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1 Introduction

The aim in this report is to explain [R}, which is used in proofs in [M]. It
is divided into two parts; One is the classification of vector space ( over fi-
nite fields ) schemes over certain bases ( with a mild condition ) and the
application of it. The other is the determination of the Galois action on
the determinant of the Tate module of a p—divisible group over a strictly
henselian discrete valuation ring ( e.g. complete discrete valuation ring with
algebraically closed residue field ) of mixed characteristics. The first result
on the classification of finite commutative group schemes is obtained in [OT).
The classification of the commutative group schemes of prime orders is done
there. [R] is a generalization of [OT]. The concept of the classification means
to capture the finite group schemes over a base scheme by languages about
the base. On the other hand Tate [T] showed that an open subgroup of
the Galois group of the fraction field of a strictly henselian ring of mixed
characteristics acts by some power of a cyclotomic character on the determi-
nant of a p—divisible group over the ring. Raynaud proved that the whole
Galois group acts in such a way. His proof is based on the deformations
of a p—divisible groups. In this report I give an outline of a proof of this
fact, following [F1]. The key point is that the Tate module of a p—divisible
group over a discrete valuation ring of mixed characteristics is crystalline. It
strengthens a result of the Hodge decomposition of it [T].
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Is not given classifications from the viewpoint of Cartier-Dieudonné in this
report. See [F] for them.

For the reader. The prerequisite knowledge for reading this report is only
that explained in [N] except [Sh] §4 Cor.3. ( But a result on the calculation
of a Galois cohomology [T] is implicitly used. ) I use the words explained in
[N] freely, without mentioning where they are stated in [N].

Acknowledgment. It is my pleasure to express my gratitude to Professors
T. Sekiguchi and N. Suwa for giving me an opportunity for explaining a
result of [R]. My thanks goes to A. Shiho for pointing out some mistakes and
Y .Taguchi for informing me of the reference [B].

2 Before the explanation of [R]

Let G/S be a finite commutative group scheme of order m = mm,, where
m, is prime to my. Then G has a decomposition G = G[m,] X G[m,], where
s

G[m;] := Ker(m; : G — G) is of order m; for 1 = 1,2. Hence, if one wants
to classify finite commutative group schemes, one has only to do the group
schemes of primary order. In [R] they are not completely classified, but vector
space ( over finite fields ) schemes over certain bases are and when the base
scheme is the fraction field of a strictly henselian discrete valuation ring, they
have a series of Jordan-Holder whose each quotient is such a scheme stated
above.

The classification may seem somewhat complicated, so we take a group
scheme of order 2 which is a typical and an educational example. For sim-
plicity, the base scheme is the spectrum of a ring A ( commutative, with unit
element ). Let G be a finite commutative group scheme of order 2. Then G
is the spectrum of a ring B, and the augmentation ideal I = Ker(B — A)
is a locally free module of rank 1. Here ¢ is the counit of G. For simplicity,
we assume [ is a free A—module. Let z be a basis of I. Since I is an ideal,
there exists a unique element a € A such that z? = az. Next we consider
the element A(z) € B (§) B. A priori, A(z) is written as follows:

Alz)=a(z®1)+B(1Qz) +7(z®z) (8,7 € A).
Using the axioms of the structures of the Hopf algebra, we can see

Alz) =zQ®1+1Qz—b(z® z)
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such that ab = 2. Hence we have a map
{finite group schemes of order 2 whose

structure sheaves are free A—modules }/ ~

}
{(a,b) e Ax Alab=2}/ ~.

Here ~ is the following equivalence relation:
(a,b) ~ (a',b') & Ju € A*, o' = au, b =bu™".

The map above is a bijection. In fact we can construct the inverse of it:
(a,b) +— G =SpecA[X]/(X? - aX)
AX)=X®1+10X -bX ®X)
e(X)=0
AX)=X

Here A denotes an antipode. Note that X is a basis of the augmentation
ideal. This example teaches us that it is important to look carefully at the
augmentation ideal of a finite commutative group scheme.

