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ABSTRACT. We shall devote ourselves to a study of constructing the weak solutions to parabolic systems
of the variational flow type associated with the quadratic functional with the initial and boundary data
from a suitable Sobolev space, subject to the two-sided conditions. In order to do this, we shall present
an approach made by extending Rothe’s method which is useful for solving the Cauchy problem and the
initial- boundary-value problems for many sorts of equations.

$0$ . INTRODUCTION

The aim of this paper consists in investigating the existence of the variational flow related to
the quadratic functional with the initial and boundary data from some Sobolev space, obeying the
two-sided conditions.

In this context, M.Struwe [10] has established the global a-priori H\"older estimate of the weak
solutions to the equations of the same type as described here, but not necessarily restricted to the
variational structure, and, in the joint work [3] with M. Giaquinta, has weakened the condition on
the parabolic constant to be supposed there. Further, also, improving the condition on the parabolic
constant needed in [3], P.Tolksdorff [11] has achieved the a-priori H\"older estimates and, hence, the
existence result. As long as the dimension of the definition domain is limited to two, with the less
restricted condition, what is called the one-sided condition, W.Wieser [12] has demonstrated the
existence of the strong solutions to the equations imposing the variational structure similar to ours
but that he has moreover assumed to place the Lipshitz continuity on the coefficients in the main part
of equations.

All the keys leading to these results are the a-priori H\"older estimates up to the boundary. The
authors of the works cited above have essentially used the H\"older continuity of the initial and boundary
data. On the other hand, our situation doesn’t allow such estimation at the vicinity of the boundary
in view of the lack of the hypothesis of the H\"older continuity of them. Therefore, we have to look for
a way to overcome this difficulty.

For this purpose, we shall present a scheme which adds Rothe’s approximation method to the direct
method in the calculus of variations. To put it more concretely, we shall introduce a family of function-
als whose first variations take form of the difference partial differential equations representing Rothe’s
approximation to the differential equations prescribing the variational flow under consideration.

Apart from the routine treatment, our approach is characteristic in some respects that we shall
resort to the minimality of the functionals and that we shall perform the local estimates for the
solutions in question. See [5], [6] and [7] in this regard.

Key words and phrases. variational (Morse) flow, parabolic system, quadratic functional, Rothe’s approximation,
direct method in the calculus of variations.
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These two devices are main tools for our reasoning, and do work effectively. In fact, the first one
permits, despite of merely imposing the measurability on the coefficients standing in the principal
part of the equations, the energy inequality for those solutions as usual known for the heat flow
between two manifolds [1]. The legitimacy of the energy inequality is usually ensured on the $\mathrm{b}\mathrm{a}s$ is
of the smoothness of the coefficients. For instance, compare Lemma 2 with [1] and [12]. The second
one enables us to achieve the higher integrability of the gradients of approximate solutions and to
construct weak solutions under the more relaxed initial condition without the H\"older continuity than
is involved in [11] and [12], while the requirements on the parabolic constant are both weaker than
ours. This leaves us a suggestion of the possibility of some extension of this paper. For more details,
see Remark 2.1 and the subsequent paragraph.

To make our explanations clear, we shall start by preparing for it. Let $\Omega$ be a bounded domain
in $\mathrm{R}^{m},$ $m\geq 2$ , with Lipschitz boundary $\partial\Omega$ . $W^{1,p}(\Omega, \mathrm{R}^{M}),W_{0}1,p(\Omega, \mathrm{R}^{M}),$ $M\geq 1$ , denote the usual
Sobolev spaces. Particularly, we write $H^{1}(\Omega, \mathrm{R}^{M})=W^{1,2}(\Omega, \mathrm{R}^{M}),$ $H_{0}^{1}(\Omega, \mathrm{R}^{M})=W_{0}^{1,2}(\Omega, \mathrm{R}M)$ .

Let $T$ and $B$ be arbitrary assigned positive numbers. In what follows, we use the notations:

$Q=(\mathrm{O}, T)\cross\Omega$ and $S_{B}=\{u\in \mathrm{R}^{M} ; |u|<B\}$ .

