()™ +lat 9)lla(s))ds

where |Z(t)| = sup_a()<s

<0 | (t+s)|. Furthermore, if v > 1, then, from (4¢)
we easily have for |z(s)| < h

(s<t, 0<h<+400),

|2*(t) — (z(t) = D(t,.))"| < N(», h)|D(2, )],
N(v,h) = v(h + ch® + kb + gh*)*~!. Thus,

where

[F(t,)] < @I + N, hg(t) et la(0)*
+ [ 9)lla()1™ + N Bg(@) lk(t, )lle() + la(t,o)a(e)*))ds.
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Therefore, the functionals D(t,.) and F(¢,.) satisfy the estimations in (A)
with m = 3.

Now, define the Liapunov function V'(¢,z) in (B) as V(¢,z) = z?, then, it
is easy to see that, while v can be written as the ratio of odd integers, (B) is
also valid with 6, =2, 6; =1, 03 =% a =1, ¢(t) =2 and r(t) = 2¢(t) .

Observe that for v > 1, N(v,h) — 0(h — 0) and for v = 1,N(v,h) = 1,

hence, from Theorem 1 we have

Proposition 1.  In addition to (i) — (322), assume further that:
(iv) v is the ratio of odd integers, and

1 <v <min{B, B2,711, 72};

(v)1 forv=1, bby+ r§2 +2(cby + kb3 + q) < 1;
(v)y forv>1, bby+rd <1,

where ‘5
o 1, i B=1(
51(51)_{0, if Bi>1

(
(
Ty 1, Zf ﬁ2=’/(’y2=
s ={y § 530S
Then, the trivial solution of (19) is unstable.

Remark 3. If p(t,s) = ¢q(¢,s) = 0 for any § < s < ¢, the condition (:v)
of Proposition 2 can be replaced with the following weaker the condition (zv'):
(v') v is the ratio of odd integers, and

0 <v<min{f2, 72}, A =1, m>L

Remark 4.  As system (17) is reduced to the systems considered in
[4,7,13-15,18,19,26], the instability conditions given in Proposition 2 have sym-
metry with the stability conditions given in there.

Remark 5. Clearly, when the dimension of (4) is very high, as done in
[17,20,21,24-26,28], we can further extend the preceding analysis techniques to
the instability analysis of the large scale systems of (4).
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