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Abstract

In this paper, we deal with a treelike diagram which we call a”tree structured $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}$

” $(TSD$

for short). A $TSD$ is a generalization of program diagrams. We firstly define the problem of drawing
TSDs and introduce constraints for beautiful drawings of TSDS. Then we present efficient $O(n)$

and $O(n^{2})$ algorithms which produces minimum width drawing unders certain sets of constraints.
These algorithms will be applied to practical uses such as visual programming and others.

1 Introduction

Recently a number of algoritlmis for drawing various graphs and diagrams such as planar $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}_{\mathrm{S}}[3,4$ ,
7, 8, 11, 1, 12], undirected $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{s}[6,9]$ , hierarchic $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{S}[5,13,19]$ , data-flow $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{S}[2,17]$ , program
$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{S}[10,14,15,16]$ and entity-relationship $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{S}[20]$ have been proposed.

Among them, drawing trees is a basic and important problem. It has various applications such as
visual programming, data presentations and others. For example , in visual programming program
diagrams generally have a tree structure in the sub-diagrams. In order that a processing system of
program diagrams is practical use and useful, program generators which based on efficient algorithms
of nicely drawing trees is needed. Thus the tidy drawing problem of trees has become an important
theme. .

Several authors have studied the problem of producing tidy drawings of binary trees, i.e. the
problem of producing drawings that are aesthetically pleasing and of minimum width. C.Wetherell
and A.Shannon formalized the constraints for the tidy drawing of binary trees and proposed a linear
time algorithm to draw binaly trees under the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{S}[24]$ . M.Reingold and S.Tilford presented a
linear time algorithm which gives narrower drawings of binary trees than Wetherell and Shannon while
$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\Phi$ing the Wetherell-Shannon’s constraints [18]. Tsuchida also presented two efficient algorithms
for drawing $n$-ary trees $\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{y}[21,22]$. One is the $O(n)$ time algorithm drawing optimal trees under the
constraint in which adjoining two sub-trees must be apart from at least one unit each other. -Another
is the $O(n^{2})$ time algorithm drawing optimal trees under the constraint in which two sub-trees are
allowed to intersect each other. These algorithms are modified and applied to the processing system
for program diagrams.

In this paper, we deal with a treelike diagram which we call a”tree structured $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}$

” ($TsD$ for
short). A $TSD$ is a generalization of program $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}[25]$ . The TSD is a tree structure whose node
is a rectangular box (which is called a cell). We define the problem of drawing TSDs and introduce
constraints for beautiful drawings of TSDS. There are some differences between TSDS and trees with
respect to drawings. However, Tsuchida proved that problems of minimum width $\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{w}\dot{\mathrm{i}}\mathrm{n}\mathrm{g}\mathrm{s}$ of TSDS
are $\mathrm{N}\mathrm{P}$-complete under certain sets of $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{S}[23]$ . In this paper, we present efficient $O(n)$ and
$O(n^{2})$ algorithms which produces minimum width drawing unders certain sets of constraints.

In Section 2, we formalize the problem of drawing TSDs and introduced constraints for drawing
TSDs.
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In Section 3, we present an $O(n)$ algorithm which produces the llarrowest drawing of a given TSD
under certain sets of constraints.

In Secti-on 4, we present an $O(n^{2})$ time algoritlml which produces the narrowest drawing of a given
TSD under certain sets of constraints.

In Section 5, we sunlmarize our results.

2 Preliminary Definitions

We denote by $Z$ the set of integers.

Definition 1. A tree structured diagram $T$ is defined by

$T=(V, E,r, W, D)$ ,

where $V$ is a set of cells, $E$ is a set of edges, (V, $E$ ) is a directed ordered tree with the root, $r$ is the
root cell in $V,$ $W$ : $V$

.
$arrow Z$ is the width function of cells and $D$ : $Varrow Z$ is the depth function of

cells.