3 Classification of F,-vector space schemes

Let p be a prime number and ¢ = p/ be a power of p. Let G/S be a finite
commutative group scheme.

Definition 3.1. G is called Fy—vector space scheme if G(T) is a vector space
over F, functorially for T € (Sch/S).

We have wanted to classify the finite commutative group schemes of primary

order. But this has not yet been solved over a general base. ( A different type
of classifications from Oort-Tate-Raynaud’s can be made when a base scheme
is a perfect field of positive characteristic or a complete discrete valuation
ring of mixed characteristics with small absolute ramification index ( [F],

[FL] ). ) Why we consider F,-vector space schemes? Because the following
holds:
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Propositon 3.2 ([R] Prop. (3.2.1)). Let A be a strictly henselian dis-
crete valuation ring with residue field of characteristic p. Let G be a fi-
nite commutative group scheme over Frac A of p—primary order. If G or the
Cartier dual GP is etale, then G has a sequence of Jordan-Hoélder whose each
quotient is a F,; -vector space scheme satisfying (x), where (x) is explained
soon later.

Note that a finite commutative group scheme over a scheme T is etale if the
order is invertiblein T' ( [Sh] §4 Cor.3 ), hence in particular G and the Cartier
dual GP is etale.

Remark 3.3.

If A is of mixed characteristics and the absolute ramification index is smaller
than p, then a finite commutative group scheme over A has a Jordan-Holder
sequence over A ( [R] ).

The classification of the F; —vector space schemes have not been made yet for
any base scheme. We must explain a base ring and Raynaud have made the
classification over a scheme over it. Let y,_; is the group of the (¢ — 1)—th
root of 1 of an algebraic closure of Q. Let p be a fixed prime of Z[u,_;] over

— 1 —

p. By p we can embed Q(uy-1) in Q,. We put A, := Z[u,_,, m] N Zy.
The intersection is taken in Q,. A, is a Dedekind ring and the set of A, is
{9 }U{ primes of Z[u,_,] which do not ramify in the extension of Z[u,-,]/Z
and which do not lie over p}. Ay = Z for ¢ =p =2, Z[3] for g =p = 3,
Z[i,ﬁ] for ¢ = p = 5. Here ¢ is a square root of —1 and we take
p=(2—1). Ay =Zw,}] for ¢ =2%,p =2, where w is a primitive cubic root
of 1.

Henceforth the base scheme S is a scheme over A,, e.g. S = Spec A, where
A is a local henselian ring whose residue field contains F,. Let G be a
IF, —vector space scheme of rank ¢ and Z be the augmentation ideal of G. We
denote by H the set of the characters of F;: H := Homg,(F}, p£5-1). We put

ey = :]——E-—TE’\EF; X" 1(N[A], I, := ex(Z), where [)] is the endomorphism

of T induced by the action of A € F; on G. Then I has a decomposition:

T = @ Z,. In general Z, is not non-zero. It does not seem beautiful. Hence
x€H

we make the following assumption:
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Assumption (x). Z, is an invertible module for Vx € H. The conditions
in the following assure (x).

Propositon 3.4. If either of the following condition holds, then (x) is OK.
1) ([OT] Lem.2 ) q = p.

2) S is connected and there is a point s of S such that G, or the Cartier dual
GD is etale.

Next we define a fundamental character to decompose the augmentation ideal
of a given F,—vector space scheme.

Definition 3.5. Let x : F; — pg-1 be a character. x is called fundamental

if By =5 Z[pgi] modp F, is additive, i.e. a morphism of fields. Here we
define x(0) = 0.

If x is fundamental, the fundamental characters are { x*" |0 < h < f—1}.
Henceforth we fix a fundamental character and we use the following notations:

Notations.

