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On solution semigroups of
functional differential equations

A PEEEEE (Toshiki Naito)
HifERX H EE (Jong Son Shin)

1 Introduction

We consider ﬂecessary conditions so that the solution operators of au-
tonomous linear functional differential equations make a Co-semigroup. In [4]
Kunish and Schappacher have studied similar problem by taking the space of
integrable functions as the phase space. We will attack the problem on the
phase space which is as general as possible.

There are many works of the semigroup theory of several kinds of equa-
tions with delay by many authors, cf. [2]. A goal of the theory is the spectral
decomposition of the phase space according to the separation of the spec-
trum of the infinitesimal generator of the solution semigroup by a vertical
line RA = b of the complex A plane. In the usual works we have begun to
prove the existence and the uniqueness of the solution, and then obtained
the representaion of the infinitesimal generator. Using this, we have com-
puted the point spectrum of the generator, and the generalized eigenspaces.
After that we have known that the generalized eigenspaces are of finite di-
mension, and that, on the subspace generated by generalized eigenspaces for
the eigenvalues A such that ®A > b, the solution are defined on (—o0, o).
Also, on the remaininig component of the decomposition the semigroup has
the exponential growth order less than b as ¢ — co.

However, dealing with the measure of noncompactness, we have been hav-
ing an impression that the decomposition theory would be valid for the general
Co semigroup. Let T'(¢),t > 0, be a Cy semigroup of bounded linear opera-
tors on a Banach space X, and A its infinitesimal generator. It is well known
[3, 2] that the spectrum o(A) and the point spectrum P,(A) are mapped in
the following manner.
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Theorem 1.1

(i) exp(to(A)) C o(T(t)),t > 0. |

(i) P,(T(t)) = exp(tP,(A)), plus possibly, the point u = 0. If p €
P,(T(t)) for some fized t > 0, where u # 0, and if {\,} is the set of the
roots of e = u, then at least one of the points A, lies in P,(A). Furthermore
N((ul = T(®)*),k = 1,2,---, 1s the minimal closed subspace containing the
linear independent subspaces N((A,I — A)¥), where n ranges over all X, €
P,(A).

All the element of o(T'(¢)) is not completely determined by o(A); we know
only the correspondence between the point spectum of T'(¢) and that of A.
In general, o(T'(t)) may contain some points out of exp(to(A)). If T'(t) is a
compact semigroup, o(T'(t)),t > 0, consists of the point spectrum only. If
we know in advance that o(7'(¢)), or some subset of it, consists of the point
spectrum only, then we can apply Assertion (ii) to i11vestigate the spectra
of T(t) and A. Even in such a case, there is a remaining problem whether
o(A) contains spectrum other than point spectrum or not. Assertion (ii) says
nothing about the possibility that, for a point p € P,(T'(¢)), there exists a
point A € o(A)\P,(A) such that e?* = p.

To deal with the problem, we have found that the method of the measure
of noncompactness is effective. However, Webb has already obtained in his
book [6] the same extension of the above correspondence between the spectra.
In spite of importance, his results are not used so frequently in books and

papers in the area of delay equations untill today. So we again demonstrate
here the results.

2 Normal eigenvalues of (|, semigroup

To begin with we recall some fundamental facts. Let S be a closed linear
operator with dense domain in a Banach space X. The complex number ¢ 1s
said to lie in the essential spectrum of the operator S whenever at least one
of the following conditions holds:

(1) R(¢I —S), the range of (I — .5, is not closed;

(ii) Ur>oN((¢I = S)") is of infinite dimension,(/N(U) being the null-space
of the operator U);



(iii) The point ( is a limit point of the spectrum of S.

Let p(S) denote the resolvent set of S, o(S) the spectrum of S, F,(S) the
point spectrum of S, and E,(:S) the essential spectrum of S. We call points
in N,(S) := 0(S)\E,(S) normal eigenvalues of S.

