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Abstract

The complexity classes characterized by
semi-random sources were investigated.
$\mathrm{U}.\mathrm{V}$ . Vazirani and V.V Vazirani [VV85]
showed that $\forall_{\delta- \mathrm{R}}\mathrm{p}=\mathrm{R}\mathrm{P}$ , and $\mathrm{U}.\mathrm{V}$ . Vazirani
[Vaz86] showed that $\forall_{\delta}$-BPP $=$ BPP, where,
for the $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\ln$ class $C$ , the class $\forall_{\delta- C}$ is a set
of all languages which satisfy the condition
for $C$ by using any $\delta$-random source. First,

we show that

$\forall_{\delta-\mathrm{p}}\mathrm{P}=\mathrm{B}\mathrm{P}\mathrm{P}$ ,

$\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{t}\cdot 1_{1}$ means that the class PP is weakened
by $\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{l}$ some semi-random source unless
BPP $=\mathrm{p}\mathrm{p}$ , whereas RP and BPP don’t
change by using any semi-random source.
The characterization above of the complex-
ity $\mathrm{c}\cdot \mathrm{l}\mathrm{a}\mathrm{s}\mathrm{S}\mathrm{e}\mathrm{S}$ by using semi-random source is
defined by using any $\delta$-random source. We
introduce the dual characterization, which is
defined by using some $\delta$-random source. In
other words, for the random class $C$ , the class
$\exists_{\delta- C}$ is defined by the existence of a 6-random
source which satisfies the $\mathrm{c}\cdot \mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ for $C$ .
Secondly, for these classes, we show that

$\exists_{\delta- \mathrm{R}\mathrm{P}}=\mathrm{N}\mathrm{P}$ , and $\exists_{\delta- \mathrm{B}}\mathrm{p}\mathrm{p}=\exists_{\delta- \mathrm{P}\mathrm{P}=\mathrm{P}\mathrm{s}}\mathrm{p}\mathrm{A}\mathrm{c}\mathrm{E}$ .

These equations give the new characteriza-
tion of NP and PSPACE, especially, the char-

acterization for PSPACE improves a series of
the research for Interactive Proof System.

1 Introduction

The existence of a fair coin has been exten-
sively assumed for applications such as ran-
domizing algorithms, cryptographic proto-
cols, and stochastic simulation experiments.
However, it beset with a difficulty; the avail-
able sources of randomness, such as Zener
diodes, and Geiger counters are imperfect.
They don’t output unbiased, independent
random bits. J. von $\mathrm{N}\mathrm{e}\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}[\mathrm{N}\mathrm{e}\mathrm{u}51]$ pro-
posed a simple algorithm to extract unbiased
flips from an imperfect source, which is the
simplest model of an imperfect source of ran-
domness being a coin whose bias is unknown,

but fixed. M. $\mathrm{B}1n\mathrm{m}[\mathrm{B}\mathrm{l}\mathrm{u}86]$ considered when
the imperfect random source is a determin-
istic finite state Markov process. M. San-
tha and $\mathrm{U}.\mathrm{V}$ . Vazirani introduced, as an ex-
tremely general model of an imperfect source
of randomness, a “slightly random source” in
[SV84], or “semi-random $\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}’$

’ in [SV86].
The model of this random source is also
called $‘ i\mathrm{S}\mathrm{V}$-model” in [CG88]. This $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\ln$

source is referred as a $‘\prime sem\dot{i}$-random source”
in this paper. A semi-random source is as-
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sumed that the previous bits output by the
source can condition the next bit in an arbi-
trarily bad way. Accordingly, the next bit is
output by the flip of a coin whose bias is fixed
$1_{\mathrm{J}}\mathrm{y}$ an adversary who has complete knowledge
of the history of the process. The adversary
$\mathrm{i}‘(\backslash ^{\mathrm{t}}$ limited to choosing a bias in $[\delta, 1-\delta]$ with
some positive number $0 \leq\delta\leq\frac{1}{2}$ . More pre-
cisely:

Notice that the class $\mathrm{R}\mathrm{P}$ , defined by
J. $\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}[\mathrm{G}\mathrm{i}\mathrm{l}77]$, is defined by the definition
by letting $\delta=\frac{1}{2}$ . In other words, since
a $\frac{1}{2}$-random source is a fair random source,

$\forall.\frac{1}{2}- \mathrm{R}\mathrm{P}$ defines the same class as $\mathrm{R}\mathrm{P}$ . In the
paper, they showed that $\forall_{\delta- \mathrm{R}\mathrm{P}}=$ RP with
$0< \delta\leq\frac{1}{2}$ . The class $\forall_{\delta}$-BPP, $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}1^{)}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$

to BPP, was introduced by U. Vazirani (he
referred as SBPP):

Definition 1 $([\mathrm{S}\mathrm{V}84])$ Let $\delta$ be a number
such that $0 \leq\delta\leq‘\frac{1}{\mathit{2}}.$ $A$ semi-random source
with parameter 6 outputs bits $X_{1}X_{2}\cdots$ , such
that for all $i$ and for all $x_{1},$ $x_{2},$ $\cdots$ ,

$\delta\leq \mathrm{p}\mathrm{r}[_{\mathit{1}\mathrm{Y}_{i}}=x_{i}|X_{1}=x_{1},$
$\cdots,$ $z\mathrm{Y}_{i-1}=$

$x_{?-1}.]\leq 1-\delta$ .
A semi-random source with parameter $\delta$

will be termed $\delta$ -random source.
In the paper, they proved that there is no
way to generate fair random bits from one
semi-random source $(\mathrm{U}.\mathrm{V}$ . $\mathrm{V}\mathrm{a}\mathrm{z}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{i}[\mathrm{v}_{\mathrm{a}}\mathrm{z}85]$

showed how to generate random bits from
two independent semi-random sources).

A semi-random source is weak as a ran-
dom source in a sense as mentioned above.
J. $\mathrm{G}\mathrm{i}\mathrm{l}\mathrm{l}[\mathrm{G}\mathrm{i}\mathrm{l}77]$ defined the classes, such as
$\mathrm{R}\mathrm{P}$ , BPP and $\mathrm{p}\mathrm{p}$ , by using a fair random
source. The influence by using a semi-
random source, instead of a fair rand.om
source, over these classes has been investi-
gated. (The terminology of the classes be-
low are unified by the author, and it will be
clear what a symbol $\mathrm{t}‘\forall$

’ means in the next
paragraph.) The class $\forall_{\delta- \mathrm{R}\mathrm{P}}$ , corresponding
to $\mathrm{R}\mathrm{P}$ , was introduced by $\mathrm{U}.\mathrm{V}$ . Vazirani and
$\mathrm{V}.\mathrm{V}$ . Vazirani (they referred as $SR_{p}$ ):

Definition 2 ( $[\mathrm{V}\mathrm{V}85]\rangle$ A language $L$ is in
$\forall_{\delta- \mathrm{R}\mathrm{P}}$ if there exists a probabilistic Turing
$mach_{\dot{i}}ne(P\tau M)M$ such that; for $x\in L,$ $M$

accepts with the $probab\dot{i}l\dot{i}ty.qrCater$ bhan $‘$

$\frac{1}{2}$ for
all $\delta$ -random sources, and for $x\not\in L,$ $M$ al-
$u\mathit{1}a\mathrm{t}/s$ rejects.

Definition 3 $([\mathrm{V}\mathrm{a}\mathrm{z}86])$ A language $L$ is in
$\forall_{\delta}$ -BPP if there exists a $PTMM$ such that;
for $x\in L,$ $M$ accepts with the probability
greater than $\frac{3}{4}$ , and for $x\not\in L,$ $M$ accepts
with the probability less than $\frac{1}{4}$ for all 6-
random sources.

Notice that $\forall\frac{1}{2}$-BPP defines the $8\mathrm{a}\mathrm{m}\mathrm{e}$ class
as BPP. He showed that $\forall_{\delta}$-BPP $=$ BPP
with $0< \delta\leq\frac{1}{2}$ in the paper. The proof
of the result $1\mathrm{S}*$ also given by $\mathrm{C}.\mathrm{H}$ . $\mathrm{P}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{n}1^{-}$

itriou in [Pap94], and the result is general-
ized by B. Chor and O. Goldreich in [CG88],
D. Zuckerman in [Zuc91], and A. Srinivasan
and D. Zuckerman in [SZ94]. In the same
manner as $\forall_{\delta- \mathrm{R}\mathrm{P}}$ and $\forall_{\delta}$-BPP, we introduce
the class $\forall_{\delta-\mathrm{p}\mathrm{P}}$ , corresponding to $\mathrm{P}\mathrm{P}$ :

Definition 4 A language $L$ is in $\forall_{\delta-\mathrm{p}\mathrm{P}}$ if
there exists a $PTMM$ such that; for $x\in L$ ,
$M$ accepts with the probability greater than $\frac{1}{2}$ ,

and for $x\not\in L,$ $M$ accepts with the probability
less than $\frac{1}{2}$ for all $\delta$ -random sources.