Xo =X, X1:= X%, -, Xy = x5, (1 €Z/S), -+

The fundamental characters form a "basis” over F, of {x : F; — oy :
a character }: For any nontrivial character x, x has the unique expression:
X = [Liezys xi" (0 < ny <p—1). If x is trivial, we can take n; = 0 for all 4
or n; = p — 1 for all 7. In this case we take the latter. '

To make the classification we prepare some notations. The composite of
the multiplication ( resp. comultiplication ) m"™* : O%" — Og ( resp.
A1 Og — O%™ ) induces the following

My ion * Loy @+ @ Loy — Loy

(resp. AByion i Loyon — T, ® - QL,, ),

where ¢; is an element of H. We consider the composite of A, ... ,, and

By iom v om ) "
Moy oo ont Loyoion 2" Ty ® - QL,, ey Loy pn- Since T, ..., is an
invertible sheaf, the composite defines a global section w, ... ,, € I'(S, Og).
It is amazing that w,, ... ,, is independent of G:
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-1 g((pr---¢a)1 %)
g(p, ) is the Gauss sum defined by

{ 2 eNp(A), (v #1)

€ A,. Here

Propositon 3.6. 1) wy,,..on =

A€F, .
-4, (90= 1)

Here ¢ : (F,,+) — g is a nontrivial character.
= Wy, pn, in particular w := wy;, ..., x; 5 independent of
N, o’/

g(e,¥) =

(Pfy“')ﬂag

ppieces
1<i< f.
8) w = p'mod p?. In particular w is divided ezactly by p.

At last we can state the classification of F,—vector space schemes over S
satisfying (x).

Theorem 3.7. There is a bijection between the following two sets:
{F, — vector space schemes over S satsisfying (x) }/ =,
and
{((L1,y- -+, Lg); (a1, yap);(bry- -+ ,bf)) | Li : invertible module,

a; € Hom(L®, Liy1), b € Hom(Liy1, L), aibi =w}/ ~ .

The map is as follows:
Gr— (Tr, -+, Zg)s (may -+ ymyg); (B, -+, Bg)),s

where m; i= My i 2 ISP — Ty Bi = Dy i * Ty — I8, The
inverse of it is as follows:

(Lay--e s Ly)s(ans yag)i(buy o bp)) = £y, Ganiidyy

where

f
Loty Gl (T) = {(2, -+, 25) € [[ (T, £ g o)l

=1
77 = a}(ziy1), 1 <4 < f} (T € (Sch/S)) |
and the unit element is (0,--- ,0), the antipode A is given A(z;) = z for

p = 2, and —z; for p # 2, and the group law is given in the Appendix
below. Here a} is the Og—dual of a;.
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Remark 3.8.

1) To state the group law we must prepare some more notations. Strangely,
the group law is not important and not used in the rest of the report. The
author is very happy if someone explains the reason to him. On the other

] Biye by . .
hand the equation of ¢, ... £, Go."", is very important.
I EMART S 4 170,25 y
. biyee by a1,-,a 8
2) The Cartier dual of ¢, ... £,Ga,’d, is o Gbl,,_,,b, .

Corollary 3.9. If PicS = 0, there is a bijection between the following two
sets:

{F, — vector space schemes over S satsisfying (*) }/ =,
and
2f
{ (a1, ,ap); (br, -+~ ;7)) € [ T(S, O5) lashi = w}/ ~,
i=1

where ~ is an equivalence relation defined as follows:

(@1, -+ s a5 b, bY) ~ (a1, s ap3 by, by)
& Ju; € F(S, Os)* a:. = u?a;u;ll, b: = u;-'pb;u,-H.

Corollary 3.10. If S is the spectrum of the strictly henselian discrete valu-
ation ring of mized characteristic of 0 and p with normalized valuation v with
v(p) = e, then there is a bijection between the following two sets: { F,—vector
space schemes over S satisfying (%) }/ ~, and {(n1, -+ ,ny) € ZF |0 < n; <
e }. The correspondence is given (ay,--- ,a5;b1,-++ ,bs) = (v(a1),--- ,v(ay))
in the notation of (8.9).