Lemma 2.1 ([1]) Let S be a closed linear operator densely defined in the Ba-
nach space X with finite-dimensional generalized eigenspace for the complex
number (o. Then the point (o of the spectrum of S is a normal eigenvalue
of S if and only if the resolvent R((,S) = ((I — S)™* is analytic in the
neighborhood of (o and has a pole at (p.

Let a(B) be the Kuratowskii measure of noncompactness of a bounded
set B in X defined by

a(B) = inf{d : B has a finite cover of diameter < d}.

If T is a bounded linear operator on X, define o(T') to be the infimum of
k > 0 such that o(TB) < ka(B) for all bounded sets B in X. Obviously,
a(T) < |T|, (|T| being the norm of the bounded linear operator 1'). It is well
known that the spectral radius r,(7T") and the essential spectral radius r.(T')
are given as

ro(T) = lim [T"Y",  r.(T) = lim o(T™)"™

n—oo n—0o0

Let T'(t),t > 0, be a Cp semigroup of bounded linear operators on X, and
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A its infinitesimal generator. The growth bound w, and the essential growth -

bound w, of T'(t) are defined as

log IT(t)] _, log|T()

ws ;= lim ,
t—o00 t t>0 t
we 1= Tim 22T W), logalT(t)
t—00 t t>0 2

Then w, < w;, 7,(T(t)) = exp(tw;), r.(T(t)) = exp(tw.),t > 0. Hence if
o € o(T(t)) and if |po| > exp(tw.), it is a normal eigenvalue of T'(t); Lemma
2.1 implies that po is a pole of R({,T(t)). Suppose that Ao € o(A) and that

e = 15. Then we will show in Appendix that )g is a pole of R(), A). As a

result, we have the following theorem.
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Theorem 2.2 Suppose that Ao € o(A). If e is a normal eigenvalue of
T(t),t > 0, then Ag is a normal eigenvalue of A. In other words,

exp(tE,(A)) C E,(T(t))  for t>0.

Set
Bs = sup{RX: A € 0(A)},

B. =sup{RA: A€ E,(A)}, B.=sup{RA: ) e N, (A}
Then max{8, Bn} = Bs < w,. From Theorem 2.2, we have . < w..

Theorem 2.3 Suppose that w, < w;. Then the following results hold:

(1) There exists at least one point A € N,(A) such that RA = w;: conse-
quently, B, = B, = w, and N,(A) # 0.

(ii) For any b,w, < b < ws, the set o(A) N {X : R > b} -consists of finite
normal eigenvalues of A, and sup{R\ : XA € o(A), R\ < b} < b.

Proof Let bbe as in (ii), and ¢ a fixed positive number. Since e*e < e <
e™s there exist finite points gy, g, -+, pg in o(T(1)) N {p : |u| > €}, they
are all normal eigenvalues of T'(¢) and at least one point, say, ui, satisfies
|u1| = €. Since the generalized eigenspace for py is of finite dimension,
Theorem 1.1 implies that there exist finite points in P,(A) such that e = p;.
Of course, they are on the line RA = w, > w, > fB.. Thus they are all normal
eigenvalues of A: Assertion (i) holds. Similarly, for each j there are finite
normal eigenvalues of A such that e = p;. Conversely, suppose that A lies
in o(A)N{X: RA > b}. Since b > w, > fe, A is a normal eigenvalue and
et = yu; for some 1 < j < ¢q. Summarizing these results, we have the first
result in Assertion (ii). Since the same result holds for any b’ € (we,b), we
have the second result in Assertion (ii).

Notice that, in general, the following formula follows from the similar

argument:

w, = max{we, O, }.
If Ao is a pole of R(\, A) of order m, then

N((AoI =A%) = N(MI—=A)™), R((eI—A)") = R(Ml—A)™), k>m,



X = N((Do — A)™) @ R((Aol — A)™).

Namely, Ao has a finite index, and m is its index, cf. [6] p.163. The com-
ponents of this direct sum are non trivial, invariant, closed subspaces of the

semigroup T'(t). In fact, the following formula holds.