Notice that $\forall\frac{1}{2}- \mathrm{P}\mathrm{P}$ defines the same class as
$\mathrm{p}\mathrm{p}$ . The first theorem in this paper is the
following:
Theorem 1

For $0< \delta<\frac{1}{2},$ $\forall\delta- \mathrm{P}\mathrm{P}=\mathrm{B}\mathrm{P}\mathrm{P}$ .

This result is different from the results for $($

$\forall_{\delta- \mathrm{R}\mathrm{P}}$ being equal to $\mathrm{R}\mathrm{P}$ , and $\forall_{\delta}$ -BPP be-
ing equal to BPP. In other words, whereas
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RP and BPP are robust for using any semi-
random source, PP is weakened by using
some semi-random source unless BPP $=\mathrm{p}\mathrm{p}$ .

The classes $\forall_{\delta- \mathrm{R}\mathrm{P}},$
$\forall_{\delta}$ -BPP, alld $\forall_{\delta-}\mathrm{p}\mathrm{p}$ re-

quest to $\dot{\mathrm{s}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}_{Y}$ the conditions for all $\delta-$

random sources. The symbol “V’ means it.
In this sense, we can define the dual classes
characterized by the symbol “

$\exists$”.

Definition 5 A language $L$ is in $\exists_{\delta- \mathrm{R}\mathrm{P}}$ if
there exists a $PTMM$ such that; for $x\in L$ ,

$M$ accepts with the probability greater than
$. \frac{1}{2}$ for at least one $\delta$ -random source, and for
$x\not\in L$ . $\wedge l\nearrow I$ always rejects.

Definition 6 A language $L$ is in $\exists_{\delta}$ -BPP $\dot{i}f$

there exists a $PTMM$ such that; for $x\in L$ ,
$\wedge l/f$ accepts with the probability greater than

$\frac{3}{4}$ for at least one $\delta$ -random source, and for
$x\not\in L,$ $\wedge’\backslash$[ accepts with the probability less
than $\frac{1}{4}$ for all $\delta$ -random sources.

Definition 7 A language $L$ is in $\exists_{\delta- \mathrm{P}\mathrm{P}}$ if
there exists a $PTMM$ such that; for $x\in L$ ,
$\wedge 1f$ accepts with the probability greater than

$. \frac{1}{\sim)}$ for at least one $\delta$ -random source, and for
$\sim \mathrm{r}\not\in L,$ $M$ accepts with the probability less
$tl_{l}an. \frac{1}{2}$ for all $\delta$ -random sources.

Notice that since $\mathrm{a}.\frac{1}{2}$ -random source is a fair
random source, $\exists\underline{1}_{-\mathrm{R}\mathrm{p}}-,$ ( $. \frac{1}{2}$ -BPP and $\exists\frac{1}{2}- \mathrm{P}\mathrm{P}$ )
defines the same class as RP (BPP and $\mathrm{p}\mathrm{p}$ ,

respectively). Note that in the definition of
$\exists_{\delta}$-BPP and $\exists_{\delta- \mathrm{P}\mathrm{P}}$ , it must be “for all” for
.? $\not\in L$ to make sense. In the definitions
above, intuitively, a PT-NI makes a nonde-
terministic and a probabilistic choice on a
$\mathrm{c}\cdot \mathrm{o}\mathrm{i}\mathrm{n}$-tossing state. More precisely, a PTM,

on a coin-tossing state, nondeterministically
assigns the value between $\delta$ and 1-6 to the
probability that an outcome of a coin-tossing
is head, tosses it, and follows the outcome.
The second and the third theorem in this pa-
per are the following:

Theorem 2

For $0< \delta<\frac{1}{2},$ $\exists\delta- \mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}$ .

Theorem 3

For $0< \delta<\frac{1}{2}$
$\exists_{\delta- \mathrm{B}\mathrm{P}\mathrm{P}}=\exists_{\delta- \mathrm{P}\mathrm{P}=\mathrm{P}\mathrm{s}}\mathrm{p}\mathrm{A}\mathrm{c}\mathrm{E}$ .

These results give new characterizations for
the class NP and PSPACE. Especially, the
new characterization for the class PSPACE
improves a series of the research for Interac-
tive Proof System [Pap83, Bab85, GMR85,
GS86, Sha90], in the sense that, only one
kind of quantifier is used. The relations are
summarized as follows:

$-^{\forall_{\mathrm{o}_{-\mathrm{R}\mathrm{p}}}.\forall_{0}.\forall}--\mathrm{B}\mathrm{p}\mathrm{p}-0-::7::\mathrm{P}\.\tau::\mathrm{p}\mathrm{i}$

:

$\underline{\ldots.-_{1/2}\overline{0<\delta}<-.\cdot\cdot.\subseteq=}|$

$\forall_{\delta-\mathrm{R}\mathrm{p}\cdots-\forall-\forall}\delta-\mathrm{i}^{\mathrm{p}}\mathrm{P}\delta-:\mathrm{p}\mathrm{p}$

$\forall_{1^{\{/2})-\mathrm{R}\mathrm{P}}\forall_{1]/2})$ -BPP $\mathrm{v}_{\langle)\mathrm{p}\mathrm{P}}1/2-$

$\ovalbox{\tt\small REJECT}_{\backslash }\mathrm{R}"\cdots\cdots\cdot \mathrm{B}\mathrm{A}_{\backslash }\mathrm{p}\mathrm{P}\cdots\ldots\ldots.\mathrm{h}\mathrm{P}\mathrm{p}$

$51/2)-\mathrm{R}\mathrm{P}\mathrm{i}\{/2$)-BPP
$5^{\backslash }1/2$

) $-\mathrm{p}\mathrm{p}$

$1_{l}\backslash$

$\exists_{\delta}1^{\mathrm{R}\mathrm{p}\cdots\cdot\exists_{\delta-}\exists_{\delta}}\mathrm{B}\mathrm{p}\mathrm{p}--\mathrm{p}\mathrm{p}-$

$-5_{-\mathrm{R}\mathrm{p}}-5-\mathrm{B}\mathrm{p}\mathrm{p}-5-\mathrm{P}\mathrm{P}$

2 Preliminaries

We assume a standard Turing machine
model. For formal definitions of a determin-
istic Turing machine (DTM) and a nondeter-
ministic Turing $mach\prime ine$ (NTM), see [HU79].
A probabilistic $Tnr\dot{i}ng$ machine (PTM) is
a Turing machine with distinguished states
called $\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}- \mathrm{t}_{\mathrm{O}\mathrm{S}}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ states. For formal defini-
tions of a PTM, see [Gi177, BDG88]. Note
that a PTM in this paper, generally, chooses
on a coin-tossing state, with probability not
equal to $. \frac{1}{2}$ , as defined in [Gi177]. As men-
tioned in Introduction, by using $\mathrm{a}\frac{1}{2}$ -random
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source being a fair random source, we de-
fine the class RP by $\forall(1/2)- \mathrm{R}\mathrm{P}$ (equal to
$\exists(1/2)- \mathrm{R}\mathrm{P})$ , BPP by $\forall(1/2)$-BPP (equal to
$\exists(1/2)$ -BPP), and PP by $\forall(1/2)- \mathrm{P}\mathrm{P}$ (equal to
$\exists(1/2)- \mathrm{P}\mathrm{P})$ .

In this paper, without loss of generality, we
assume that an NTM or PTM is standard-
ized as follows: Let $M$ be a precise, polyno-
mially $\iota_{)\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{d}\mathrm{e}\mathrm{d}$ NTM or PTM with exactly
two choices per step. We denote by $M(x)$

the ( $\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ path(s) of $M$ on input $x$ .
The two choices available at each step are
denoted the $\mathit{0}$-choice and 1-choice. On input
$x$ of length $n$ , the computation $M(x)$ is in
effect a fnll binary tree of depth $p(n)$ , where
$p(n)$ is some polynomial for $n$ . This tree
has $(2^{p(n)1}+-1)$-many nodes among which
there are $2^{p(n)}$-nuany leaves ( $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ to
an accepting state or a rejecting state), and
$(2^{p(n)}-1)$-many internal nodes. The tree has
$(2^{p()1}n+-2)$ -many edges, each corresponding
to one of the two choices from an internal
node.