Throughout this paper, we shall fix $u_{0}$ as a mapping belonging to $H^{1}\cap L^{\infty}(\Omega, \mathrm{R}^{M})$ with $||u_{0}||\infty,\Omega\leq$

$B$ .
For this $u_{0}$ , we introduce the function spaces:

$H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M})=\{u\in H^{1}(\Omega, \mathrm{R}^{M});u-u_{0}\in H_{0}^{1}(\Omega, \mathrm{R}^{M})\}$,
$H_{u_{0},B}^{1}(\Omega, \mathrm{R}M)=\{u\in H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M});||u||_{\infty,\Omega}\leq B\}$ ,

which are convex and closed in the space $H^{1}(\Omega, \mathrm{R}^{M})$ .
We shall concern ourselves with a study of the existence of the weak solutions to parabolic systems

of the form

(0.1) $\frac{\partial u^{i}}{\partial t}=D_{\alpha}(A^{\alpha\beta}(x, u)D_{\beta}u^{i})-\frac{1}{2}A_{u}^{\alpha}.\beta(X, u)D\alpha ujD\beta uj$ in $Q$

$(i=1,2, \cdots, M)$

with the initial and boundary conditions

$u=u_{0}$ on $\{0\}\cross\Omega\cup(0, T)\cross\partial\Omega$ ,

where $D_{\alpha}=\partial/\partial x_{\alpha}(\alpha=1,2, \cdots, m)$ , while $A_{u}^{\alpha\beta}.\cdot=\partial A^{\alpha\beta}/\partial u^{i}$ .
Here and elsewhere, the summation convention is used.
The coefficients $\mathrm{f}^{A^{\alpha\rho}}$ } are assumed to satisfy the conditions:

(1) $A^{\alpha\beta}=A^{\alpha\beta}(x, u)$ : $\Omega\cross S_{B}arrow \mathrm{R}$ is measurable in $x\in\Omega$ and continuously differentiable in $u\in S_{B}$

with $A^{\alpha\beta}=A^{\beta\alpha}$ .
(2) There exist positive numbers $L,$ $\lambda$ and $a$ such that

$|A^{\alpha\beta}(x, u)|\leq L$ ,

(0.2) $A^{\alpha\beta}(X, u)\epsilon_{\alpha}i\xi_{\beta}^{i}\geq\lambda|\xi|^{2}$ ,

$\frac{1}{2}|A_{u}^{\alpha\beta jj}$. $(x, u)\xi_{\alpha}\xi_{\beta}|\leq a|\xi|^{2}$ $(i=1,2, \cdots M)$

for almost every $x\in\Omega$ and every $u\in S_{B}$ , and for all $\xi=(\xi_{\alpha}^{i})\in \mathrm{R}^{mM}$ .

We take a positive integer $N$ and put

$h=T/N$ and $t_{n}=nh$ $(n=0,1, \cdots , N)$ .
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For our investigation, we shall introduce a family of functionals:

(0.3) $F_{n}(u)= \frac{1}{h}\int_{\Omega}|u-u_{n-1}|^{2}dx+F(u)$ in $H_{u_{\mathrm{O}},B(\Omega,\mathrm{R})}^{1}M$ $(n=1,2, \cdots N)$ ,

wher. $\mathrm{e}$

$F(u)= \int_{\Omega}A^{\alpha\beta}(x, u)D\alpha u^{i}D\beta u^{i}dX$ .

The Euler-Lagrange operator of $F(u)$ is the right-hand side of (0.1).
Beginning with the initial data $u_{0)}$ we shall inductively determine $u_{n}$ as a minimizer of the functional

$F_{n}$ in $H_{u_{0},B}^{1}(\Omega, \mathrm{R}^{M})$ , the existence of which is assured by the sequentially lower semi-continuity of
$F_{n}$ with respect to the weak convergence and the coercivity of $F_{n}$ in $H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M})$ and, in addition,
$H_{u_{\mathrm{O}},B}^{1}(\Omega, \mathrm{R}M)$ being convex and closed in $H^{1}(\Omega, \mathrm{R}^{M})$ .