Theorem 2.4 Let T(t) be a Co semigroup on a Banach space X, and A its
infinitesimal generator. Suppose that (A — AI)™x = 0. Then

Z
If we read this formula for the deﬁnition of T(t)x for all t € (—o0,0), then

T(s)T(t)z = T(s + t)z for all s,t € (—o00,00). Namely, T(t),t € (—o0,0),
becomes a group on N((A — AI)™).

A)\I

?rl""-

Proof This holds clearly for the case m = 1. Suppose that (A — AI)%z = 0.
Since (A — A)z; = 0 for 2y := (A — M)z, it follows that T(t)z; = ez,
or T()Az = AT(t)z + eM(A — M)z. Since T(t)Az = T'(t)z, the function
y(t) =T (t)z satisfies the equation | o

y'(t) = dy(t) + eM(A — A)z.

Solving this equation, we have that T'(t)z = e*z +te*(A— M )z: the formula
in the theorem is valid for m = 2. Similarly, the general case is shown by
induction.

If (A—M)™z =0, then (A — AI)¥z = 0 for k > m; hence we can write

tk
T(t)z ”Zkl (A= AD)rz

It is easy to see that T'(s)T'(t)z = T(s + t)z for s,t € (—o0, 0).
In general, Webb has given the following result, Proposition 4.15 [6].

Theorem 2.5 Suppose that A = {};:7 = 1,2, . ,q} be the set of all normal
eigenvalues of A such that RA\; > b > w.. Let m;j be the index of A;, and
set M = N((\I—A)™),5 =1,2,---¢q, My = NI, R((MI — A)™7). Then
X =M & My, where M = M, @ My @ --- @& M,. Let P; be the projection in
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X such that P;X = M;,5 =0,1,2,---q, and P = PL+ P, +--- + P,. Then
T(t)Pjx = PT(t)x for allz € X,j =0,1,2,---,q. Let ¢ be a constant such
that max{R\ : A € 0(A) \ A} < ¢ < b. Then there exists a constant K > 1
such that |T(t)Pyz| < Ke®|Pyz| for all z € X,t > 0. The restriction of A
to M, denoted by An, s a bounded operator with the spectrum consisting of
A, T(t)Pz = exp(tAp)Pz for all z € X,t > 0, where exp(tAp) s regarded
as an exponential function of the matriz tAy;, and there exists a constant
K > 1 such that |exp(tApy)Pz| < Ke|Pz| forz € X andt < 0.

3  The solution semigroup of FDE

Assuming that the solution operators of a functional differential equation
make a Cj semigroup, we will find conditions, on the equation and the phase
space, by which we are able to compute the resolvent of the generator.

Suppose that the semigroup T'(¢) is a solution semigroup of a linear au-
tonomous functional differential equation. More precisely, from the following
equation T'(t) is defined on a Banach space B consisting of certain functions,
$,1, e.t.c., mapping (—oo,0] into a Banach space E. Let L : B — F be a
linear, bounded or unbounded operator, where D(L), the domain of L, may
be a proper subspace of B. We consider the equation

2'(t) = L(z,), | (3.1)

where z,(0) = z(t+0),0 € (—o0,0]. Suppose that for any ¢ € B there exists a
unique solution z(t, ¢) satisfying the equation in a certain sense for ¢ € [0, c0)
and the initial condition zo = ¢. Then the solution operator T'(t) is defined
by T(t)¢ = x¢(¢),t > 0,¢ € B, where (z:(¢))(0) = z(t + 0, 4), 6 € (—o0,0].
The fundamental assumption is the following.
(AO) T'(t) is a Cp semigroup on B, and

[T'(t)$)(8) = [T(t + 0)¢)(0) as long as t+0 > 0.
Then we can derive the following result from Theorem 2.4.

Theorem 3.1 Let A be the infinitesimal generator of the solution semigroup

T'(t) of Equation (3.1). If ¢ satisfies the equation (A — AI)™¢ = 0 for some
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AeC,m>1, then

mlgk

”Z (A = AI)*¢)(0).