We sometimes abbreviate by $*\mathrm{f}\mathrm{o}\mathrm{r}$ short,
e.g. $*\delta- \mathrm{R}\mathrm{P}$ for $\forall_{\delta- \mathrm{R}\mathrm{P}}$ and $\exists_{\delta- \mathrm{R}\mathrm{P}}$ , and $\forall_{\delta-*}$ for
$\forall_{\delta- \mathrm{R}\mathrm{P}},$

$\forall_{\delta}$-BPP, and $\forall_{\delta-}\mathrm{p}\mathrm{P}$ . The following
proposition is shown by definitions.

Proposition 4 The following holds for $\forall_{\delta-*}$

with $0< \delta<.\frac{1}{2}$ :

$\mathrm{p}_{=}\mathrm{v}_{)_{-}}\mathrm{R}\mathrm{p}\subseteq^{\forall_{\delta- \mathrm{R}}\mathrm{p}}\subseteq^{\forall}(1/2)- \mathrm{R}\mathrm{P}\#\mathrm{P}$ ,
$\mathrm{P}=^{\mathrm{v}_{0-}\forall\forall}\mathrm{B}\mathrm{p}\mathrm{P}\subseteq\delta-\mathrm{B}\mathrm{P}\mathrm{P}\subseteq(1/2)- \mathrm{B}\mathrm{P}\mathrm{p}4\mathrm{P}\mathrm{P}$ , and
$\mathrm{P}=^{\forall}0- \mathrm{P}\mathrm{p}\subseteq^{\forall}\delta- \mathrm{P}\mathrm{p}\subseteq^{\forall}(1/2)- \mathrm{P}\mathrm{P}=\mathrm{P}\mathrm{P}$.

The following holds for $\exists_{\delta-*}w\dot{i}th0<\delta<\frac{1}{2}$ :

RP $=\ovalbox{\tt\small REJECT} 1/2$) $- \mathrm{R}\mathrm{P}\subseteq\exists_{\delta- \mathrm{R}\mathrm{P}}\subseteq 5- \mathrm{R}\mathrm{P}\dot{\mathrm{A}}\mathrm{P}$ ,
$\mathrm{B}\mathrm{P}\mathrm{P}_{-}\ovalbox{\tt\small REJECT} 1/2)$ -BPP, $5_{- \mathrm{B}\mathrm{P}\mathrm{R}}*\mathrm{w}\mathrm{P}$, and
PP $=(\exists 1/2)- \mathrm{P}\mathrm{P}$ , ..

$5_{- \mathrm{P}}\mathrm{p}=\#\mathrm{P}$ .

Proof. Any $0$-assignment gives the proba-
bility equal to 1 or $0$ to each computation
path. Thus for $\forall_{0-*}$ , all leaves must agree

on the outcome, or this algorithm must in
fact be deterministic. This inlplies $\forall_{0- \mathrm{R}\mathrm{P}}=$

$\forall_{0}$-BPP $=\forall_{0-\mathrm{p}\mathrm{P}}=$ P. Conversely, for 5-*,
it is sufficient that only one leaf agrees on
the outcome, or this algorithm must in fact
be nondeterministic. This imply 5-RP $=$

5-BPP $=5_{-\mathrm{p}}\mathrm{p}=\mathrm{N}\mathrm{P}$ . 1

Note that the simple inclusion does not
hold for $\exists_{\delta}$-BPP and $\exists_{\delta-}\mathrm{p}\mathrm{P}$ , whereas it holds
for $\exists_{\delta- \mathrm{R}\mathrm{P}}$ and $\forall_{\delta-*}$ .

The follO.Wing results have been shown:

Theorem 5 $([\mathrm{V}\mathrm{V}85])$ For $0$ $<$ $\delta$
$\leq$ $\frac{1}{2}$ ,

$\forall_{\delta- \mathrm{R}\mathrm{P}}=\mathrm{R}\mathrm{p}$ .

Theorem 6 $([\mathrm{v}_{\mathrm{a}}\mathrm{Z}86])$ For $0$ $<b$ $\leq$ $\frac{1}{2}$ ,
$\forall_{\delta- \mathrm{B}\mathrm{P}\mathrm{p}}=\mathrm{B}\mathrm{P}\mathrm{P}$ .

Since the proof of Theorem 6 in [Pap94] plays
an important role in this paper, we show the
outline of the proof.
Proof of Theorem 6 $([\mathrm{P}\mathrm{a}\mathrm{p}94])$ . Let $L$ be
a language with $L\in$ BPP, and $M_{0}$ be a
PTM such that $L(\mathit{1}\mathcal{V}I\mathrm{o})=L$. Let $p(n)$ be
the length of a $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ path of $M_{0}$ on
input of length $n$ . Without loss of gener-
ality, we can assume that the number of
the accepting path is, by repeating the al-
gorithm enough times, at least $\frac{31}{32}2^{p(n)}$ for
$x\in L$ , and at most $\frac{1}{32}2^{p(n)}$ for $x\not\in L$ . Let
$r(n)= \lceil\frac{3\log p(n)+5}{2\delta-2\delta^{2}}\rceil$ . (This is referred to as
“an important parameter $k$

” in [Pap94, Proof
of Theorem 11.4].) A sequence of $r(n)$ bits
will be called block. The $2^{r(n)}$ -many possi-
ble blocks are denoted by the correspond-
ing binary integers $0,1,$ $\cdots,$

$2^{r(n)}-1$ . If $\kappa=$

$(\kappa_{1}, \kappa_{2}, \cdots, \kappa r(n))$ and $\lambda=(\lambda_{1}, \lambda_{2}, \cdots , \lambda_{r(n)})$

are blocks, then their inner product is de-
fined $\kappa\cdot\lambda=\Sigma_{i=}^{r(n_{1}}\kappa_{i}\lambda$

)
$i$ (mod 2). Notice

that the inner product of two blocks is a
bit. Now we construct a PTM $\Lambda I_{0}’$ simulating
$M_{0}$ . $\underline{j}lI_{0}’$ simulates $2^{r(n)}- \mathrm{m}\mathrm{a}\mathrm{n}_{\mathrm{Y}}$. $M0$ in parallel.
Without loss of generality, we can assume
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that every computation of $\Lambda I_{0}$ has $p(n)$-many
choices. The $j\mathrm{t}\mathrm{h}$ choice of $i\mathrm{t}\mathrm{h}$ simulation of
$\mathrm{i}\downarrow I_{0}$ is performed as follows;

{ $*\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ a probabilistic $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{i}_{\mathrm{C}\mathrm{e}}*$ }
generate $r(n)$-many $\delta$ -random bits in $\theta_{j;}$

$h_{(?,j)}=\beta j.\dot{i}$ ;
choose $h_{(i,j)}$ -choice;

Notice that $\beta_{j}$ depends only $j$ . In other
words, $\beta_{j}$ is used $2^{r(n)}$ times of $j\mathrm{t}\mathrm{h}$ choices on
the $2^{r(n)}$ -nlany simulations. At the end of the
simulation, $i\mathrm{W}_{0}’$ accepts if a majority of $2^{r(n)}-$

many simulations accepts, or rejects other-
wise. Let $T=\{(\beta_{0}\cdot\kappa, \beta 1^{\cdot}\kappa, \cdots , \beta_{\mathrm{P}}(n)-1\kappa)|$

$f_{\overline{\iota}}=0,1,$ $\cdots,$ $2^{7()}n-1\}$ , and $B\subset\{0,1\}^{P}(n)$

be an arbitrary set with $|B| \leq\frac{1}{32}2^{p(n)}$ .
$\mathrm{C}.\mathrm{H}$ . Papadimitriou have shown in [Pap94,
Proof of Theorem 11.4] that

$\mathrm{P}\mathrm{r}[|T\cap B|\geq\frac{1}{2}|T|]<\frac{1}{4}$ .

This imply that $M_{0}’$ accepts with the proba-
bility greater than $\frac{3}{4}$ for $x\in L$ , and it accepts
with the probability less than $\frac{1}{4}$ for $x\not\in L$ .
Thus $L\in$ BPP. 1

Notice that $M_{0}’$ works for every $\delta$-random
source with $0< \delta<\frac{1}{2}$ .