We assume that, for each edge $(p, q)\in E,$ $p$ is the father of $q$ . In this thesis, the term width(depth)
is the horizontal(vertical) length of a cell. A TSD $T$ can be considered as a rooted tree in which each
node $p$ is associated with two attributes $W(p)$ and $D(p)$ . We take the coordinate system as shown in
Fig. 1. Each vertex of a cell is placed on the integral lattice $Z^{2}$ . A placement of a TSD $T$ is a function
$\pi$ : $Varrow Z^{2}$ (the integral lattice), where $V$ is the set of cells of $T$ . A placement $\pi$ maps the left upper
corner of a cell to a point in $Z^{2}$ . If $\pi(p)=(x, y)$ then we define $\pi_{x}(p)=x$ and $\pi_{y}(p)=y$ .

Definition 2. The width $Wt(T, \pi)$ of a TSD $T$ placed by $\pi$ is defined by
$Wt(T, \pi)=\max$ { $\pi_{x}(p)+W(p)-\pi_{x}(q)|p$ and $q$ are cells of $T$}.

For example, $Wt(T, \pi)=7$ in the case of Fig. 1.
The level of a cell $p$ in a TSD $T$ is defined as the number of edges between $p$ and the root cell of

$T$ . The function Index is defined as follows : if $p$ is the root cell then Index$(p)=0$ , else if $p$ is the
i-th son of $p’ \mathrm{s}$ father then Index $(p)=i$ .

Definition 3. The area of a cell $p$ with respect to $\pi$ is defined by

Area$(p, \pi)=\{(x, y)|\pi_{X}(p)\leq x\leq\pi_{x}(p)+W(p)$ ,

$\pi_{y}(p)\leq y\leq\pi_{y}(p)+D(p)\}$ .

Definition 4. Drawing a TSD $T$ placed by $\pi$ is drawing the boundary of Area $(p, \pi)$ for each cell $p$

in $T$ and drawing, for each edge $(p, q)$ in $T$ , a straight line segment joining the point $( \pi_{x}(p)+\frac{1}{2}W(p)$ ,
$\pi_{y}(p)+D(p))$ to the point $( \pi_{x}(q)+.\frac{1}{2}W(q), \pi_{y}(q))$ .

Definition 5 A function $VP$( $Ve\Gamma tical$ Position) mapping a cell $p$ of a TSD $T$ to a non-negative integer
is $\grave{\mathrm{d}}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ as

$VP(p)=D(v_{0})+ \sum_{i=1}^{i=}(1k+D(v_{i}))$ ,

where $(v0, .., v_{k})$ is the path from the root $v_{0}$ to the cell $p(=v_{k})$ .

Definition 6 A function Intersect from the set of TSDs to integers is defined as;
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$Inter \mathit{8}eCt(T, \pi)=\max\{\pi_{x}(p)+W(p)-\pi_{x}(q)+1|p$ and $q$ are
any cells of subtrees $T_{1}$ and $T_{2}re\mathit{8}pectively$

such that the roots of $T_{1}$ and $T_{2}$ are brothers
and Index(the root of $T_{1}$ ) $<Index$ ($the$ root of $T_{2}$ ) $\}$

The function Intersect indicates intersecting degrees of adjoining two cells.

Now we introduce several constraints for the drawings of tree structured diagrams. We denote by
$\pi(T)$ a TSD $T$ placed by $\pi$ . Let $p$ and $q$ be arbitrary cells in a TSD $T$ placed by $\pi$ .

$\mathrm{B}_{\mathrm{d}}1(\mathrm{a})$ . If a cell $p$ is the father of a cell $q$ , then $\pi_{y}(q)=\pi_{y}(p)+D(p)+1$ .

$\mathrm{B}_{\mathrm{d}}1(\mathrm{b})$ . If levels of cells $p$ and $q$ are the same then $\pi_{y}(p)=\pi_{y}(q)$ .

$\mathrm{B}_{\mathrm{d}}2$ . If a cell $p$ has $k$ sons $q_{1},$
$\ldots,$

$q_{k}$ , where Index$(qi)=i$ , then

$\pi_{x}(P)=\pi x(q\mathrm{r}(k+1)/21)$ .