Proof Set ¢y = (A —M)*¢,k =0,1,---. Of course, ¢y = é, and ¢, = 0 for
k > m. Applying Property (A0), we have that '

o t+9
tzk'¢ t+9)2

as long as t + 6 > 0. From the binomial theorem, we have

> L :!9) i ij’ P30

k=0

!Q?

= =]

Thus we have an exact expression of ¢;() :
20 o
i(0) = e 3 Fﬁblﬁ-j(o)
=07

The expression of ¢(f) is the case k = 0.

For any A € C and = € E, define a function €y ® 2 : (—0,0] — E by
(ex ® 2)(0) = ez, 6 € (—00,0]. Then the solution of (\[ — A)¢ = 0 is
written as ¢ = ey ® x, where z = ¢(0). If N(Al — A) # {0}, it follows that
ey ®z € D(A) for some 2 # 0. To proceed further, we make an assumption
on the generator A.

(A1) If ¢ € D(A), then ¢ € D(L) and (A4)(0) = L(¢).

For A € C define

Ly(z)=L(ex®2) and ANz = Az — Ly(2)

as long as the right-hand side has a meaning. Namely, Ly, A()\) are linear
operators on F with the domain D(L)) ={z € F:e\®z € D(L)}.

Theorem 3.2 Under the assumptions (A0,1), A lies in P,(A) if and only if
N(AW) # {0).
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Up to this point we need no assumption on the phase space B whenever the
solution operators make a Cy semigroup. To solve the equation (A] —A)¢ = ¢
in the space B, we put the following assumptions which appear in the system
of axioms by Hale and Kato.

(B1) There exists a constant H such that |¢(0)| < H||$|| for ¢ € B,
where | - | is a norm in £, and || - || is a norm in B.

(B2) If {¢"} is a Cauchy sequence in B, and if the sequence {¢"(0)}
converges to a function ¢(6) uniformly on every compact interval of (—o0,0],
then ¢ lies in B and lim,_ ||¢" — ¢]| = 0.

(B3) The family of operators S(t),t > 0, on B defined as

[ #(0) for 0 > —t
[S(t)¢1(0) = { b(t +6) for 0.< —t

is a Cy semigroup on B.

Before proceeding further, we ovserve that, from (B2), the integrals in B
and E are commutative in the following sense:

(C1) If u : [a,b] — B is a continuous function such that u(t)(¢) is contin-
uous for (t,0) € [a,b] x (—o0,0], then

MU(U dt} (0) = /:u(t)(ﬂ) dt 6 ¢ (—o0,0].

Under these assumptions we can solve the equation (Al — A)¢ = 1 as
follows. Let B be the infinitesimal generator of S(¢), and wg the growth bound
of S(t). Notice that R(\, B) := (M — B)™! is well defined for A > wy. Set

wg = max{wo, 0}.

Theorem 3.3 If (M — A)¢ = and if R\ > wg, then
¢ =ex®(0) + R(A, B)ih — A7ex @ ¥(0).

Define an operator My on B by My = R(\, B)y — A 'e, ®@¢(0), o € B,
where R\ > wd. It is a bounded linear operator on B, and the solution of
(A — A)¢ = 1 is written as ¢ =€) ® ¢(0) + Myyp. To determine ¢(0), we
require that ey ® ¢(0) € D(L) as long as ¢ € D(L). Namely, we assume the
following property for L.

(A2) If RA > wi, then D(Ly) = {4(0) L€ D(L)}.



Theorem 3.4 If A € p(A), and if R\ > wg, then ¥(0) + L(Mxyp) € R(A(X))
for every ¥ € B, and

RO\ AYS = &2 ® AQ) " ($(0) + L(Myp) + Myv.
Since A = Al — R(\, A)™%, we obtain a representation of A as follows.