Here we show a lemma will be often used
in this paper, which is shown by $\mathrm{J}.\mathrm{H}$ . Luts
by using Chernoff $\mathrm{B}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{s}[\mathrm{C}\mathrm{h}\mathrm{e}52]$:

Lemma 7 $([\mathrm{L}\mathrm{u}\mathrm{t}90])$

Let $h(x, y)$ be a weighted entropy defined by
$-x\log y-(1-X)\log(1-y)$ . Then,

$\Sigma_{?=0}^{bt}a^{i}(1-a)\mathrm{f}-i\leq 2^{-c1}$ for $0<b<a<$
$1$ , and

$\Sigma_{i=bt}\ell a^{i}(1-a)^{t-?}\leq 2^{-ct}$ for $0<a<$
$b<1_{\mathit{3}}$

where $c=h(b, a)-h(b, b)$ .

3 Results for $\forall_{\delta-\mathrm{P}\mathrm{P}}$

In this section, we will prove Theorem 1,
which states that $\forall_{\delta- \mathrm{P}\mathrm{P}}=$ BPP for $0<\delta<$

$\frac{1}{2}$ . For a PTM with $\delta$-random source, it is
not clear how to assign the probability to the
computation paths to maximize the proba-
bility that a given PTM accepts. It depends
on the distribution of the accepting paths in
the computation tree of the PTM. We define
some notation to deal with the computation
paths which are regarded as a simple full bi-
nary tree whose edges are labeled the value
between $\delta$ and $1-\delta$ .

Definition 8 $A$ computation tree is a full
binary tree whose leaves are labeled by $‘ {}^{t}ac-$

cept” or ttreject”.

We call the path to aleaf labeled by “accept”
(or “reject”) is an accepting (or a rejecting,
respective.l.y) path. For a $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}.$

. tree
$T$ , we denote by $|T|$ the number of the
accepting paths of $T$ .

$.\cdot.\backslash$

Definition 9 For each $\delta$ with $0 \leq\delta\leq\frac{1}{2}$ ,
$a$

$\delta$-assignment $\mathrm{F}$ to a computation tree is
a mapping from the set of edges of the tree
to the interval $[\delta, 1-\delta]$ such that the two
edges leaving each internal node are assigned
numbers adding up to 1.

Definition 10 Let $T$ be a computation tree,
and $F$ be a $\delta$ -assignment to T. The proba-
bility of a node of $T$ for $F$ is defined by the
product of each value which is mapped from
the edge, on the path from root to the node,
by F. The probability of $T$ for $F$ , denoted
by $\mathrm{P}\mathrm{r}[T|F]$ , is defined by the sum of every
probability of the leaf labeled ttaccept”.

For a given computation tree, we consider an
assignment which maximizes the probability
of the tree:

Definition 11 For a given computation tree
$T$ , a maximal assignment $F_{\max}(T)$ is defined
by the following rules:
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$(\dot{i})$ For the node whose sons are leaves; as-
sign $(1-\delta)$ to an edge incidenting a leaf la-
beled $:_{accep}‘ t$

” and assign $\delta$ to another edge,
if there exists at least one leaf labeled ttac-
cept”; or assign $(1-\delta)$ and $\delta$ to edges $\dot{i}f$ both
are labeled “reject”.
(ii) For the internal node whose sons are the
subtrees whose assignments are already de-
fined: let $T_{0}$ and $T_{1}$ are the subtrees; assign
$(1 -\delta)$ to the edge incidenting the root of
$T_{0}$ (or $T_{1}$ ) and assign $\delta$ to the edge inci-
denting the root of $T_{1}$ (or $T_{0}$), if $\mathrm{P}\mathrm{r}[T_{0}|$

$F_{\max}(T_{0})]>\mathrm{P}\mathrm{r}[T_{1}|F_{\max}(T_{1})]$ (or otherwise,
respectively).

By using the induction for the depth of
the tree, it is easily shown that $\mathrm{P}\mathrm{r}[T$ $|$

$F_{\mathrm{m}\mathrm{a}[] \mathrm{p}}(T)]\geq \mathrm{P}\mathrm{r}[T|F’]$ for any $\delta$-assignment
$F’-$ . Notice that to maximize the probabil-
ity, it is sufficient to consider $\delta$-assignments
which only assign the values $\delta$ and $1-\delta$ .

Definition 12 Let $a$ be an integer. The
computation tree $T$ with a-many accepting
paths is the worst $\dot{i}f\mathrm{P}\mathrm{r}[T| F_{\max}(T)]$ $\leq$

$\mathrm{P}\mathrm{r}[T’|F_{\mathrm{r}\mathrm{r}\mathrm{l}\mathrm{a}\mathrm{x}}(\tau’)]$ holds for any computation
tree $T’$ with a-many accepting paths.

We note that a worst tree gives the maximal
number of the accepting paths for a given
probability. To construct a worst tree, we
consider to draw the computation tree as a
planar tree, whose root is drawn on the top.

Definition 13 A computation tree $T$ with
$a$ -many accepting paths is unbalanced $\dot{i}f$ it
can be drawn such that the first $ath$ leaves in
order from right side are labeled $‘ {}^{t}accept$”.

Notice that for a given unbalanced tree $T$ ,
$F_{\max}(T)$ assigns $(1-\delta)$ to each edge to a right
son, and $\delta$ to each edge to a left son. Firstly,
we show two lemmas for an unbalanced tree.

Lemma 8 Let $T$ be an unbalanced tree of
depth $d$ with a-many accepting paths. Let
$a_{0},$ $a_{1},$ $\cdots,$ $a_{k}$ be the integers such that $a=$
$2^{a_{k}}+\cdots+2^{a\mathrm{l}}+2^{a_{0}}$ with $a_{k}>\cdots>a_{1}>$

$a_{0}\geq 0$ , which are uniquely determined by
the representation of $a$ on the binary system.
Then it holds that:

$\mathrm{P}\mathrm{r}[T|F_{\max}(T)]=\sum_{i=0}^{k}\delta^{i}(1-\delta)^{d}-a_{k}-:-i$ .

Proof. For a subtree, its parent is the node
whose son is the subtree. For given $a$ , we
construct a computation tree of depth $d$ with
$a$-many accepting paths from a computation
tree of depth $d$ with no accepting path as
follows:

For $k$ : Let $T_{k}$ be the rightmost subtree of
depth $a_{k}$. of the tree with no accepting
path. Change all of the label of the
leaves of $T_{k}$ from “reject” to “accept”.

For $i$ $(i=k-1, k-2, \cdots , 0)$ : Let $T_{i+1}’$ be
the subtree whose parent is as same as
$T_{i+1}$ . Let $T_{i}$ be the rightmost subtree
of depth $a_{i}$ of $T_{i+1}$ . (Note that this step
works since $a_{i+1}>a_{i}.$ ) Change all of the
label of the leaves of $T_{i}$ from “reject” to
“accept”.

Since each $T_{i}(k\geq\dot{i}\geq 0)$ is always taken
from rightmost side, we obtain an unbal-
anced tree of depth $d$ after the construction,
and its number of accepting paths is equal to
$a$ . Thus the constructed tree is the same tree
as $T$ . The path to the root of $T_{i}(k\geq\dot{i}\geq 0)$

consists of the path to the parent of the root
of $T_{k}$ (whose $(d-a_{k}-1)$-many edges are
assigned $(1-\delta))$ , an edge to the root of $T_{k}’$