Remark 3.11.
The inequality v(a;) < e is caused by a;b; = w and v(w) = e by (3.6) 3).

Remark 3.12. If the base scheme is a perfect field of finite characteristic or
complete discrete valuation ring of mixed characteristics with small absolute
ramification index, (3.9) should be obtained by Dieudonné theory.
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4 Extensions

In this section the base scheme S is Spec A, where A is a henselian discrete
valuation ring of mixed characteristic 0 and p with normalized valuation v
with v(p) = e. Let K be the fraction field of A. By (3.7) and the concept of
scheme theoretic closures ( which we omit to explain ), we have the following:

Theorem 4.1. 1) Case I: e<p—1.

a) Let G be a finite commutative group scheme of p—primary order. If G
extends to such a scheme over A, i.e. there exists a flat finite commutative
group scheme over A whose generic fiber is G, then any extension of G is
isomorphic.

b) Let G, H be finite commutative group schemes over A of p—primary order.
Then the followings hold: ‘

Hom-gp(G,H) = Homa-g (G % K,H (%) K),

EXtA(_g,'H) — Ext4(G % KH % K).

2) Case 2: e=p—1.

Let G/ K be a F,—vector space scheme of order q. If G is simple, G extends
to a unique group scheme over A or extends in the two way, one of which is
etale, and the Cartier dual of the other is etale.

It is better to say how one uses (3.7) for the proof of (4.1). I explain it for
(4.1) 1) a) and Case 2 very and very briefly. As I said, the equation of (3.7)
is very important. By (3.2), we may assume that G is a Fy—vector space
scheme of order q. Let G, G’ be two group schemes whose generic fibers are
isomorphic to G. We can write the equation of G ( resp. G’ ) as X} = a; Xi11
( resp. (X!)? = a{X!,, ) by (3.7). Since Q’(%) K is isomorphic to g'§>K, there

exist elements o; € K* such that o} = ofa;a};. As 0 < wv(a;),v(a]) < e, the
value v(q;) is very restricted. In fact, we can show v(a;) =0 in Case 1) a).

Remark 4.2.

The spectrum of a discrete valuation ring of mixed characteristics 0 and p
with absolute index e is thought as the disk with radius e. Thinking in this
way, we can interpret (4.1) 1) a) as follows: Since the radius is small, the ex-

tension is unique, in other words, the uniqueness of the analytic continuation
holds.
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Exercise. Investigate the extensions (4.1) Case 2. For example, for the
case of A is a strictly henselian discrete valuation ring of mixed character-
istics. Answer. If we consider {(ns, - ,ns) € Zf|0 < n; < e} as the
group schemes satisfying (x) by (3.10), two distinct elements (ny,--- ,n;),
(ni,- -+ ,n’;) are isomorphic if and only if one of it is (0, --- ,0) and the other

Is (p_l)"' ,p-—l).

5 Galois actions

Let A be a strictly henselian discrete valuation ring of mixed characteristic
0 and p, K be the fraction field of A. Let 7 be a uniformizer of A and v be
the normalized valuation of A. Let e := v(p) be the absolute index. Then
Gal(K/K) is the inertia group of K and we have an exact sequence:

1— I, — Gal(K/K) — I, — 1.

Here I, is the pro—p part of Gal(K/K) and I, is the tame part, which is
liin Gal(K(ra)/K) = liin pd(K) ( [S] Chap.IV Prop.7 ). Under this
{(d,p)=1 (d,p)=1

identification, let j, be the natural projection: I; — p,—1(K). Let G/K be
a Fy—vector space scheme of order g. Then (3.7) says that G is isomorphic to
Spec(K[X;|i € Z/ f]/(X}? — aiXit1]i € Z/f)) as a scheme. The fundamental
character is an isomorphism x; : F; =+ pg-1(K), hence we can consider the
inverse p; := x7'. Then ¢f = ¢;_;.