Theorem 3.5 The function ¢ lies in D(A) if and only if § € D(L) and
¢ — A\"lex @ L(¢) € D(B) for some R\ > wg; and, for such a ¢,

Ap =&y @ L($) + B(¢ — \7'ex ® L(9)).

4  Appendix

We present the proofs of Theorems 1.1 and 2.2. They become rather
simpler than the ones in [3], [6] in several points by the frequent employment
of the following operator By(¢),A € C,t > 0, cf. [5]:

t
By(t)z = / AT (e ds =€ X.
0

Lemma 4.1 B,(t) is a bounded linear operator on X having the following
properties: ‘

(M — A)B\(t)z = (eI = T(t))z z€ X,
By(t)(M\ — A)z = (e = T(t))z z € D(A).
Proof of Theorem 1.1
(1) If p = e € p(T(t)), then (A\I — A)~! is given as
(M — A)™ = (T =T () Bi(t) = Ba(t)(e™] — T(1)™".

Hence, if A € o(A), then e** € o(T(t)),t > 0. ,
(ii) Suppose that p = e** € P,(T(¢)), and that (e'"*] — T'(t))z = 0,2 # 0.

Then the function S(s) = ¢™**T(s)z is a continuous function with ¢ period.
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Its Fourier series is (C-1) summable: S(s) = (C —1) ¥ e*>™"/t ]z where J,z

1s given as

1
tethn

1 ot . 1 rt
JniE — ?/ 5—2mnu/tS(’U)$ du = {/ B—UA"T(U)CU du = BAn<t)l',
0 0
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where A, = A+2min/t. Hence we have T'(s)z = (C-1) 3 e**» J,.z; in particular,
z = (C-1)Y J,z. Since z # 0, there is at least an n such that J,z # 0. From
Lemma 4.1 it then follows that

(A — Az = (ten) (e — T(t))z = (te™) (e = T(t))z = 0.

Hence A, € P,(A), and J,z € N(A\, I — A).

Conversely, suppose that (A\,] —A)z = 0,z # 0. From Lemma 4.1 we have
that z € N(e*I — T(t)). Thus we have proved the correspondence between
the point spectra and the one between the null spaces for k = 1.

We set My = N((uI — T(t))¥),k = 1,2---, to prove the correspondence
between the null spaces for k£ > 2 by induction. For example, we show
the proof for £ = 2. Suppose that z € M;. Then (uI — T'(t))z € M ;
hence from the result above (ul — T'(t))z = (C-1) ¥, Jo(ul — T(t))z. Since
J.T(t) = T(t)Jn, it follows that (pI — T'(t))(z — (C-1) ¥, Joz) = 0, that is,
z, =z — (C-1) ¥, Jox € M;. Next,consider each J,z. Since J,z € M, for
z € M,, we again have that z,; := Jyz — (C-1) ¥, JmJnz € M. Finally
we consider each J,,J,z for £ € M,. Observe that, by Lemma 4.1, for every
r,s > 0,k,A € C and z € X, '

(kI — A)(AI — A)B,(r)By(s)z |
= (kI — A)B.(r)(A — A)By(s)z = (™I — T(r)) (eI = T(s))z.

This implies that, if z € My, then By, (¢) By, (t)z € N((AnI—A)(AI—A)) for
every m,n. Since By_(t)By,(t)z = t2etOm+in) JJ x. we know that J,,J,z €
N((AmI = A)(And = A)). If m = n, then JnJpz = Jlz € N((MI — A)?). If
m # n, then it is easy see that N((A\,I — A) (Al — A)) = N((A I — A)) @
N((AI—A)). Consequently, it follows that =1, z,1, Jm Joz are all in the space
U, N((AnI — A)?). Therefore, z lies in the minimal closed subspace generated
by UpN((Ad — A)?).

It is easy to see that the converse relation holds.

Theorem 4.2 If Ao € o(A) and if {p := € is a pole of R(¢,T(t)), t > 0,
then A is a pole of R(A, A).