(which is assigned $\delta$ ), the path to the parent
of the root of $\tau_{\iota\sim-1}$ (whose $(a_{k}-a_{k-}\mathrm{l}-1)-$

many edges are assigned $(1-\delta))$ , an edge to
the root of $T_{k-1}’,$ $\cdots$ , and the path to the root
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of $T_{\dot{\tau}}$ . Thus, the probability of the root of $T_{i}$ of depth $d-1$ with $(a+b)$-many accepting
$(k\geq i\geq 0)$ is given by the product of the path. Thus lemma holds.
probabilities, equal to $\delta^{i}(1-\delta\rangle$$d-ak-:-i$ . The Case $(\dot{i}\dot{i}\dot{i})$ . Suppose $|T_{al}|>0,$ $|T_{bl}|>0$ .
constructed unbalanced tree is a mixture of In this case, since $\dot{T}a$ and $T_{b}$ are unbalanced
each $T_{i}$ . Hence the probability of $T$ is given trees, $|\grave{T}_{ar}|=|T_{br}|=2^{d-2}\backslash$ . Thus, by ex-
by the sum of the probability of the root of changing $T_{ar}$ and $T_{bl}$ , every path of $T_{b}$ is
each $T_{i}$ with $0\leq\dot{i}\leq k$ . This implies the accepting path. On the other hand, since
lemma. 1 $|T_{al}|=a_{\urcorner}2^{d-2}$ and $|T_{ar}|=b-2^{d-2}$ , by us-

ing $\mathrm{i}\mathrm{n}\dot{\mathrm{d}}$uctive hypothesis to $T_{a}$ of $\mathrm{d}\dot{\mathrm{e}}$ pth $d-1$ ,
Lemma 9 Let $T$ be an unbalanced tree of $\mathrm{P}\mathrm{r}[T_{b}|F_{\max}(T_{b})]\geq \mathrm{P}\mathrm{r}[T^{m}|F_{\max}(T^{m})]$ ,
depth $d$ with $(a+b)$ -many accepting paths where $T”’$ is an unbalanced tree df depth
with $0\leq a\leq b$ . Let $T_{a}$ (or $T_{b}$) be an un-

$d-1.\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}(a+b-2^{d-}1)- \mathrm{m}\mathrm{a}\mathrm{n}\mathrm{y}..\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ path.
balanced tree of depth $d-1$ with a $\neg many$ (or Thus, since a mixture of $T”’$ and $T_{b}$ is an un-
$b$ -many, respectively) accepting paths. Let $T’$

balanced tree of depth $d$ witth $(a+b)$-many
be $the\sim tree$ of depth $d$ such that the left (or accepting path, lemma holds.
right) son of the root is $T_{a}$ (or $T_{b}$ , respec- Case $(\dot{i}v)$ . Suppose $|T_{al}|=0,$ $|T_{bl}|>0$ . Di-
tively). Then it holds that; vide $T_{a\iota,}$ T, and $T_{bl}$ to $\mathcal{T}_{a\iota_{r}},$ $T_{a}l\iota,$ $\tau arr’ Tar\iota$ ,

$\mathrm{P}\mathrm{r}[T^{j}|F_{\max}(T^{r})]\geq \mathrm{P}\mathrm{r}[T|F_{\max}(T)]$ . $T_{blr}$ , and $T_{bll}$ in the same manner. Here, $T_{alr}$ ,
$T_{arl}$ , and $T_{bll}$ are exchangeable each other,

Proof. We show the lemma by induction and so $T_{arr}$ and
$\tau_{b\iota_{r}\mathrm{a}}..\mathrm{r}\mathrm{e},\cdot \mathrm{F}.\mathrm{o}_{\mathrm{S}}\mathrm{r}$

these four sub-
for the depth of the tree. Since it is clear trees, four case arises:
when $d=1$ and $d=2$ , we assume $d>2$ . Case $(\dot{i}v)-(\dot{i}).$ Suppose $|T_{arl}|=|T_{bll}|=0$ .
Let $T_{al}$ (or $T_{ar}$ ) be the subtree rooted the The edges of the path to the root of $T_{arr}$ are
left son (or right son, $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}}\mathrm{I}\mathrm{y}$) of the assigned $\delta,$ $(1-\delta)$ , and $(1-\delta)$ . On the other
root of $T_{a}$ , and $T_{bl}$ (or $T_{br}$ ) be the sub- hand, the edges of the path to the root of
tree rooted the left son (or right son, re- $T_{bll}$ are assigned $(1 -..\delta.)’\delta$ , and $\delta..$

}
Thus,

spectively) of the root of $T_{b}$ . We note that by exchanging $T_{arl}$ and $T_{blr}$ , the probability
$\mathrm{P}\mathrm{r}[T’|F_{\max}(T’)]=\delta^{2}\mathrm{P}\mathrm{r}[\tau al|F_{\max}(T’)]+$ of $T’$ does not increase. Thus by

$\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{v}\backslash \zeta\{\mathrm{e}\{$

$\delta(1-\delta)\mathrm{p}\mathrm{r}[T_{a}r|F_{\max}(T’)]+(1-\delta)\delta \mathrm{P}\mathrm{r}[\tau_{bl}|$ hypothesis for $T_{bl}$ , lemma holds.
$F_{\max}(T’)]+(1-\delta)^{2}\mathrm{P}\mathrm{r}[T_{b}r|F_{\max}(\tau’)]$ . Thus Case $(iv)-(\dot{i}\dot{i})$ . Suppose $|T_{arl}|=0$ , and
the probability of $T’$ doesn’t change by ex- $|T_{bll}|>0$ . First, exchange $T_{arl}$ and $T_{bll}$ .
changing $T_{ar}$ and $T_{bl}$ . For these four subtrees, Then $|T_{arl}|>0,$ $|T_{arr}|>0$ , and $|T_{b\iota\iota}|=0$

four case arises: hold. By inductive hypothesis for $T_{ar},$ $T_{ar}$

Case $(\dot{i})$ . Suppose $|T_{ai}|>0,$ $|T_{bl}|=0$ . This can be replaced by an unbalanced tree of as
case is impossible since $0\leq a\leq b.\cdot$ same accepting paths as $T_{ar}$ . If $|T_{arl}|=0$

Case $(\dot{i}\dot{i})$ . Suppose $|T_{al}|=|T_{bl}|=0$ . In this then this case can be reduced to the case
case, by exchanging $T_{ar}$ and $T_{bl}$ , we can re- $(\dot{i}v)-(\dot{i})$ . If $|T_{arl}|>0$ , then $|T_{ar\downarrow}|>0$

gard that only $T_{b}$ has accepting pathsi, where and $|T_{bli}|=0$ holds. Moreover, $T_{arr}$ and
$|\tau_{u}|=a$ and $|T_{br}|=b$ . Thus, by using $T_{blr}$ are the subtrees $\mathrm{W}\mathrm{h}_{\mathrm{o}\mathrm{s}}\mathrm{e}$

’

all leaves are la-
inductive hypothesis to $T_{b}$ of depth $d-1$ , beled “accepted”. Let $p$ be the $\mathrm{p}\mathrm{r}^{\iota}\mathrm{o}^{\backslash }\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$

and $T_{bl}$ and $T_{br},$ $\mathrm{P}\mathrm{r}[T_{b}|F_{\max}(T_{b})]\geq \mathrm{P}\mathrm{r}[\tau’’|$ equal to $\mathrm{p}\mathrm{r}[\tau arl|F_{\max}. (T’)]$ . Here, first, ex-
$F_{\max}(T’’)]$ , where $T”$ is an unbalanced tree change $T_{arr}$ and $T_{bll}$ , and secondly, exchange
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$T_{arl}$ and $T_{arr}$ . By these exchanges, $T’$ re- $a_{r}$-many, respectively) accepting path with-
duce to an unbalanced tree. Thus, it is out changing the probability of $T’$ . Thus,
sufficient to show that these exchanges do by Lemma 9,

$\mathrm{P}\mathrm{r}[\tau’|F_{\max}(T’)]\geq \mathrm{P}\mathrm{r}[\tau \mathrm{I}|$

not increase the probability. The change of $F_{\max}(T)]$ .
the $\mathrm{p}\mathrm{r}\mathrm{o}\dagger$)$\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ by this exchanges is equal to Here we show the proof of the main
$-\delta(1-\delta)2\delta 2(+1-\delta)-\delta 2(1-\delta)p+\delta(1-\delta)2p=$ theorem in this section, which states that
$\delta(1-\delta)(1-2\delta)(p-1)<0$ for $0< \delta<\frac{1}{2}$ . $\forall_{\delta- \mathrm{P}\mathrm{P}}=\mathrm{B}\mathrm{P}\mathrm{P}$ for $0< \delta<\frac{1}{2}$ .
This implies lemma. Proof of Theorem 1. Since $\forall_{\delta- \mathrm{B}\mathrm{P}\mathrm{p}}=\mathrm{B}\mathrm{P}\mathrm{P}$ as
Case $(\dot{i}v)-(i\dot{i}\dot{i})$ . Suppose $|T_{arl}|>0$ , and $|T_{b\iota\iota}|$ stated as Theorem 6, and $\forall_{\delta}$-BPP $\subseteq\forall_{\delta-}\mathrm{p}\mathrm{P}$

$=0$ . By exchanging $T_{ar}$ and $T_{bl}$ , this case holds by definition, $\mathrm{B}\mathrm{P}\mathrm{P}\subseteq\forall_{\delta- \mathrm{P}\mathrm{P}}$ for $0<\delta\leq$

can be reduced to the case $(\dot{i}v)-(i_{\dot{i})}.$
$\frac{1}{2}$ . Thus it is sufficient to show $\forall_{\delta- \mathrm{P}\mathrm{P}}\subseteq \mathrm{B}\mathrm{P}\mathrm{P}$ .