Theorem 5.1. Let G/K be as above. Then the Galois action of Gal (K/K)

on G(K) ~ F, is described as follows:

:(ao)‘p;(ax) m(p’;(_‘_’lf-—ﬁ(p';(ﬂ;—ﬂ

Gal (K/K) — I 2% pg_y(K) -2 I

By (3.6) 3), (3.7) and (5.1) we have the following:

Corollary 5.2. Let G/K be a F,—vector space scheme of order q which
corresponds to a character ¢ : F;—p,_1(K). Then G extends to a flat finite
commutative group scheme over A if and only if ¢ can be written in the
following form.:

¢ =oPes ool (0<e <e).
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Remark 5.3.

(5.1) is also obtained by Fontaine-Laffaille theory [FL] ( cf. [B] for a partial
result of (5.1) ).

Since ga? = @i_1, (5.3) below follows:

Corollary 5.4. If e > p — 1, then any F,—vector space scheme of order q
extends to a flat group scheme over A.

6 p—divisible groups

Let p be a prime number. In this section we define the p—divisible group and
investigate the Galois action on the Tate module of a p—divisible group over
a strictly henselian discrete valuation ring of mixed characteristics, following

[F1].

Definition 6.1. Let h be a positive integer and S be a scheme. p—divisible
group of height h over S is a system of pairs {(Gn,in)}or, satisfying the
followings: ~

1) Gy, is a finite commutative group scheme of order p™™ over S.

2) The following sequence is exact:

0 — G = Guyr 25 Gy
Remark 6.2.

A p—divisible group is not an abstract group which is p—divisible. The name
is misleading. Grothendieck proposed the name Barsotti-Tate group. But
the name p—divisible group is usually used today.

Example 6.3.

Let h be alpositive integer.
1) G, = (=Z/Z)"/S, and i, is the natural inclusion.
pn . X

2) Gy = ptn /S, and i, is the natural inclusion. _

3) Let A/S be a semi-abelian scheme, i.e. an extension of an abelian scheme
by a torus. Let G, be Ker(p" : A — A), and i, be the natural inclusion.
We get a p—divisible group from these.
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4) Let B be a complete ring, and R := B[[X},-- -, X,]] be the ring of formal

power series in n—variables. Let I' = Spf R be a commutative group over

Spf B, i.e. with a triple of morphisms (m,¢,inv) (e.g. m: T X ' —T)
pf B

satisfying the axioms of [N] (2.1) 1) and 2). We assume I" has a finite height
h, i.e. the induced morphism p* : R — R makes R free over R of rank
p". Then T is called divisible. Let G, = Ker(p" : I' — TI'), and i, be the
natural inclusion. ‘

To state a theorem of Tate-Raynaud we need the following;:

Theorem 6.4 ([T] (2.2) Prop.1). Let A be a complete noetherian local
ring with residue field of characteristic p. Then the following functor gives
an equivalence of the following two categories:

{ connected divisible commutative formally smooth group schemes over A}
5T+ (Ker(p" : T — T')),, € { connected p—divisible groups}.

Let G be a p—divisible group over a complete noetherian local ring A . Then
the dimension of G is by definition is that of the formal group associated to
the connected component of 0 € G. Here the word ”connected” means that
each constitute of a p—divisible group is connected.

Definition 6.5. Let A be an integral domain, K be the fraction field of A,

and K, be a separable closure of K. Let G = {(Gr,14)}2, be a p—divisible

group over Spec K. Then T,(G) := li;:_nGn(Ks) is called a Tate module of G.
b 4

Theorem 6.6 (Tate-Raynaud(-Fontaine)). Let A be a strictly henselian
discrete valuation ring of mized characteristics of 0 and p, and K := Frac A.
Let G be a p—divistble group over A of height h and dimension d. Then h—th
wedge product of Tp(G) over Z, is isomorphic to Z,(d) := (1i<£nu,,n)®d as a

4

Gal (K/K)~module.