Proof Since (p is an isolated point in o(7'(t)) as a pole of R((,T'(¢)), and
since €“4) C o(T(t)), there exists an r > 0 such that, if 0 < [A — Ao| < 7,

-
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then A € p(A) and e** € p(T(t)). As is shown in the proof of Theorem 1.1, it
follows that, if 0 < |A — Xg| < r, then

(M — A7 = By(t)(e?] = T(t))™ = (e = T(t)) ' Ba(2).
Let k£ be the order of the pole Co, that is,

(CI - T(t))—l = (C - CO)_kP—k + (C — Co)—k+1P_k+1 + -

in some neighborhood of {, with bounded linear operators P_g, P_gy1, -, P_ #
0. Thus in some neighborhood of A\g we have

()\I . A)—l — B)\(t) [(6“‘ . et)\o>"‘k P_k + .(et)\ - et/\o)—k+1 P_k_H L.

Taking a Taylor expansion of e** around the )¢ in the ) plane, we have that

A = Ao)2t?

e — et = (N — No)te™ + ( o1 e 4

Similarly, By(t) has also a Taylor expansion around Ag in the A plane. Thus
in a neighborhood of )\ we have a Laurent expansion of (A — A)~! starting
from the power (A — Ag)~* apparently:

(A= A)™* = (A = do)F [tFe ™% By, (1) P | + -

If the terms with negative power of A — g are all vanishing, then (A — A)™!
becomes analytic at Ao, and A\g € p(A); it is a contradiction. Hence, (A\]—A)™?
has indeed a pole at Ay of order < k.

Proof of Theorem 2.2 Suppose that A\ is a point in ¢(A), and that
(o := € is a normal eigenvalue of T'(¢). Then T'(¢) has a finite dimensional
generalized eigenspace for (o, and from Lemma 2.1 (, is a pole of T'(t): Since
N((Aol —A)*) C N((GI =T )%,k =1,2,-- -, it follows that A has a finite
dimensional generalized eigenspace for Ag. From Theorem 4.2 and Lemma
2.1, Ap is a normal eigenvalue of A : Theorem 2.2 holds.

The following result is deduced from Theorem 2.2 immediately.

Theorem 4.3 If A € o(A) and RA > w,, then X is a normal eigenvalue of
A.
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In the rest of this paper we add an elementary proof of this theorem. They
consist of several parts.

Proposition 4.4 If Ay € o(A) and RAy > w,, then Ao lies P,(A), it is an

isolated point in o(A) and its generalized eigenspace is of finite dimension.

Proof Set R\ = by, SAo = ¢o. Since |et*0| = et > e for every t > 0, we

have et* € N,(T(t)) C P,(T(t)), which implies that

2min
t

Ao + € P,(A) (4.1)
for some integer n. Suppose that, for every ¢ > 0, there exists an n = n(t) # 0
for which Condition (4.1) holds. Let s be a fixed positive constant. Then
p(t) := exps(Xo + 2min(t)t™!) € P,(T(s)) for every ¢ > 0. It is clear that
()] = e > e = r (T(s)). Since normal eigenvalues are isolated, the set
P,(T(s))N{¢ € C :|¢] = e} contains only finite points e**!, e, -+,
Hence it follows that, for every ¢ > 0 there exists an m,1 < m < N, such
that u(t) = e**m. Set S\ = ¢n. Then we have

eS|

21n
S (co + _t—> = 8Cpy + 274

for some integer £. Thus, for every ¢t > 0 there are integers £, m,n,n # 0, such

that
1_1 Cm—CO—*_Z
t n o s|’

However the numbers apearing in the right-hand side are at most countable.
This is a contradiction. Therefore, there exists a ¢ > 0 such that Condition
(4.1) holds only for n = 0, which implies A\g € P,(A).

Since e is a normal eigenvalue of T(t), it has a finite index with a
generalized eigenspace of finite dimension. Therefore, from Theorem 1.1 .Xg
has also a finite index as an eigenvalue of A, and its generalized eigenspace 1s
of finite dimension.