Case $(\dot{i}v)-(iv)$ . Suppose $|T_{arl}|>0$ , and Let $L$ be alanguage with $L\in\forall_{\delta- \mathrm{P}\mathrm{P}}$ for some
$|T_{bll}|>0$ . First, exchange $T_{alr}$ and $T_{bll}$ . $\delta$ , and $M_{1}$ be a PTM with $\delta$-random source
By inductive hypothesis for $T_{a},$ $T_{a}$ can be such that $L(M_{1})=L$ . Let $p(n)$ be the depth
replaced by an unbalanced tree of as same of the computation path of $M_{1}$ on input of
accepting paths as $T_{ar}$ . If $|T_{alr}|=0$ , then length $n$ . Since $\forall_{\delta- \mathrm{P}\mathrm{P}}$ is clearly closed under
$T_{arl}>0$ and $|T_{bll}|=0$ hold. This case complement, we only consider the input $x$ of
can be reduced the case $(\dot{i}v)-(\dot{i}i)$ . On the length $n$ with $x\not\in L$ . Let $a$ be the number
other hand, if $|T_{alr}|>0$, then $T_{ar}$ is the of accepting path of $M_{1}$ on input $x$ .
subtree whose all leaves are labeled “accept” Let $m$ be a positive constant such that $\langle$ 1-
and $|T_{bl\mathrm{t}}|=0$ holds. Here, first, exchange $\delta$ ) $(1- \delta^{m})\geq\frac{1}{2}$ . The positive integer $m$ must
$T_{ar}$ and $T_{bl}$ , and secondly, exchange $T_{alr}$ and exist since $\lim_{marrow\infty}(1-\delta)(1-\delta m)=1-\delta>\frac{1}{2}$ .
$T_{arl}$ . Then $T’$ is now an unbalanced tree. Without loss of generality, we can assume
This implies lemma. that $p(n)\gg m$ . We consider an unbalanced
’.. We show the crucial lemma in this section. tree $T$ of depth $m+1$ with $(2^{m}-1)$-many

accepting paths. Then $\mathrm{P}\mathrm{r}[T|F_{\max}(T)]=$

Lemma 10 Any unbalanced tree is the
$(1- \delta)-(1-\delta)\delta^{m}=(1-\delta)(1-\delta^{m})\geq\frac{1}{2}$ .

$.w$. orst.
(This equation is easily seen by the following

Proof. Let $T$ be a given unbalanced tree fact: For the subtree, which rooted the left
depth $d$ with $a$-many accepting paths, and son of the root of $T$ , every leaf is labeled
$T’$ be any worst tree of depth $d$ with a-many “reject”. For the subtree, which rooted the
accepting paths. Since $T’$ is the worst, it is right son of the root of $T$ , All but one leaf of
sufficient to show that $\mathrm{P}\mathrm{r}[T’|F_{\max}(T’)]\geq$ $T_{1}$ is labeled “accept”. In other words, the
$\mathrm{P}\mathrm{r}[T|F_{\max}(T)]$ . right subtree is an unbalanced tree of depth

Let $T_{l}’$ (or $T_{r}’$ ) be the subtree, with $a_{l}$ -many $m$ with $(2^{m}-1)$-many of accepting path.)
(or $a_{r}$-many) accepting paths, rooted the left By expanding $T$ , an unbalanced tree
son (or right son, respectively) of the root of of depth $m’$ , where $m’$ $>$ $m+1$ , with
$T’$ . If $T_{l}’$ (or $T_{r}’$ ) is not the worst, we can $(2^{m’-(m}+1)(2^{m}-1))$-many of accepting path,
improve the probability of $T’$ by replacing it. has a probability greater than $\frac{1}{2}$ . Thus, by
Thus, $T_{l}’$ and $T_{r}’$ are the worst. By inductive the property of the worst tree and Lemma
hypothesis, we can replace $T_{i}’$ (or $T_{r}’$ ) by an 10, $a\leq 2^{p(n)-}(m+1)(2^{m}-1)=2^{p(n)-1}$ -

unbalanced tree $T_{l}$ (or $T_{r}$ ) with $a_{l}$-many (or 2$p(n)-(m+1)$ . Thus if $M_{1}$ compute on in-
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put $x$ with a fair random source, $l\vee I_{1}$ ac-
cepts with probability less than or equal to
$\frac{2^{p(n)-}1-2^{\mathrm{p}(}n)-(m+1)}{2^{p(n)}}.=\frac{1}{2}-\frac{1}{2^{m+\mathrm{l}}}$. Since $m$ is a
constant, by repeating the algorithm enough
times, the probability can be improved to the
value less than $\frac{1}{4}$ . This witnesses $L\in$ BPP.

4 Results for $\exists_{\delta-\mathrm{R}}\mathrm{p}$ ,
$\exists_{\delta}$-BPP, and $\exists_{\delta-\mathrm{P}\mathrm{P}}$

In this section, we will show that $\exists_{\delta- \mathrm{R}\mathrm{P}}=$

$\mathrm{N}\mathrm{P}$ , and $\exists_{\delta- \mathrm{B}\mathrm{P}\mathrm{p}}=\exists_{\delta- \mathrm{P}\mathrm{P}}=\mathrm{P}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}$ for $0<$

$\delta<\frac{1}{2}$ . First, we show the proof of Theorem
2, which states $\exists_{\delta- \mathrm{R}\mathrm{P}}=\mathrm{N}\mathrm{P}$ .
Proof of Theorem 2. It is sufficient to show
that NP $\subseteq$

$\exists_{\delta- \mathrm{R}\mathrm{P}}$ . Let $L$ be a language
with $L\in \mathrm{N}\mathrm{P}$ , and $\perp \mathrm{W}_{2}$ be an NTM such that
$L(M_{2})=L$ . Let $p(n)$ be the length of $M_{2}’ \mathrm{s}$

computation on input of length $n$ . Let $q(n)$

be a polynomial of $n$ defined as follows;

$q(n)= \lceil-\frac{\log(2(p(n)+1))}{\log(2\sqrt{\delta(1-\delta)})}\rceil$ .

We note
that $q(n)>0$ , since $\log(2\sqrt{\delta(1-b)})<0$

when $0< \delta<\frac{1}{2}$ . We construct a PTM $M_{2}’$ ,
simulating $\mathit{1}1/I_{2}$ , with a $\delta$-random source. $M_{2}’$

simulatcs $\Lambda/I_{2}$ straightforwardly if $\Lambda\prime I_{2}$ is not
in a nondeterministic state. Otherwise, $M_{2}’$

simulates as follows;

$(\dot{i})$ when $M_{2}$ nondeterministically chooses
$0$-choice (or 1-choice), nondeterministi-
cally assign $(1 -\delta)$ to the probability
that the outcome of a coin tossing is $0$

(or 1, respectively); and

$(\dot{i}\dot{i})$ choose $i$-choice, where $\dot{i}$ is a majority of
the outcomes of $q(n)$-many coin tossing.

It is clear that $\Lambda I_{2}’$ simulates $\Lambda I_{2}$ in poly-
nomial time of $n$ , and $\Lambda I_{2}’$ reject $x$ for $x\not\in$

$L$ . We consider the probability that $M_{2}’$

accepts $x$ for $x\in L$ . On the step (ii),
$\lrcorner \mathrm{V}I_{2}’$ gets a wrong answer with probability
$\Sigma_{=0}\frac{1}{i2}q(n)(_{i}^{q(n)})\delta^{q}(n)-i(1-\delta)^{i}$ . By Lemma 7,
since $0< \frac{1}{2}<(1-\delta)<1$ ,

$\sum_{i=0}^{\frac{1}{2}q(n)}\delta^{q(n)-i}(1-\delta)^{i}$

$\leq$

$2^{q(n)\mathrm{l}(2\sqrt{\delta(1-\delta)})}\mathrm{o}\mathrm{g}$

$\leq$ $2^{-\log}(2(_{P()+1}n)) \frac{1}{2(p(n)+1)}=$ .