$\mathrm{B}_{\mathrm{d}}3$ . If a cell $p$ has $k(\geq 2)$ sons $q_{1},$
$\ldots,$

$q_{k}$ , where Index$(qi)=i$ , then

$\pi_{x}(q_{i})+W(qi)<\pi_{x}(q_{i+1})$ .

$\mathrm{B}_{\mathrm{d}}4$ . For two cells $p$ and $q$ , if $VP(p)=VP(q)$ and $\pi_{x}(p)<\pi_{x}(q)$ , then
$\max${ $\pi_{x}(s)+W(\mathit{8})|s$ is a son of $p$ } $< \min${ $\pi_{x}(s)|s$ is. a son of $q$}.

$\mathrm{B}_{\mathrm{d}}5$ . If $T_{1}$ and $T_{2}$ are isomorphic sub-TSDs (i.e., they have the same tree structure and each cor-
responding cell has the same width and depth) then $\pi$ must place $T_{1}$ and $T_{2}$ identically up to a
translation.

$\mathrm{B}_{\mathrm{d}}6$ . If $p$ and $q$ are different cells, then $d(Area(p, \pi),$ $Area(q, \pi))\geq 1$ , where $d$ is the Euclidean
distance and $d(A, B)$ is the minimum distance between a point in $A$ and a point in $B$ .

$\mathrm{B}_{\mathrm{d}}7$ . If $T_{1}$ and $T_{2}$. are sub-TSDs whose roots are brothers and
Index(the root of $T_{2}$ ) $=Index$ ($the$ root of $T_{2}$ ) $+1$ , then
$\max\{\pi_{x}(s)+W(s)|s\in T_{1}\}\leq\pi_{x}$ (the root of $T_{2}$ ) $\mathrm{a}\mathrm{n}\mathrm{d}$

$\pi_{x}$ (the root of $T_{1}$ ) $\leq \mathrm{n}\dot{\mathrm{u}}\mathrm{n}\{\pi_{x}(s)+W(s)|\mathit{8}\in T_{2}\}$ .

$\mathrm{B}_{\mathrm{d}}8(\mathrm{k})$ . For given a non-negative integer $k$ , the placement $\pi(T)$ satisfies the inequality;
Intersect $(\tau, \pi)\leq k$ .

$\mathrm{B}_{\mathrm{d}}\neq$ . If a cell $p$ has $k(\geq 3)$ sons $q_{1},$
$\ldots,$

$q_{k}$ , where Index$(qi)=i$ , then for each $j(1\leq j\leq k-2)$

$\pi_{x}(qj+2)-\pi x(qj+1)=\pi x(qj+1)-\pi_{x}(q_{j})$ .

Here we consider the following sets of constraints $C_{d^{a}},$ $c_{d}^{b},$ $C_{d}a\neq,$ $c_{d}b\neq,$ $c_{dd^{+}}^{a+}$and $C^{a}(k)$ by combin-
ing the above constraints.

$C_{d}^{a}=B_{d}1(a)\wedge B_{d}2\wedge B_{d}3$ A $B_{d}4$ A $B_{d}5$ A $B_{d}6$ ,

$C_{d}^{b}=B_{d}1(b)$ A $B_{d}2$ A $B_{d}3$ A $B_{d}4$ A $B_{d}5$ A $B_{d}6$ ,
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Figure 1: A tree structured diagram $T$.

$C_{d}^{a}\#=C^{a}d$ A $B_{d}\neq,$ $C_{d}^{b}\neq=C_{d}^{b}$ A $B_{d}\#$ ,

$C_{d}^{a+}=B1(a)$ A $B2$ A $B3$ A $B4$ A $B5$ A $B6$ A $B7$ ,

$C_{d}^{a+}(k)=c_{d}a+\wedge B8(k)$ .
In this paper, for a TSD $T$ we consider the placement $\pi$ such that $\pi(T)$ has the ninimum width

under certain set of constraints.