In the rest of the report I give an outline of a proof of (6.6), following [F1]. Let
K be a local field, i.e. the fraction field of a complete discrete valuation ring
of mixed characteristics with perfect residue field &k of characteristic p > 0.
Let Ky be Frac W(k), o be the Frobenius of K. We must use the basic ring
Becrys. We do not review the definition of Beys ( [F2] ) here, instead we review
the necessary properties of Berys. Boys is a filtered Galois ring, i.e. Beyys is a
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commutative Ko —algebra with unit element and o—linear bijective morphism
F, and it has a decreasing filtration indexed by Z on Berysk = Berys I(? K,
0

and has a Galois action of Gal (K/K) which is compatible with the ring
structure and the filtration. Moreover Bc.ys has the following properties:
1) There is an injection of filterd modules

KB [T*] < Buye (T € Fil/(KE[T*Y) \ FIR(KF[TH)).

Here " means a completion and ™ a maximal non-ramified extension, and

KT+ := K& ® Sym Z,(1).
p

2) Bg;i‘K/ 5 = Ko,
3) BF_.I N Bﬁl_o Qp

crys crys K —
4) There is an 1n3ect10n gr(Berys k) < C[T*'] which induces the isomorphism

gr(K™[T#)) = K K™ [T*1]. Here C is the completion of an algebraic closure
of K.

( In [F1] such a ring as above is called a Barsotti-Tate ring. ) A p—adic
representation is a finite dimensional vector space with continuous Galois
action , and a filtered module is a finite dimensional Ko— vector space D
with o—linear bijective morphism F', and with decreasing filtration indexed
by Z on D IQ{K) K. Using Beys we can construct two fundamental functors:

0

{ p — adic representations }#={ filtered modules },
where —+ is defined by Derys(V) := (Berys ® V)Gal(K/K) for a p—adic rep-

- resentation V and <— is by Vys(D) := (BClwys ® D)F=181=0 for a filtered

module D. Under these Q, corresponds to Ko by the properties 2) and 3) of
Beyys. Every p—adic representation is not good, of course:

Definition 6.7. 1) A p—adic representation V is called a crystalline repre-
sentation if dimg, Derys(V) = dlmQPV
2) A p—adic representation V is Hodge-Tate if ), 5 dimg(C ® V{-i} =

dimg,V. Here X{—i} := {z € X|g-z = x'(g)z, (g € Gal(K/K)} for a
C—vector space X with C—semi-linear Gal(K /K )—actzon ( x is the cyclo-
tomic character.).

It is known that crystalline representations ( or more generally de Rham
representations ) are Hodge-Tate [F1].
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Remark 6.8.

1) For any p—adic representation V there is a natural injection

Bc 8 Dc sV ‘—‘)Bcrs V,

hence V is cr-stalline if and only if

Bcrys % Dcrys(V) - Bcrys g; V

2) Crystalline representations are stable under sub-object, quotient, direct

sum, tensor product, dual and wedge product.

3) Derys gives an equivalence of the categories of the crystalline representa-

tions and the essential images of them. The quasi-inverse is V(rya.

4) A p—adic representation V is Hodge-Tate if and only if §C (IX{) (C g)
t 4

V{-ih=cgV.

The following is quite elementary modulo a calculation of a Galois cohomol-

ogy in [T]:

Propositon 6.9 ([F1] (3.3.1),(3.3.5)). Let V be a p—adic representation

such that the inertia subgroup of Gal (K/K) acts through a finite quotient.

" Then V 1s crystalline if and only if V is unramified, i.e. the inertia group

has a trivial action on V.

2) Let V be a 1—dimensional p—adic representation. Than V is crystalline

if and only if there exists an integer ¢ such that V(—1) := V ((28 Qp(—1) is
‘ P

unramified. Here Q,(—1) := (li(inupn )8 (=9 %9 Q,.
P P

We must review the Dieudonné module of a p—divisible group of G of height A
over Ok. But we state only the following properties: It is a filtered module of
rank h over K whose filtration is as follows: Fil° : the whole space, Fil' : the
dual of the tangent space of the formal group associated to the connected
component of G, Fil*> = 0. [F] is a good reference on Cartier-Dieudonné
theory. The following is the key point for the proof of (6.6).