Henceforce, we shall use the compact expression for $A$ , there being not any confusion likely to arise.
The minimizer $u_{n}$ of $F_{n}$ in $H_{u_{0},B(\Omega,\mathrm{R})}^{1}M$ will satisfy the Euler-Lagrange equations of functional

$F_{n}$ :

$\int_{\Omega}(\frac{1}{h}(u_{n}-u_{n}-1)\varphi+A(x, u_{n})(Du_{n}, D\varphi))dx$

(0.4)
$=- \frac{1}{2}\int_{\Omega}\varphi A_{u}$ ( $x,$ u)n ( $Du_{n},$ Du)n $dX$ $(n=1,2, \cdots, N)$

for any $\varphi\in L^{\infty}\cap H_{0}^{1}(\Omega, \mathrm{R}^{M})$ such that $u_{n}\pm\epsilon\varphi\in S_{B}$ for sufficiently small $\epsilon>0$ .
By an approximate solution to system (0.1) with the initial and boundary data $u_{0}$ , we will mean an

$h$-step mapping $u_{(h)}(t)\in H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M}),$ $0\leq t\leq T$ , connected by the relations

(0.5) $u_{(h)}(0)=u_{0}$ , $u_{(h)}(t)=u_{n}$ for $t_{n-1}<t\leq t_{n}$ $(n=1,2, \cdots, N)$ ,

where $u_{n}$ is a minimizer of functional $F_{n}$ in $H_{u_{0},B}^{1}(\Omega, \mathrm{R}M)$ .
In this response, we shall define a Cauchy-Euler polygon

$u_{\langle h)}^{*}(t)= \frac{t_{n}-t}{h}u_{n-1}+\frac{t-t_{n-1}}{h}u_{n}$ for $t_{n-1}\leq t\leq t_{n}$ $(n=1,2, \cdots, N)$

and a mapping shifted backward in $t$

$\sim u_{(h)}(t)=u_{(h)}(t-h)$ .

This way, identity (0.4), which is of discrete form, is representable in the continuous expression:

$\int\int_{Q}(\frac{\partial u_{(h)}^{*}}{\partial t}\varphi_{(h)}+A(x, uh))((Du_{(h})’ D\varphi_{(h)}))dtdx$

(0.6)
$=- \frac{1}{2}\int\int_{Q}\varphi_{(h})(A_{u}x, u(h))(Du(h)’ Du(h))dtdX$

for any $h$-step mapping $\varphi_{(h)}$ generated by $\varphi_{n}\in L^{\infty}\cap H_{0}^{1}(\Omega, \mathrm{R}^{M})$ in the same manner as in (0.5) such
that $u_{(h)}\pm \mathcal{E}\varphi_{(h)}\in S_{B}$ for small enough $\epsilon>0$ .

To proceed our scheme, it is required that two-sided conditions

(0.7) $\lambda>2aB$

be placed on the elliptic constant $\lambda$ from (0.2), where $a$ is a positive number from (0.2), while $B$ is
such that $||u_{0}||_{\infty,\Omega}<B$ .

Throughout this paper, the same letter $C$ will be used to denote different constants depending on
the same set of arguments, particularly not on $h$ .
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1. MAIN RESULT

We shall give the definition of a weak solution to system (0.2) with the initial and boundary data
$u_{0}$ .

By a weak solution $u$ to system (0.1) with the initial and boundary data $u_{0}$ , we will mean a mapping

$u\in L^{\infty}(\mathrm{o}, T, H_{u\mathrm{o}}^{1}(\Omega, \mathrm{R}^{M}))\cap H^{1}(\mathrm{o}, T, L^{2}(\Omega, \mathrm{R}M))$

which satisfies

(1.1) $\iint_{Q}(\frac{\partial u}{\partial t}\varphi+A(x, u)(Du, D\varphi))dtdx=-\frac{1}{2}\iint_{Q}\varphi A_{u}(x, u)(Du, Du)dtdx$

for every $\varphi\in L^{\infty}(Q, \mathrm{R}^{M})\cap L^{2}(0, T, H0^{1}(\Omega, \mathrm{R}^{M}))$ ,
and

$\lim_{t0,t^{arrow}>0}u(t)=u_{0}$
in $L^{2}(\Omega, \mathrm{R}^{M})$ .

We are now in a position to state the main result.

Theorem. Suppose $\lambda>2aB$ as in (0.7) and let $u_{0}$ be a mapping belonging to $L^{\infty}\mathrm{n}H^{1}(\Omega, \mathrm{R}M)$ with
the trace $u_{0}|_{\partial\Omega}=\hat{u}_{0}|_{\partial\Omega}$ for some mapping $\hat{u}_{0}\in W^{1,p_{\mathrm{O}}}(\Omega, \mathrm{R}^{M})$ with some $p_{0}>2$ . Then, there exists
at least one weak solution to system (0.1) with the initial and boundary data $u_{0}$ . Furthermore, this
solution becomes of class $C^{\alpha}(Q;\delta)$ for some $0<\alpha<1$ , where $\delta$ is the parabolic metric:

$\delta(z_{1}, z_{2})=\max\{|t_{1^{-}}t_{2}|1/2, |x_{1}-x_{2}|\}$ , $z_{i}=(t_{i}, x_{i})(i=1,2)$ .