3 $O(n)$ time algorithm

In this section, we construct an $O(n)$ time algorithm which produces the minimum width drawings
of TSDs while satisfying the constraint $C_{d}^{a+}(0)$ , where $n$ is the number of cells in a given TSD. This
algorithm traverses a given TSD in postorder and evaluates three values $L(p),$ $R(p)$ and $DI(p)$ for
each cell $p$ . Next it places each cell $p$ in preorder with referring to the value $DI(p)$ .

The values $L(p)$ and $R(p)$ for a cell $p$ represent how far the sub-TSD, whose root cell is $p$ , spreads
out left-hand side and right-hand side respectively. Given a TSD $T$ and

$.$

$\mathrm{i}\mathrm{t}_{\mathrm{S}}$ placement $\pi(T),$ $L(p)$ and
$R(p)$ for a cell $p$ of $T$ are defined by

$L(p)= \pi_{x}(p)-\min\{\pi x(q)|q\in T’\}$ ,
$R(p)= \max\{\pi_{x}(q)+W(q)|q\in T’\}-\pi_{x}(p)$ ,
where $T’$ is the sub-TSD whose root cell is $p$ .
The value $DI(p)$ is the distance in the direction of the $x$-axis between $p$ and $p’ \mathrm{s}$ father, and defined

by
$DI(p)=\pi_{x}(p)-\pi_{x}$ ($P^{\prime_{S}}$ father).
First, we denote the properties that hold among $L,$ $R,$ $DI$ and constraints stated above.

Lemma 1 For a $TSDT$ and its placement $\pi(T)$ , if $L,$ $R$ and $DI$ satisfy the following (i), (ii) and the
$con\mathit{8}traintB_{d}1$ then $\pi(T)satisfie\mathit{8}$ constraint8 $B_{d}2,$ $B_{d}3,$ $B_{d}4,$ $B_{d}6,$ $B_{d}7$ and $B_{d}$8(0).

(i) For a cell $p$ which is an only son of its father, $DI(p)=0$ .
(ii) For more than 2 brothers $q_{1},$ $\ldots.qk(2\leq k, Index(qi)=i,$

$1\leq i\leq k),DI(q_{j+1})-DI(q_{j})\geq\square$
$R(q_{j})+L(q_{j+1})+1(1\leq j\leq k-1)$ and $DI(q_{m})=0$ , where $m=\lceil(k+1)/2\rceil$ .

Lemma 2 For a $TSDT$ and its placement $\pi(T)$ , if $DIsati_{\mathit{8}}fies$ the following (i) and the constraint
$B_{d}1$ then $\pi(T)$ satisfies constraint $B_{d}5$ .

(i) If $T_{1}$ and $T_{2}$ are isomorphic sub-TSDs of $T$ and a cell $p_{1}$ of $T_{1}$

corresponds to a cell $p_{2}$ of $T_{2}$ , then
$DI(p_{1})=DI(p_{2})$ . $\square$
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Here we state the algorithm which constructs the placement $\pi\{T$) for a given TSD $T$ .

Algorithm Layout-l
Input. A TSD $T=$ (V, $E,$ $r,$ $W,$ $D$ ) whit $n$ cells.
Output. $\pi(T)$ : the placement of $T$ .
Method.
(1) For each leaf cell $p$ , let $L(p)=0,$ $R(p)=W(p),$ $DI(p)=0$ .
(2) Traversing the TSD $T$ in postorder, when each cell $p$ is visited,
evaluate $DI(p),$ $L(p)$ and $R(p)$ in the following way.
(Case.1) In the case of that a cell $p$ has only one son $q$ , let
$L(p)=L(q),$ $R(p)= \max(W(p), R(q)),$ $DI(q)=0$.
(Case.2) In the case of that a cell $p$ has exactly two sons

$q_{1}$ and $q_{2}(Index(qi)=i, 1\leq i\leq 2)$ , let
$DI(q_{2})=0$ ,
$DI(q_{1})=R(q_{1})+L(q_{2})+1$ ,
$L(p)=L(q_{1})+DI(q_{1})$ ,
$R(p)= \max(W(p), R(q2))$ .
$(Case.\mathit{3})$ In the case of that a cell $p$ has $k(k\geq 3)$ sons $q_{1},$ $\ldots;$

