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5.

Non-monotone Bifurcation on
Quadratic Rational Families

Masayo FUJIMURA
(College of Sci. and Tech.
Nihon Univ.)

5.1 Moduli space Ms(R) of real quadratic
rational maps

Rat2(R) is the space of all real quadratic rational maps f: R U {o0} —» R U {c0},

_ =) _ aoz? 4 a1z + az

fle) = q(z) ~ boz? 4 bix+by

Definition 1  M2(R) = Rata(R)/PSL2(R) is called the moduli space of holomorphic con-

jugacy class (f) of real quadratic rational maps f.

Remark 1 = The definitions of moduli space M3(C) for the complex quadratic maps, Rats(C),
is identify with Rat2(C)/PSL(C).

For each f € Ratq, let z1,22,23 be fixed points of f, u; the multiplier of z; (1 < i < 3);
ii = f'(2:). Now consider elementary symmetric functions of three multipliers,
o1 = p1 + p2 +ps, 02 = pape + pops + papy, 03 = fLipaps.
Milnor introduces coordinates of M2(C) as follows [Mil92].

Lemma 1 (lemma 3.1 of [Mil92]) These three multipliers determine f up to holomorphic con-

jugacy, and are subject only to the restriction that



prpzps — (p1 + pe +p3) +2 =0, , (1)

or in other words
o3 =01 — 2.
Hence the moduli space M2(C) is canonically isomorphic to C?, with coordinates o1 and 0.

Here after we treat only the real case. ¢; (1 < i < 3) are all real, because three fixed points

and multipliers are either all real or one real and a pair of complex conjugate numbers.

Proposition 1 M3 (R) is isomorphic to R* except on the cubic algebraic curve,
F(01,032) = 205 + 00y — 07 — 403 — 80102 + 1201 + 120, — 36 =0. (2)

For each (01, 02) on this curve, two real representatives (f1), (f2) are determined. These classes
correspond under the complex conjugacy z +— iz. Although there is the singular curve (2), yet
we regard’ moduli space M2(R) as R?.

Milnor describes the curve (2) implicitly (compare Figure 15 in [Mi‘192])‘ Here we can give a

defining equation (2) of this cubic curve.

.
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1 Moduli space with 20% + afaz — a? - 40% — 80102 + 1201 + 1207 — 36 = 0.

5.2 A quadratic family with non-monotone
bifurcation

¥

M. Bier and T. C. Bountis studied “period-bubbling” bifurcation [BB84]. Their purpose is

to demonstrate that monotone bifurcation commonly arise in some of the simplest nonlinear
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dynamical systems involving the variation of more than one parameter. As a simple example
of non-monotone bifurcation, they treat quadratic rational mapping, z:41 = @ + A.z'i/(:u;" +
1), (A4,Q > 0).

H. E. Nusse and J. A. Yorke gave an example of exponential function family that has non-
monotone bifurcation, even though it has negative Schwarzian derivative [NY88]. Their question
was arisen of whether having a negative Schwarzian derivative rules out non-monotone bifurcation.
They describe in [N'Y88] that if the above quadratic rational family is written in the following

form,

re® +z +7r
{fm,r(m) = Tn_—f_{_T_} ’

it does not exhibit non-monotone bifurcation as the parameter m is increased. But we can show
that this family exhibit non-monotone bifurcation for suitable parameter r.
Since fm,r ~ fm,-r, we can regard parameter r as r > 0.

In general, we obtain next results for a fixed parameter 7.

Proposition 2 On M3(R), one parameter family {fm,-(z)},, for a fixed r # 1,0 is character-
ized as the following irreducible algebraic curve of degree 4,
H.(01,02) = —40967r° + (—12807 + 51207 + 51202 + 1536)r*
+(—01 + 803 + (802 + 8)d% + (—=3202 — 96)0, — 1603 — 9603 — 144)r>
—20% + (=02 + 1)a? + (802 — 12)0y + 402 — 1204 + 36 = 0. (3)
Forr = ;—, following irreducible algebraic curve of degree 3.
H%(O’],O’g) =—0s — 207 + (402 — 24)01 + 802 — 64 = 0.
Forr =0,

H0(01,0'2) = F(G’],Uz).