Thus $M_{2}’$ successes to simulate at most $p(n)-$

many nondeterministic choices of $l\vee I_{2}$ with
probability greater than

$(1- \sum_{i=0}^{\frac{1}{\mathrm{Q}\sim}q(}(q(n)\mathrm{I}^{\delta(1\delta)^{i}}i-n)1q(n)-ip(n)$

$\geq(1-\frac{1}{2(p(n)+1)}\mathrm{I}^{p(}n)$

Here, $e^{-p}<(1-\overline{n}2+\overline{1})^{n}$ holds for $0<p<1$
and any positive integer $n$ . (This is proved
by as follows: For the sequence defined by
$a_{n}(p)=(1--L)^{n}n+\overline{1}$ , it is easy to check $e^{-p}<$

$a_{1}(p)$ and $\lim_{narrow\infty}a_{n}=e^{-p}$ . Since $\frac{n+d}{m+d}>\frac{n}{m}$

holds for $m>n>0$ and $d>0,$ $\frac{a_{n-1}(p)}{a_{n}(p)}=$

$\underline{n}(\frac{n+1}{n+1-p})^{n}$ $>$ $( \frac{n}{n-\mathrm{P}})^{n}$

$=>$

$1.)n-\mathrm{P}$ Thus, $\mathrm{P}\mathrm{r}$ [ $M_{2}^{;}$ accepts $x$ when $x\in L$ ] $\geq$

$(1- \frac{1}{2(p(n)+1)})^{p(n)}>e^{-\frac{1}{2}}>\frac{1}{2}$ , consequently,
$L\in\exists_{\delta- \mathrm{R}\mathrm{P}}$ . 1

Secondly, we show that $\exists_{\delta- \mathrm{B}\mathrm{P}\mathrm{p}}=\exists_{\delta- \mathrm{P}\mathrm{P}}=$

PSPACE. To this end, we introduce a prob-
abilistic alternating Turing machine and the
class ABPP defined by $\mathrm{C}.\mathrm{H}$ . Papadimitriou:

Definition 14 $([\mathrm{P}\mathrm{a}_{\mathrm{P}^{9}}4])$ A probabilis-
tic alternating Turing machine (PATM) $\dot{i}S$ an
alternating polynomial time Turing machine
$M$ , all the computations of which on input $x$
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of length $n$ have equal length $2p(n)$ for some
polynomial $p$ , and the number of nondeter-
ministic choices is uniformly two. Further-
more. the computation strictly alternates be-
tween states in two disjoint sets, which we
shall now call $I\backslash ^{r}+andI\{_{\max}’$ .

Consider a configuration $C$ in a computa-
tion of the PATM M. The acceptance count
of configuration $C$ is defined as follows: If
the state of $C$ is an accepting state, then its
count is 1; if the state of $C$ is a rejecting
state, then its count is $\mathit{0};\dot{i}f$ the state of $C$

is in $I\mathrm{t}^{r_{\dagger}}$ , then its count is the sum of the
acceptance counts of the two successor con-
figurations; and if the state of $C$ is in $I\{_{\max}’$ ,

then its count is the maximum between the
two acceptance counts of the two successor
configuration.

The class ABPP contains all languages $L$

for which there is a PATM $M$ with the fol-
lowing property: For all input $x$ of length $n$ ,
$\dot{i}fx\in L$ then the acceptance count of the
initial configuration of $M$ is at least $\frac{3}{4}\cdot 2^{p(}n)_{j}$

and if $x\not\in L$ then the acceptance count of the
initial configuration of $M$ is at most $\frac{1}{4}\cdot 2^{P}(n)$ .

Intuitively, a state in $I\iota_{+}^{r}$ is a probabilistic
state, and a state in $I\mathrm{t}_{\max}’$ is a nondetermin-
istic state. For ABPP, the following lemma
holds:

Lemma 11 $([\mathrm{P}\mathrm{a}_{\backslash }\mathrm{p}94])$ ABPP $=\mathrm{P}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}$ .

The outline of the proof of Lemma 11
is the following: L. $\mathrm{B}\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{i}[\mathrm{B}\mathrm{a}\mathrm{b}85]$ intro-
duced “Arthur $\mathrm{v}\mathrm{s}$ . Merlin games”, and the
class AM(Poly) defined by the games. An
Arthur $\mathrm{v}\mathrm{s}$ . Merlin game directly corresponds
to the computation of a PATM; an Arthur’s
turn corresponds to a state in $IC_{+}$ , and
a Merlin’s turn corresponds to a state in
$I\iota_{\max}’$ . Thus we can easily see that ABPP $=$

$\mathrm{A}\mathrm{M}(Poly)$ . On the other hand, S. Gold-

wasser, S. Micali, and C. $\mathrm{R}\mathrm{a}\mathrm{c}\mathrm{k}\mathrm{o}\mathrm{f}\mathrm{f}[\mathrm{G}\mathrm{M}\mathrm{R}85]$ in-
troduced Interactive Proof Systems and the
class IP defined by the systems, and S. Gold-
wasser and M. $\mathrm{S}\mathrm{i}_{\mathrm{P}^{\mathrm{S}\mathrm{e}\mathrm{r}}}[\mathrm{G}\mathrm{S}86]$ showed that
$\mathrm{I}\mathrm{P}=\mathrm{A}\mathrm{M}$ (Poly). Moreover, A. $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{r}[\mathrm{s}\mathrm{h}\mathrm{a}90]$

showed that PSPACE $=1\mathrm{P}$ . Thus ABPP $=$

$\mathrm{A}\mathrm{M}(Poly)=\mathrm{I}\mathrm{P}=\mathrm{P}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}$.
When a Turing machine simulates $\delta-$

random source without such a source, it is
not clear how to simulate it in polynomial
space, if $\delta$ can not be represented in polyno-
mial space. Since it is not essential in this ar-
ticle, we will show how to simulate it in poly-
nomial space in Appendix A. By Appendix
$\mathrm{A}$ , without loss of generality, we assume that
$\delta$ can be represented in constant space. For
such a $\delta$ , it is clear that $\exists_{\delta- \mathrm{P}\mathrm{P}}\subseteq$ PSPACE.
Moreover, it is clear that $\exists_{\delta}$-BPP $\subseteq\exists_{\delta-}\mathrm{p}\mathrm{P}$ by
definition. Thus, Theorem 2, which states
$\exists_{\delta- \mathrm{B}\mathrm{P}\mathrm{p}}=\exists_{\delta-}\mathrm{p}\mathrm{P}=\mathrm{P}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}$ for $0< \delta<\frac{1}{2}$

.
’ is

proved by the following lemma:

Lemma 12 PSPACE $\subseteq$
$\exists_{\delta}$ -BPP with $0<$

$\delta<\frac{1}{2}$ .

Proof. By Lemma 11, it is sufficient to show
that ABPP $\in\exists_{\delta}$-BPP. Let $L$ be a language
with $L\in$ ABPP, and $\Lambda I_{3}$ be a PATM such
that $L(M_{3})=L$ . On input $x$ of length $n$ ,
let $2p(n)$ be the length of $M_{3}’ \mathrm{s}$ computation
on $x$ . Without loss of generality, we can as-
sume that the acceptance count of the initial
configuration of $M_{3}$ is at least $\frac{63}{64}.2^{p(n)}$ if
$x\in L$ , and at most $\frac{1}{64}\cdot 2^{p(n)}$ if $x\not\in L$ . On the
computation of $M_{3}$ , we call a pair of states
a probabilistic state and a nondeterministic
state following it. A computation of $M_{3}$ con-
tains $p(n)$-many pairs of states.