2. PRELIMINARIES

In this section we shall derive some auxiliary lemmata.
$\mathrm{B}\mathrm{a}s$ ed on the maximum principle for difference equations which is a modification of Lemma 4 in

[8], one can provide the following assertion:

Lemma 1 (Euler-Lagrange equations). Suppose the so-called one-sided condition:

(2.1) $- \frac{1}{2}uA_{u}(x, u)(\xi,\xi)\leq\lambda^{*}|\xi|^{2}$ with $\lambda>\lambda^{*}$ ,

for almost every $x\in\Omega$ and every $u\in S_{B}$ , and for all $\xi\in \mathrm{R}^{mM}$ . And let $u_{(h)}$ be an approximate
solution to (0.1) with the initial and boundary data $u_{0}$ , which is generated by minimizers $\{u_{n}\}$ of $\{F_{n}\}$

in $H_{u_{0}}^{1}(\Omega, \mathrm{R}^{M})$ . Then there is valid the relation

$\int\int_{Q}(\frac{\partial u_{\mathrm{t}}^{*}h)}{\partial t}\varphi \mathrm{t}^{h})+A(X, u_{(h)})(Du_{()}h’ D\varphi(h)))dtdx$

$=- \frac{1}{2}\iint_{Q}\varphi_{(h)u}A(x, u)(Du_{(h)}, Du(h))dtdx$

for any $h$ -step mapping $\varphi_{(h)}$ generated by $\varphi_{n}\in L^{\infty}\cap H_{0}^{1}(\Omega, \mathrm{R}^{M}))$ in the same fashion as in (0.5).

Proof. Since
$u_{n}-\epsilon\eta u_{n}=(1-\epsilon\eta)un\in S_{B}$
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for every non-negative $\eta\in C_{0}^{\infty}(\Omega, \mathrm{R}^{1})$ , and for all sufficiently small $\epsilon>0$ , it follows that

$0 \leq_{\epsilonarrow 0}\lim_{>0}\frac{F_{n}(u_{n}-\mathcal{E}\eta u_{n})-Fn(u_{n})}{\epsilon}$

$=- \int_{Q}(\eta\frac{1}{h}(u_{n}-u_{n}-1)u_{n}+A(x, u_{n})(Du_{n}, D\eta u_{n})$

$+\eta A(x, u_{n})$ ( $Du_{n’}$ Du) $+ \frac{1}{2}\eta u_{n}A_{u}(x, u_{n})$ ( $Du_{n’}$ Du ) $)dx$

$\leq-\int_{\Omega}(\eta\frac{1}{2h}(|un|^{2}-|u_{n-1}|2)+\frac{1}{2}A(_{X}, u_{n})(D|un|^{2}, D\eta)+(\lambda-\lambda*)\eta|Dun|^{2})dX$ ,

the first and the last inequality arising from the minimality of $F_{n}$ and assumption (2.1) respectively.
Whereupon,

(2.2) $\int_{Q}(\eta\frac{1}{h}(v_{n}-v_{n-1})+A(x, u_{n})(Dv_{n}, D\eta))dx\leq 0$ with $v_{n}=|u_{n}|^{2}$ ,

for any non-negative $\eta\in C_{0}^{\infty}(\Omega, \mathrm{R}^{1})$ . Inserting into (2.2) as a test function $\eta$

$v_{n}^{(k)}= \max(v_{n}-k, 0))$ $|u_{0}|_{\infty}^{2}\leq k<B$ ,

and taking a summation with respect to $n$ from 1 to $l$ , we find

$\int_{\Omega}|v_{l}^{(k)}|^{2}dx\leq\int_{\Omega}|v_{0}^{(k)}|^{2}dx=0$ $(l=1,2, \cdots, N)$ .

Immediately,

(2.3) $|u_{\langle h\rangle}|_{\infty}\leq|u0|_{\infty}<B$ .