Proof. Three fixed points z1, z2, z3 of f are the roots of the equation

z° — mrz® + (1 = m)z — mr = 0.

From the relation between coefficients and solutions, following equations hold.
z;y + z2 4+ 2z3 =mr
zizg+ z2z3+z3z1 =1 —m
z12z223 = mr

Let u; (i = 1,2, 3) be multiplier of each fixed point z; (¢ = 1,2, 3) given by,

pi=m z?—l

@+
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By using “Grobner basis” of Risa/Asir, symbolic and algebraic computation system, we can

obtain o1 (= g1 + p2 + ps) and g2(= pip2 + peps + pspr) as functions of m and »:

4m?r? —m?* 4+ (61 +2)m—-4=0
—dmirt 4+ (m* — 12m® — 8m?)r® 4+ 2m® + (02 — 5)m* + 4m — 4 = 0.

Using “Grdbner basis” again, we can remove m from (4), and we have (3).
In the case of r = 1, —0} — 202 4 (402 — 24)01 + 802 — 64 = 0.

In the case of r equal to 0, algebraic curve of (3) coincides with the curve of (2).

(4)

Remark 2 Theequation of o; in (4) is obtained from the Program 2. Takeshi Shimoyama(Fujitsu

Laboratories) guided me in usage of Risa/Asir and he suggested this program.

e ; Program 2
if (vtype(gr)!=3) load("gr")$s$
extern Ord$
def moduliSi()
{
Si=nm(m*((z1°2-1)/(21"2+1) "2
+(22°2-1)/(2272+1)"2+(2372-1) /(2372+1) "2) -s1) ;
X=z1+z2+23-m*r;
Y=2z1%z2+2z2*%23+23*%z1-1+m;
Z=2z1%z2%z3-m*T;
0rd=2;
G=gr([s1,X,Y,2],[z1,22,23,m,r,s1]);
for (I=length(G)-1;I>=0;I--){
E=G[I];
if (vars(E)==[r,m,s1])
break;
}
return E;
}
end$

\

J

To say superfluously, the required equation (3) is obtained from following command of Risa/Asir.

gr([4*m"2*r"2-m"2+(s1+2) *m-4,

-4¥m~4*r-4+(m~4-12*%m"~3-8%m~2) *r"2+2*m" 3+ (82-5) #m"~2+4*m-4] , [m,r]) ;
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¥ 2 Non-monotone bifurcation; 3 Algebraic curve of de-
—250 < m < 5.0, -3.0 <z < 1.0 gree 4 and cubic curve in the mod-
r = 0.54. uli space. In the case of r = 0.54.

Example 1 Non-monotone bifurcation can occur at r = 0.54, See Figure 2. And its charas-

teristic curve is Figure 3.

We can analyze the non-monotone bifurcation by overwriting the algebraic curve of degree 4

on the M2(R).

X4 Period-bubbling bifurcation: ® 5 Algebraic curves of degree 4 in the
-10 < m < 1, -2 < z < 0.2, “classified” moduli space. Thick
Parameter r = 0.58. curve corresponds with » = 0.58,

thin curve corresponds with » = 0.7.

Example 2 One parameter family {fm,0.5s} has non-monotone (period-bubbling) bifurcation.

See Figure 4.



In Figure 5, the thick line indicates this family, and the gray belt is the region on which each map
has attracting period 2 cycle. When algebraic curve of degree 4 through this gray belt, period-
doubling bifurcation occurs. In this case, the curve intersects the gray belt (period-doubling
occurs) and intersects again the period 1 region (period-halving occurs). Hence period-bubbling

bifurcation occurs, as in Figure 4.

Theorem 1 For a fixed parameter r, there are following three possibilities;

1. various bifurcations occur if 0 < r < % ,

3v3

2. non-monotone bifurcations occur if $ <r < ¥, or

3. any bifurcation can’t occur if %—3- <r.
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