. $q_{k}$.
(Index $(qi)=i,$ $1\leq i\leq k$) and $m=\lceil(k+1)/2\rceil$ , let
$DI(q_{m})=0$ ,
$DI(q_{m-1})=R(q_{m}-1)+L(qm)+1$ ,
(for $jarrow m-2$ step-l until 1)
$DI(q_{j})=DI(q_{j1}+)+L(q_{j+1})+R(q_{j})+1$ ,
$DI(q_{m+}1)=L(q_{m+}1)+R(q_{m})+1$ ,
(for $jarrow m+2$ step 1 until $k$ )
$DI(q_{j})=DI(q_{j1}-)+R(q_{j-1})+L(q_{j})+1$ ,
$L(p)=L(q_{1})+DI(q_{1})$ ,
$R(p)= \max(W(p), R(q_{k})+DI(q_{k}))$ .
(3) Place the root cell $r$ at the origin, this is, let
$\pi_{x}(r)=0,$ $\pi(yr)=0$ .
Next traversing the TSD $T$ in preorder,place each cell $p$ ,
whose father is $q$ , as follows.
$\pi_{y}(p)=\pi_{y}(q)+D(q)+1,$ $\pi x(p)=\pi_{x}(q)+DI(\mathrm{P})$ .

Lemma 3 For a given $TSDT$, the placement $\pi(T)$ which produced by the algorithm Layout-l
$\mathit{8}atisfie\square s$

the constraint $C_{d}^{a}+(k)$ .

Lemma 4 For a given $TSDT$, the placement $\pi(T)$ which produced by the algorithm Layout-l
$i_{\mathit{8}}a\square$

minimum width under the $con\mathit{8}traintc^{a}d(+\mathrm{o})$ .

$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}5\square$

The algorithm Layout-l requires $O(n)$ time, where $ni\mathit{8}$ the number of cells of a given $TSD$ .

We summarize these results as:

Theorem 1 For a given $TSDT$ whit $n$ cells, there is an $O(n)$ time algorithm which produces
$the\square$

minimum width placement of $T$ under $C_{d}^{a+}(0)$ .
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4 $O(n^{2})$ time algorithm

In this section, we construct an $O(n^{2})$ time algorithm which produces the minimum width drawings
of TSDs while satisfying the constraint $C_{d}^{a}+(k)$ , where $n$ is the number of cells in a given TSD. In
the similar way of the algorithm Layout-l, this algorithm traverses a given TSD in postorder and
evaluates two arraies $AL(p),$ $AR(p)$ and the value $DI(p)$ for each cell $p$ . Next, in the same manner of
Layout-l, it places each cell $p$ in preorder with referring to the value $DI(p)$ .

$DI(p)$ is the same in the previous section. The array $AL(p)$ (resp., $AR(p)$ ) for a cell $p$ rep-
resents the left (resp., $\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$ ) $-\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d}$ side outline of the sub-TSD whose root cell is $p$ . For given a
TSD $T$ , its placement $\pi(T)$ and a cell $p$ of $T$ , the both lengths of $AL(p)$ and $AR(p)$ are equal to
$\max${ $VP(p,$ $T);p$ is a leaf of $T$} and the i-th values of them are defined as follows.
$AL_{i}(p)=0$ $if\{q;q\in T’, i\in[VP(q, T’)-D(q), VP(q, T/)]\}$

$(=V(i))=\psi$

$\min\{\pi_{x}(q);q\in V(i)\}-\pi_{x}(p)$ otherwise,

$AR_{i}(p)=0$ if $V(i)=\phi$

$\max\{\pi_{x}(q)+W(q);q\in V(i)\}-\pi x(p)$ otherwise,
where $T’$ is the sub-TSD whose root cell is $p$ .
First, we denote the properties that hold among $AL,$ $AR,$ $DI$ and constraints stated above. Note

that values $AL_{i}(p)$ and $AR_{i}(p)$ are not always non-negative.