If )\ is an accumulation point-of o(A), then e**,¢ > 0, is an accumulation
point of o(T'(¢)) by Theorem 1.1. This is a contradiction since ¢'* is a normal
eigenvalue of T'(t). Hence, Aq is an isolated point of o(A).



To show ) is a normal eigenvalue of A, it remains to prove that Ao/ — A
has a closed range. We devide the proof into several steps, in which Lemma
4.1 plays an importnat role.

Lemma 4.5 Let T : X — X be a bounded linear operator, and {z,} a
bounded sequence in X such that the sequence {(AM — T)z,} converges. If
Al > re(T), then {z,} has a convergent subsequence.

Proof Set B = {z, : n =1,2,---}, and D = {y, : n = 1,2---}, where
Yn = (Al — T)z,. By induction we see that, for k,n =1,2,---,

)\kiL’n — Tkil,‘n + Tlc—-lyn 4+ /\Tk—Zyn 4 )\k—?Tyn n )\k—lyn,
or
a(A\*B) < o(T*B) + a(T* ' D) + a(AT*1D) + - - - + a(M\~2TD) + a(\*-1 D).

Since D is relatively compact, T°D is also relatively compact for every i =
1,2, : that is, a(T"D) = 0. It follows that

IMfa(B) = a(X*B) < o(T*B) < o(T*)a(B).

Suppose that a(B) > 0. Then we have [A\[* < o(T*), or [\ < a(TF)VE k =
1,2,---. This contradicts the assumption on A; hence, a(B) = 0, or B is
relatively compact and the proof is complete.

Lemma 4.6 Let A be the infinitesimal generator of T(t). Suppose that {z,}
is a bounded sequence in D(A) such that the sequence {(A\ — A)z,} converges

to yo. If R\ > we, then {z,} has a convergent subsequence with a limit point
2o € D(A), and (A — A)zo = yo.

Proof Sety, = (M — A)z,. Since z, € D(A), we have
By()y, = BA(t)(M — A)z, = (] — T(t))z,,.

Since B)(t) is continuous, the sequence { B)(t)y,} converges to Bj(t)yo. From
Lemma 4.5 the sequence {z,} has a convergent subsequence {z,;;} with a
limit point zo. Since {yn(;)} converges to yo, and since (AI — A) is a closed
linear operator, it follows that zo € D(A) and (A — A)zo = yo.
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Lemma 4.7 Let S be a closed linear operator on X . Suppose that a bounded
sequence {z,} in D(S) has a convergent subsequence whenever {Sz,} is a

convergent sequence. Then R(S) is closed.

Proof Suppose that {y,} is a sequence in R(S) convergent to a point yo.
Take z,, € D(S) such that Sz, = y,. If {z,} is itself a bounded sequence,
from the assumption in Lemma it follows immediately that yo € R(S). In
general case, set N = ker S,a, = inf{|z, — w| : w € N}. Then there exist
a w, € N such that a, < |z, — ws| < an(1 +1/n),n = 1,2,---. Suppose
that {a,} is unbounded. Then there exists a subsequence, denoted by {a,}
again, such that lim, a, = oo. Set z, = z, — wp,un, = 2z,/|zn|- Then
lu.| = 1, Su, = yn/|2n —w,| — 0. From the assumption in Lemma, by taking
a subsequence if necessary, we can assume that u, — ug € D(S) as n — oo,
and Sug = 0. Since ug € IV, it follows that

an < |xn - (wn + |5L'n - wnluo)l
= |lzn — wa|(un — vo)| = [#n — walun — uo| < an(l+1/n)lun — uol,
that is, (1 +1/n)"! < |u, — ugl. Since |u, — ug| — 0, this is a contradiction.

Therefore {z, — w,} is a bounded sequence and y, = S(z, — w,); hence

yo € R(S).

As a consequence of Lemmas 4.5,4.6 and 4.7, we obtain the following,

desired result.

Proposition 4.8 IfR\ > w,, the ranges R(e—T(t)),t > 0, and R(A\[—A)
are closed.
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