Theorem 6.10 ([F2] (6.2)). Let G be a p—divisible group over Og. Then
Vu(G) := Tp(I‘)?Qp is a crystalline representation. Furthermore Derys(V,(G))

is isomorphic to the dual of the Dieudonné-module of I' as a filtered module.
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By completing A and using (6.9) and (6.10), we get (6.6).

Appendix .

As we said, we give the group law of ¢, ... ¢, GZ‘IZ’, in the notation of (3.7).
For this we must prepare some notations. Let x : F; :— p4—1 be a character.
Then it can be uniquely written in the rule of of §3 Notations as follows:

x=J[ xf 0<e<p-1L
i€/ f

Then we put
wX = wgl, o 7X1J""’\Xf—1? oo ’Xf—])-'

N N~
ef pieces

€] pieces

It can be shown that w, is an invertible element of A;. Let 1 < ¢ <
f be an 1nteger We take the fundamental character and consider x' =

I

II XJ , X' =11 X, such that x'x” = x;. In thls case there is a unique in-
tegerl <k< fsuchthatel ,+el ,=p, € ,+e ,=p—1(1<h<
k), €;+ €] = 0otherwise. Let T be a scheme over the base scheme 5, and

= (z:i),y = (%) € E1,--~,£,G211',‘-.-.-,,?1§(T) = {(z1,"--,27) € Hr—l (T, Lt gbs

(’)T) |z®” = af(2ziy1), 2 = 1,---, f}. Under these notations the group law of
Ly Gall',' Z’} is given as follows: The i-th component of = + y is

T+ yi + Z bick ixfwfj bi-1 H ®c; 8y ® "

x'x"=xi J

Here b; is considered as a section of (L&? ® L7 )(T).

References

[B] P. Berthelot. Systémes de Honda des schémas en
IF,—vectoriels. Bull. Soc. Math. Fr. 105 (1979), pp.225-
239.

[F) J.-M. Fontaine. Groupes p—divisibles sur les corps lo-

caux. Astérisque 47-48, Soc. Math. de France (1977),



[F2]

[FL]

[R]

[S]
[Sh]

J.-M. Fontaine. Module galoisiens, modules filtrés et
anneauz de Barsotti-Tate. Dans Journées de Géométrie
de Rennes, Astérisque 65, Soc. Math. 115 (1982), pp.3-
80.

J.-M. Fontaine. Sur certains types de représentations
p—adiques du groupe de Galois d’un corps local: con-
struction d’un anneauz de Barsotti-Tate. Ann. of Math.
115 (1982), pp.529-577.

J.-M. Fontaine et G.Laffaille. Construction de
représentations p—adiques. Ann. Scient. Ec. Norm. Sup.
4° série 15 (1982), pp.547-608.

F. Momose. Q— curves and QM- curves. In this volume.
Y. Nakkajima. Finite Group Schemes I. In this volume.

F. Oort and J. Tate. Group schemes of finite order.
Ann. Sci. Ecole Norm. Sup.3, (1970), pp. 1-21.

M. Raynaud. Schémas en groupes de type (p,--- ,p).
Bull. Soc. Math. Fr. 102, (1974), pp. 241-280.

J.-P. Serre. Corps Locauz. Hermann, Paris (1968).

S.S. Shatz. Group Schemes, Formal Groups, and
p— Divisible Groups. In Arithmetic Geometry edited by
G. Cornell and J.H. Silverman, Springer-Verlag, (1986),
pp. 29-78.

J. Tate. p—divisible groups. Proceedings of a Confer-
ence on Local Fields, Driebergen, 1966. Springer-Verlag,
(1967), pp. 158-183.

28