Lemma 6 For a given positive integer $k$, a $TSDT$ and $it\mathit{8}$ placement $\pi(T)$ , if $AL,$ $AR$ and $DI\mathit{8}at.iSfy$

the following (i), (ii) and the constraint $B_{d}1$ , then $\pi(T)sati\mathit{8}fieS$ constraints $B_{d}2,$ $B_{d}3,$ $B_{d}4,$ $B_{d}6$ . $B_{d}$

and $B_{d}8(k)$ .
(i) For a cell $p$ which is an only son of $it\mathit{8}$ father,
(for $1\leq j\leq M$) $AL_{j}(p)=0$ ,
(for $1\leq j\leq 1+D(\mathrm{P})$) $AR_{j(}p)=W(p)$ ,
(for $D(p)+1\leq j\leq M$ ) $ARj(p)=0$ ,
$DI(p)=0$ , where $M= \max${ $VP(s,$ $T);\mathit{8}$ is a leaf of $T$}.
(ii) For more than 2 brothers $q_{1},$

$\ldots,$
$q_{l}$

(Index$(qs)=s,$ $1\leq s\leq l$), $i(1\leq i\leq l-1)$ and $j(1\leq j\leq M)$ ,
$DI(q_{i+}1)-DI(q_{i})\geq AR_{i}(qi)-ALj(q_{i+}1)+1$ (1),
$DI(q_{i1}+)-DI(q_{i})\geq-AL_{j}(q_{i+}1)+1$ (2),
$DI(q_{i1}+)-DI(q_{i})\geq AR_{j}(qi)+1$ (3),
$DI(q_{i1}+)-DI(q_{i}) \geq\max_{j}\{AR_{j}(qi)\}-\min_{j\{AL_{j}(q}i+1)\}+1-k$ (4),
$DI(q_{m})=0$ (5),
where $m=\lceil(l+1)/2\rceil$ and $M= \max${ $VP(s,$ $\tau);S$ is a leaf of $T$}. $\square$

Here we state a $O(n^{2})$ -time algorithm which constructs the minimum width placement $\pi(T)$ for a
given TSD $T$ under $C_{d}^{a+}(k)$ .

Algorithm Layout-2
Input. A positive integer $k$ and

a TSD $T=(V, E, r, W, D)$ whit $n$ cells
Output. $\pi(T)$ : the placement of $T$ .
Method.
(1) Let $M= \max${ $VP(s,$ $T);S$ is a leaf of $T$}.
For each cell $p$ and $j(1\leq j\leq M)$ , let
$AL_{j}(p)=0,$ $AR_{j}(p)=0$ .
if $p$ is a leaf, then let $DI(p)=0$.
(2) Traversing the TSD $T$ in postorder, when each cell $p$ is visited,
evaluate $DI(p),$ $AL(p)$ and $AR(p)$ in the following way.
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(Case.1) In the case of that a cell $p$ ha8 only one son $q$ , let
$AL_{1}(p)=\cdots=AL_{D()+1}(pp)=0$ ,
$ALD(p)+2=AL1(q),$ $AL_{D(})+3=AL_{2(q}p),$ $\ldots,AL_{M}(p)=AL_{M-D1}-((p)q)$ ,
$AR_{1}(\mathrm{P})=\cdots=AR_{D}(p)+1(p)=W(p)$ ,
$AR_{D(p)+2}=AR1(q),$ $AR_{D}(p)+3=AR_{2(q}),$ $\ldots,$ $AR_{M}(p)=AR_{M-D}(p)-1(q)$ ,
and $DI(q)=0$ .
(Case.2) In the case of that a cell $p$ has $l(l\geq 2)$ sons $q_{1},$ $\ldots,$