Hence, we get
$u_{n}\pm\epsilon\varphi\in SB$

for every $\varphi\in L^{\infty}\cap H_{0}^{1}(\Omega, \mathrm{R}^{1})$ , and for all small enough $\epsilon$ . Eventually, we arrive at the relation

$\frac{d}{d\epsilon}F_{n}(u_{n}+\mathcal{E}\varphi)|_{\epsilon=0^{=}}0$ ,

as required.
The following is a consequence of directly working with the functional $F_{n}$ from (0.3), which is

strictly related to the minimality of the functional.

Lemma 2 (Energy inequality). Let $u_{\langle h\rangle}$ be an approximate solution to (0.1) with the initial and
boundary data $u_{0}$ , which is generated by minimizers $\{u_{n}\}$ of $\{F_{n}\}$ in $H_{u_{0},B}^{1}(\Omega, \mathrm{R}M)$ . Then there exists
a positive absolute constant $C$ such that

$\sup_{t\in(0,\tau)}\int_{\Omega}(|u_{(\rangle}^{*}(t)|+|Du^{*}((h)t)|h)2dX\leq C\int_{\Omega}(|u0|+|Du0|)^{2}dx$ ,

and
$\iint_{Q}|\frac{\partial u_{(h)}^{*}}{\partial t}|^{2}dtdx\leq C\int_{\Omega}|Du0|^{2}dX$.
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That is, the family of $\{u_{\langle)}^{*}\}_{h}h>0$ is bounded in $L^{\infty}(\mathrm{O}, T, H_{u_{\mathrm{o}}}^{1}(\Omega, \mathrm{R}^{M}))\cap H^{1}(0, T, L^{2}(\Omega, \mathrm{R}M))$ .

Proof. Upon comparing $u_{n-1}$ with a minimizer $u_{n}$ of $F_{n}$ in $H_{u_{\mathrm{O}},B}^{1}(\Omega, \mathrm{R}M)$ , we infer

$\int_{\Omega}(\frac{1}{h}|u_{n}-u_{n-1}|^{2}+A(x, u_{n})(Du_{n}, Du_{n}))dx\leq\int_{\Omega}A(x, un-1)(Du_{n-1}, Du_{n-1})dX$ ,

from which

$\int_{\Omega}A$ ( $x,$ u)n $(Du_{n}, Du_{n})dx \leq\int_{\Omega}A(_{X,u_{n}}-1)(Du-1)Dnu-1)ndX$

$\leq\int_{\Omega}A(x, u_{0})$ (Duo, $Du0$ ) $dX$

and

$\sum_{n=1}^{N}h\int_{\Omega}|\frac{u_{n}-u_{n-1}}{h}|^{2}dx$

$\leq\sum_{n=1}^{N}\int_{\Omega}(A(x, u_{n-1})(Dun-1, Dun-1)-A(X, u_{n})(Du_{n}, Du_{n}))dx$

$\leq\int_{\Omega}A(x, u\mathrm{o})$ (Duo, Duo) $d_{X}$ .

Namely,

$\sup_{t\in(0,T)}\int_{\Omega}|Du_{(h}^{*}(\rangle t)|2dX\leq C\int\Omega|Du_{0}|^{2}dX$,

and
$\int_{\Omega}|\frac{\partial u_{\mathrm{t}}^{*}h)}{\partial t}|^{2}dtdx\leq C\int_{\Omega}|Du_{0}|^{2}d_{X}$ .

Poincare’s inequality yields

$\sup_{t\in(0,\tau)}\int_{\Omega}|u_{(h)(t)|^{2}2}*dx\leq t(\sup_{\in 0,\tau)}\int_{\Omega}(|u_{0}|^{2}+|u*(h)(t)-u0|^{2})dx$

$\leq C\sup_{t\epsilon(0,\tau)}\int_{\Omega}(|u_{0}|^{2}+|Du_{(}(t)|^{2}h)+|Du\sim(h)(t)|2)dx$

$\leq C\int_{\Omega}(|u0|+|Du_{0}|)^{2}dx$ .

Summing up these results, we can draw a desirable conclusion.