The PTM $M_{0}’$ , constructed in Proof of
Theorem 6, simulates probabilistic choices
by using any $\delta$-random source. On the other
hand, the PTM $M_{2}’$ , constructed in Proof
of Theorem 2, simulates nondeterministic
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choices by using a $\delta$-random source. By
putting $M_{0}’$ and $\mathrm{J}/f_{2}’\mathrm{t}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$, we construct
a PTM $M_{3}’$ , which simulates $M_{3}$ with a $\delta-$

random source.
Let $q(n)= \lceil\frac{-\log(15(p(n)+1))}{\log(2\sqrt{\delta(1-\delta)})}\rceil$ , and $r(n)=$

$\lceil.\frac{3\mathrm{I}\mathrm{o}\mathrm{g}p(n)+6}{2\delta-2\delta^{2}}\rceil$ . (Notice that these functions are
slightly changed to improve the probability.)
A block and an inner product are defined as
same as in Proof of Theorem 6 for $r(n)$ . $M_{3}’$

simulates $2^{r(n)}$-many $\Lambda I_{3}$ in parallel to simu-
late probabilistic choices. The $j\mathrm{t}\mathrm{h}$ pair of $\dot{i}\mathrm{t}\mathrm{h}$

simulation of $\Lambda I_{3}$ is performed by the follow-
ing a pair of simulations:
(Simula.tio..n for a probabilistic choice:)

$(\dot{i})$ generate $r(n)$-many $\delta$-random bits in $\beta_{j;}$

$(\dot{i}\dot{i})$ choose $h_{(i,j)}$ -choice, where $h_{(i,j)}=\beta_{j}\cdot\dot{i}$ ;

(Simulation for a nondeterministic choice:)

$(\dot{i})$ when $\mathrm{J}/I_{3}$ nondeterministically chooses
$0$-choice (or 1-choice), nondeterministi-
cally assign $(1 -\delta)$ to the probability
that the outcome of a coin tossing is $0$

(or 1, respectively); and

$(\dot{i}\dot{i})$ choose $\dot{i}$-choice, where $\dot{i}\mathrm{i}.\mathrm{s}$ a majority of
the outcomes of $q(n)$ -many coin tossing.

At the end of the simulation, $M_{3}’$ accepts if a
majority of $2^{r(n)}$ -many simulations accepts,
or rejects otherwise.

Assume $x\in L$ . Proof of Theorem 2 im-
plies that $M_{3}’$ successes $p(n)$ -many simula-
tions for nondeterministic choices with prob-
ability greater than $\frac{6}{7}$ . In this case, Proof
of Theorem 6 implies that $\mathrm{J}/I_{3}’$ outputs cor-
rect answer with probability greater than $\frac{(}{8}$ .
Thus $\wedge\lambda I_{3}’$ accepts with probability greater
than $\overline{\frac{\prime}{8}}$ . $\frac{6}{7}=\frac{3}{4}$ . Next, assume $x\not\in L$ .
By hypothesis, $M_{3}$ rejects $x$ with probabil-
ity greater than $\frac{63}{64}$ for any nondeterminis-
tic choices. Thus, Proof of Theorem 6 im-
plies that $\Lambda I_{3}’$ outputs correct answer with

probability greater than $\frac{7}{8}$ for any nondeter-
ministic choices. Therefore, $hI_{3}’$ rejects with
probability greater than $\frac{7}{8}$ , consequently, $M_{3}$

accepts with probability less than $\frac{1}{4}$ . Thus
$L\in\exists_{\delta}$-BPP. 1

5 Concluding $\mathrm{R}\mathrm{e}\mathrm{m}\backslash$arks

An “Arthur $\mathrm{v}\mathrm{s}$ . Merlin games” introduced
by L. $\mathrm{B}\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{i}[\mathrm{B}\mathrm{a}\mathrm{b}85]$ directly corresponds to a
language in ABPP, and we have shown that
the language is also in $\exists_{\delta}$-BPP. We note that,
in the same way, a “game against Nature” in-
troduced by $\mathrm{C}.\mathrm{H}$ . $\mathrm{P}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{u}[\mathrm{p}\mathrm{a}\mathrm{p}83]$ di-
rectly corresponds to a language in APP, and
we can show that the language is also in
$\exists_{\delta-}\mathrm{p}\mathrm{P}$ . (The class APP, which is introduced
by $\mathrm{C}.\mathrm{H}$ . Papadimitriou in [Pap94], is a class
as against ABPP, in the same manner as the
class PP as against BPP.)

The games above have alternations. In
other words, they are represented by Turing
machines which have probabilistic states and
nondeterministic states, and by quantified
Boolean expressions which have “random”
quantifiers and existential quantifiers (e.g.,
see SSAT in [Pap94] $)$ . The alternations are
missing by using the semi-random sources.
For instance, we can define a “

$\delta$-random”
quantifiers and construct a kind of satisfia-
bility problem, which is PSPACE-complete,
and has only “

$\delta$-random” quantifiers.
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A Proof for $\exists_{\delta-\mathrm{P}\mathrm{P}}$
$\subseteq$

PSPACE

To deal with $\delta$ , an arbitrary number, we show
the following lemma:

Lemma 13 Let L be a language with L $\in$

$\exists_{\delta- \mathrm{P}\mathrm{P}}$ for some $\delta$ . Then there exists a num-
$ber\delta’$ such that; L $\in\exists_{\delta’}$ -PP and $\delta’$ can be
represented in polynomial space for the input
length.

Proof. Let L be a language with L $\in\exists_{\delta-}\mathrm{p}\mathrm{P}$

for some 6, and $M_{4}$ be a PTM such that
$L(M_{4})=L$ . Let p be the depth of the com-
putation of $M_{4}$ . (We write only p, which
depends on the input length, for short.) Let
d $= \frac{\delta^{p}}{2^{\mathrm{p}+1}p(1-\delta)^{\mathrm{p}-1}}$ . We consider an approxi-
mate value $\delta’$ to $\delta$ by taking $|\delta’-\delta|<d$ .
Since d can be represented in polynomial
space for the input length, there exists a $\delta’$

which also can be represented in polynomial
space for the input length. It is sufficient to
show that the error of the probability of any
computation tree, which is made by replac-
ing $\delta$ by $\delta’$ , is less than a half of the proba-
bility of any leaf of a computation tree.

Without loss of generality, we assume that
$\delta’>\delta$ . The probability of a leaf with $\delta-$

random source is equal to $\delta^{i}(1-\delta)^{p-i}$ for
some $\dot{i}$ with 0 $\leq\dot{i}\leq p$. Thus, the minimal
probability of a leaf is equal to $\delta^{p}$ . On the
other hand, an error of the probability of a
leaf, which is made by replacing $\delta$ by $\delta’$ , is at
most $\max\{\delta^{\prime p}-\delta^{p}, (1-\delta)p-(1-\delta’)^{p}\}$ . Two
cases arise.
(Case 1.) Assume $\delta^{;p}-\delta^{p}<(1-\delta)p-(1-\delta’)p$ .
Since $M_{4}$ has $2^{p}$-many leaves, the error of the
probability of a computation tree is at most

$2^{p}|\delta^{i}(1-\delta)p-i-\delta\prime i(1-\delta^{;})p-i|$

$<2^{p}((1-\delta)p-(1-\delta’)^{\mathrm{P}})$

$<2^{p}pd(1-\delta)\mathrm{P}-1$ .

The last line is obtained by using Taylor 8e-

ries. Here, by $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{t}\iota \mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ for $d,$ $2^{p}pd(1$ -

$\delta)^{p-1}=\frac{\delta^{p}}{2}$ .
(Case 2.) Assume $\delta^{;p}-\delta^{p}<(1-\delta)^{p}-(1-$

$\delta’)^{p}$ . Then the error of the probability of a
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computation tree is at most

$2^{p}|\delta^{i}(1-\delta)p-i-\delta\prime i(1-\delta’)^{p}-i|$

$<2^{p}(\delta^{\prime_{p}}-\delta^{p})<2ppd\delta p-1$

$=( \frac{\delta}{1-\delta}\mathrm{I}^{p-1}\frac{\delta^{p}}{2}<\frac{\delta^{p}}{2}$ .

In each case, it is shown that the error of
the probability of any computation tree is
less than a half of the probability of any leaf.
This implies the lemma. 1

We show the main lemma in this section:
Lemma 14

For arbitrary $\delta$ with $0< \delta<\frac{1}{2},$
$\exists_{\delta-}\mathrm{p}\mathrm{P}\subseteq \mathrm{P}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}$.

Proof. Let $L$ be a language with $L\in\exists_{\delta- \mathrm{P}\mathrm{P}}$

for some 6. Let $M_{5}$ be a PTM, such that
$L=L(M_{5})$ . Let $\delta’$ be an approximate value
to $\delta$ given by using Lemma 13. We construct
an NTM $M_{5}’$ , which accepts $L$ as follows;

(i) nondeterministically compute $\delta’$ ;

$(\dot{i}\dot{i})$

.
simulate all computations of $M_{5}$ , and

$\dot{\langle}$

counts up its probability by using $\delta’$ in-
stead of $\delta$ ; and

$(\dot{i}v)$ accept if the probability is greater than
$\frac{1}{2}$ , or reject otherwise.

Clearly, $kI_{5}’$ uses at most polynomial space
for the input length, and $L=L(M_{5}’)$ . Thus
$L\in$ PSPACE. 1
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