$q_{l}$

(Index $(qi)=i,$ $1\leq i\leq l$ ) and $m=\lceil(l+1)/2\rceil$ , firstly let
$DI(q_{m})=0$ .
For each $i$ from $i=m-1$ step by-l until 1, let
$m1_{i}= \max\{AR_{j}(qi)-ALj(qi\dagger 1+1\}$ ,
$m2_{i}= \max\{-AL_{j}(q_{i1}+)+1\}$ ,
$m3_{i}= \max\{AR_{j}(q_{i})+1\}$ ,
$m4_{i}=m3_{i}+m2_{i}-1-k$
$(= \max_{j}\{AR_{j}(qi)\}-\min_{j\{}AL_{j}(qi+1)\}+1-k)$ , and
$\alpha_{i}=\max\{m1_{i}, m2_{i}, m3i, m4i\}$ , where $j(1\leq j\leq M)$ .
Then let $DI(q_{i})=DI(qi+1)-\alpha i$ .
Next for each $i$ from $i=m+1$ step by 1 until $l$ ,
computing $\alpha_{i}$ in the same way, let $DI(q_{i})=DI(qi-1)+\alpha_{i}$ .
Finally compute $AL(p)$ and $AR(p)$ as follows.
$AL(p)$ is computed by referring $AL(q_{1})$ and $DI(q_{1}),$

$\ldots,$
$AL(ql)$ and

$DI(q_{l})$ in order so that $AL(p)$ represents the left-hand side outline
of the sub-TSD with the root cell..p.
In the similar way,
$AR(p)$ is computed by referring $AR(q_{l})$ and $DI.(ql),$ $\ldots,$

$AR(q1)$

and $DI(q_{1})$ in order.
(3) Place the root cell $r$ at the origin, $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ is, let
$\pi_{x}(r)=0,$ $\pi(yr)=0$ .
Next traversing the TSD $T$ in preorder,
place each cell $p$ , whose father is $q$ , as follows.
$\pi_{y}(p)=\pi_{y}(q)+D(q)+1$ ,
$\pi_{x}(p)=\pi_{x}(q)+DI(p)$ .

Lemma 7 For a given $TSDT$, the placement $\pi(T)$ which produced by the algorithm Layout-2
$\mathit{8}ati_{S}fieS\square$

the $con\mathit{8}traintC_{d}^{a}+(k)$ .

Lemma 8 For a given $TSDT$, the placement $\pi(T)$ which produced by the algorithm Layout-2
$isa\square$

minimum width under the constraint $C_{d}^{a+}(k)$ .

Lemma 9 If the function $Di\mathit{8}$ bounded, the algorithm Layout-2 requires $O(n^{2})$ time, where
$n\prime i\mathit{8}the\square$

number of cell8 of a given $TSD$ .

We summarize these results as:

Theorem 2 For a given $po\mathit{8}itive$ integer $k$ , a given $TSDT$ whit $n$ cells and any cell $p$ , if the depth
$D(p)i\mathit{8}$ bounded, there is an $O(n^{2})$ time algorithm which produces the minimum width placement

$of\square$

$T$ under $C_{d}^{a}+(k)$ .
If we modify the algorithm Layout-2 by removing the part $m4_{i}$ of (2), then we have the similar
algorithm which satisfies the constraint $C_{d}^{a+}$ . So we can obtain the following result.

Theorem 3 For a given $TSDT$ whit $n$ cell8 and any cell $p$ , if the depth $D(p)$ is bounded, there
$i\mathit{8}an\square$

$O(n^{2})$ time algorithm which produces the minimum width placement of $T$ under $C_{d}^{a+}$ .
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5 Conclusions

We have formalized the drawing problem of tree structured diagrams and introduced several constraints
which concern readability of the diagrams. Though the problem of drawing TSD is easier to apply
visual progranming than that of drawing trees, there are some difficulties such as crossing of a cell
and a edge. Problems of lninimum width drawings of TSDS are $\mathrm{N}\mathrm{P}$ -complete under certain sets of
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{S}[23]$ . However, we could obtaine the efficient algorithms of minimum width drawings of
TSDs under some reasonable sets of constraints. These algorithms will be applied to practical uses
such as visual programming and others.
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