Remark 2.1. The coefficients $A^{\alpha\beta}(x)=A^{\alpha\beta}(X, u(x))$ are measurable in $x\in\Omega$ ; nevertheless we
have achieved Lemma 2. This assertion can be assured thanks to the minimality of the functionals
(0.3). On the other hand, as to the heat flows between two manifolds $M$ and $N$ , as well known,
analogous estimates (for example, see [1]) can be derived owing to the smoothness of the coefficients,
say, the metric $\gamma^{\alpha\beta}(x)$ of $M$ in this situation, whose legitimation follows with the aid of the linear
theory [Theorem 9.1, 8] for parabolic differential equations. Furthermore, for our situation, one usually
needs the a-priori H\"older estimations for the solutions in question if one wants the a-priori energy
estimates, because [Theorem 9.1, 8] is the estimation affecting on the modulus of the continuity
of $A^{\alpha\beta}(x)=A^{\alpha\beta}(X, u(x))$ . See [12]. But, such a-priori H\"older estimations will break down in a
neighbourhood of the boundary, unless the initial and boundary data possess the H\"older continuity,
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corresponding to which so will do the a-priori energy estimates. However, our procedure will be
applicable to it without the H\"older continuity of it and even also without the smoothness of $A^{\alpha\beta}(x, u)$

with respect to $x\in\Omega$ and $u\in \mathrm{R}^{M}$ .
In general, one might not perform local estimates of solutions in dealing with difference partial

differential equations. But, we have encountered the need to do so in [5]. And this enables us to
construct weak solutions to system (0.1), assuming the weaker requirement on the initial condition
than is the H\"older regularity (refer to [11] and [12]). To attain our object, local estimations done in
[5] are indispensable for our reasoning.

To be explicit, we now recall the result in [5].
Maintain the same conditions as in Theorem. Let $\hat{u}_{0}\wedge$ be a weak solution to $\Delta\hat{u}_{0}\wedge=0$ in $\Omega$ , and

$\hat{\hat{u}}_{0}=\hat{u}_{0}$ on $\partial\Omega$ . Then, for any $\epsilon>0$ , there exist positive constants $C$ and $\epsilon_{0}$ such that, for every
$h>0$ , the estimate

$(ff_{Q_{R}(}z\mathrm{o})|Du_{h}|^{p}dtdx)2/p\leq C_{\epsilon}ff_{Q}2R(z\mathrm{o})|Du_{h}|^{2}dtd_{X}+C\epsilon\#_{Q2}R(z0)|D\sim u_{h}|^{2}dtdx$

$+c_{\epsilon}f_{\Omega(}2Rx\mathrm{o})|D^{\wedge}\hat{u}0|pdX)^{2}/\mathrm{P}$

is fulfilled for any $z_{0}=(tn_{0)}x\mathrm{o})\in\overline{Q}(n_{0}=1,2, \cdots)N),$ $0<R<$ diam $Q$ and $2 \leq p<\min\{2+\epsilon_{0,p0}\}$ ,
where $C_{\epsilon}$ is a positive number approaching infinity as $\epsilon$ goes to zero.

In it, we have used the notations

$\Omega_{R}(x\mathrm{o})=\Omega\cap\{x\in R^{m} ; |x-x0|<R\}$ ,
$Q_{R}(z\mathrm{o})=\{t\in(0, T);tR^{2}n_{0^{-}}<t<t_{n_{\mathrm{O}}}\}\mathrm{x}\Omega_{R}(X0)$ .

The symbol $f_{A}$ stands for an averaging of the integration over the domain $A$ .

A direct consequence of this is

Lemma 3. Let $u_{(h)}$ be an approximate solution to (0.1) with the initial and boundary data $u_{0}$ .
Suppose $\lambda>2aB$ and $u_{0}\in L^{\infty}\cap H^{1}(\Omega, \mathrm{R}^{M})$ with the trace $u_{0}|_{\partial\Omega}=\hat{u}_{0}|_{\text{\^{o}}\Omega}$ for some mapping
$\hat{u}_{0}\in W^{1,p_{0}}(\Omega, \mathrm{R}^{M})$ with some $p_{0}>2$ . Then there exist positive numbers $C,$ $\epsilon_{0}$ depending on
$a,$ $m,$ $T,$ $B,$ $\lambda,$

$\Omega$ and $p_{0}$ such that

$\int\int_{Q}|Du|^{p}(h)dtdX\leq C\int_{\Omega}|D\hat{u}_{0}|^{p}d_{X}$

holds for every $h>0$ and for all $p\in[2,$ $\min\{2+\epsilon,p_{0}\})$ .

Remark 2.2. Except for Lemma 3, our argument remains available for the case of the one-sided
condition.

3. PROOF OF THEOREM

Proof. By virtue of Lemma 2, we can select a subsequence $\{u_{(h)}\}j$ with a suitable zero sequence
$\{h_{j}\}$ , and find a limit mapping $u\in L^{\infty}(0, T, H_{u_{\mathrm{o}}}1(\Omega, \mathrm{R}^{M}))\mathrm{n}H^{1}(0, T, L^{2}(\Omega, \mathrm{R}^{M}))$ such that

$\lim_{jarrow\infty}u_{(hj^{\rangle}}=u$ weakly* in $L^{\infty}(\mathrm{o}, T, H_{u0}^{1}(\Omega, \mathrm{R}^{M}))$ ,
(3.1)

$\lim_{jarrow\infty}u_{(}h_{\mathrm{j}^{)}}=u$ weakly in $H^{12M}(0, T, L(\Omega, \mathrm{R}))$
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and hence, due to Rellich’s theorem,

(3.2) $\lim_{jarrow\infty}u_{(h_{j})}=u$ strongly in $L^{2}(Q, \mathrm{R}^{M})$ .

By means of Lemma 2, we readily see

$\int\int_{Q}|u_{(h)}-u|(*2dtdx\leq h)\int\int_{Q}|u_{(h)}-\sim|^{2}dtu\langle h)d_{X}$

(3.3)
$\leq h^{2}\iint_{Q}|\frac{\partial u_{(h)}^{*}}{\partial t}|^{2}dtdx\leq Ch^{2}\int_{\Omega}|Du_{0}|^{2}dX$ ,

which, together with the property (3.2), implies

(3.4) $\lim_{jarrow\infty}u_{\mathrm{t}}h_{\mathrm{j}^{)}}=u$ strongly in $L^{2}(Q, \mathrm{R}^{M})$ .

We carry out an estimation of the following identity by dividing it into three parts:

(3.5) $\int\int_{Q}A(x, u_{(h})j^{)}(D(u(h_{\mathrm{j}})-u), D(u_{(h_{j^{)}}}-u))dtdx$

$= \int\int_{Q}A(x, u_{(h)})j(Du_{(h_{j}})’ D(u_{(}h_{j})-u))dtdx$

$- \int\int_{Q}A(x, u)(Du, D(u_{(}h\mathrm{j})-u))dtdx$

$+ \int\int_{Q}(A(X, u)-A(X, u_{(}h_{j})))(Du, D(u(hj)-u))dtdx$

$=:I_{j}+II_{j}+III_{j}$ .

In light of Lemma 1, we can transform the expression $I_{j}$ into a more convenient form

$I_{j}=- \iint\{\frac{\partial u_{(h_{j}\rangle}^{*}}{\partial t}(u_{(h_{\mathrm{j}^{)}}}-u)+\frac{1}{2}(u_{1^{h_{j^{)}}}}-u)A_{u}(x, u(h_{\mathrm{j}}))(Du_{(h_{j})}, Du(h_{\mathrm{j})})\}dtdx$ .

We take advantage of Lemma 2 and 3 to deduce

$|I_{j}| \leq(\iint_{Q}|\frac{\partial u_{\langle h_{j})}^{*}}{\partial t}|^{2}dtd_{X})1/2(\iint_{Q}|u_{(h_{j})}-u|^{2}dtdX)1/2$

$+C( \int\int_{Q}|Du(h_{\mathrm{j}})|pdtdx)^{2}/P(\int\int Qt|u_{(h_{j^{)}}}-u|^{p}/(p-2)ddX)1-2/p$

$\leq C(\int_{\Omega}|Du\mathrm{o}|^{2}dX)^{1}/2(\int\int_{Q}|u_{(}h_{j})-u|2dtdx)1/2$

$+C( \int_{\Omega}|D\hat{u}_{0}|^{p}d_{X})^{2}/p(\int\int Qd|u_{(}hj)-u|^{2}tdX)^{1}-2/p$ ,

where $p$ is an index from Lemma 3, while we have utilized the a-priori boundedness of $u_{(h_{\mathrm{j}})}$ from (2.3)
in Lemma 1. Thereby, it turns out that

$\lim_{jarrow\infty}I_{j}=0$ ,

because of (3.4). The property (3.1) with (3.3) directly admits

$\lim_{jarrow\infty}II_{j}=0$ ,
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according to the very definition regarding the weak convergence. Via Young’s inequality, we are led
to the inequality

(3.6) $|III_{j}| \leq\frac{\lambda}{2}\int\int_{Q}|D(u_{(h_{j}}-)u)|2dtdx+IV_{j}$,

where
$W_{j}=C \int\int_{Q}|A(x, u)-A(x, u)|2|Du|^{2}1^{h_{j^{)}}}dtd_{X}$ .

The first term of the right hand side of (3.6) can be absorbed into the left-hand side of (3.5) on account
of the parabolicity (0.2), while it follows that

$\lim_{jarrow\infty}W_{j}=0$ ,

in view of (3.4) and $\mathrm{L}\mathrm{e}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{g}\mathrm{u}\mathrm{e}$

)
$\mathrm{S}$ dominated convergence theorem. Substituting (3.6) into (3.5), we

accomplish the inequality

$\int\int_{Q}|D(u(h\mathrm{j})-u)|2dtd_{X\leq}C(|Ij|+|II_{j}|+W_{j})$ .

After thus, summarize these considerations, $\mathrm{a}\mathrm{n}\dot{\mathrm{d}}$ this brings us the relation

$\lim_{jarrow\infty}u(h_{\mathrm{j})}=u$ in $L^{2}(0,T, H_{u}1(0\Omega, \mathrm{R}^{M}))$ .

Consequently, letting $j$ tend to infinity in the relation (0.6) in place of $h$ with $h_{j}$ and in place of $\varphi_{(h\rangle}$

with
$\varphi_{(h)}(t)=\frac{1}{h}\int_{t_{n}}^{t}:_{1}\varphi(t)dt$ for $t_{n-1}<t\leq t_{n}(n=1, \cdots , N)$

for $\varphi\in L^{\infty}(Q, \mathrm{R}^{M})\cap L^{2}(\mathrm{o}, T, H^{1}0(\Omega, \mathrm{R}^{M}))$ , we reach the conclusion that $u$ satisfies the relation (1.1).
It remains for us to verify that there shall be well-defined the initial and boundary conditions. An

inspection of the fact $u_{(h_{\mathrm{j}})}\in H_{u_{0}}^{1}(\Omega, \mathrm{R}M)$ apparently shows $u\in H_{u_{\mathrm{O}}}^{1}(\Omega, \mathrm{R}^{M})$ through (3.1) and (3.2).
On the other hand, we have, with aid of Lemma 2,

(3.7) $||u_{(h)}^{*}(_{S})-u((*h)t)||_{L^{2}(\Omega}) \leq\sqrt{|s-l|}||\frac{\partial u_{(h)}^{*}}{\partial t}||L^{2}(Q)\leq c\sqrt{|s-t|}||Du0||L^{2}(\Omega)$

for any $s$ and $t\in[0, T]$ . Letting $j$ tend to infinity in (3.7) with $h_{j}$ in place of $h$ , this inequality will
take the form

$||u(S)-u(t)||L2(\Omega)\leq C\sqrt{|s-t|}||Du_{0}||L^{2}(\Omega)$

for almost all $s,t\in(0, T)$ , owing to (3.1). As a result, the limit function $u$ is equivalent in $Q$ to a
function that is continuous in all $t\in[0, T]$ in the norm of $L^{2}(\Omega)$ , which we call $u$ again. In particular,
one gains

$\lim_{tarrow 0^{u()},t>0}t=u_{0}$
in $L^{2}(\Omega)$ ,

as desired.
We shall close the paper by remarking that the property $u\in C^{\alpha}(Q)\delta)$ is derived from the observa-

tion

(3.8) $\lim_{\rhoarrow,\rho>0}\inf_{0}\beta^{-m}\int\int Q_{\rho}^{\sigma}(t,x)|Du|2dtdX=0$

for any $0<\sigma<1$ , and any $(t, x)$ not lying on the parabolic boundary of $Q$ , where

$Q_{\rho}^{\sigma}(t, x)=\{s\in(\mathrm{O}, T);t-\rho 2<s<t-\sigma^{2}\rho^{2}\}\mathrm{x}B\rho(x)$ .
There shall be retained the validity of relation (3.8) from the one-sided condition, especially from

the $\mathrm{t}\mathrm{w}\alpha$-sided condition. In this regard, refer to the contributions [3], [4], [10] and [12].
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