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Abstract

This study proposes a method for the acceleration of the projection method to coinpute a few eigenvalues
with the largest real parts of a large nonsymmetric matrix.

In the field of the solution of the linear system, an acceleration using the least squares polynomial
which minimizes its norm on the boundary of the convex hull formed with the unwanted eigenvalues
are proposed. We simplify this method for the eigenvalue problem using the similar property of the
orthogonal polynomial. This study applies the Tchebychev polynomial to the iterative Arnoldi method
and proves that it computes necessary eigenvalues with far less complexity than the $QR$ method. Its high
accuracy enables us to compute the close eigenvalues that can not be obtained by the simple Arnoldi
method.

1 Introduction

In the fluid dynamics and the structural analysis, there are a number of cases where a few eigenvalues
with the largest real parts of a nonsymmetric matrix are required. In economic modeling, the stability
of a model is interpreted in terms of the dominant eigenvalues of a large nonsymmetric matrix $[1, 7]$ .

Several methods have been proposed for this problem. The method proposed by Arnoldi in 1951
and the subspace iteration method due to Rutishauser , which are variants of the projection method,
have been the most effective for this purpose. The Arnoldi method, however, has a drawback of the
expense of too much memory space. This problem can be solved by using the method iteratively [6].
Although the iterative Arnoldi method is quite effective and may excel the subspace iteration method in
performance, the dimension of the subspace is inevitably large, in particular when the wanted eigenvalues
are clustered. Moreover it favors the convergence on the envelope of the spectrum.

To overcome this difficulty Saad proposed a Tchebychev acceleration technique for the Arnoldi method
[7], which is an expansion of the similar technique for symmetric matrices. In the nonsymmetric case, we
have to consider the distribution of the eigenvalues in the complex plane. The normalized Tchebychev
function $P_{n}( \lambda)=T_{n}(\frac{d-\lambda}{c})/\tau n(\frac{d}{c})$ has the property

$\lim_{narrow\infty}P_{n}(\lambda)=\{$

$0$ $\lambda$ is inside of $\hat{F}(d, c)$

$\infty$
$\lambda$ ii outside of $\hat{F}(d, c)$

where $d$ and $d\pm c$ are the center and the focal points of the ellipse $\hat{F}(d, c)$ , which passes through the
origin. Considering the optimal ellipse which encloses the unnecessary eigenvalues obtained adaptively
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by the previous step of the Arnoldi method and applying this polynomial to the matrix of the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{n}$,
we can make the new matrix whose necessary eigenvalues are made dominant [5]. We continue the
subsequent Arnoldi iterations with the new matrix. This algorithm was refined and expanded by Ho [4]
to the case where the reference eigenvalues do not have the largest or the smallest real parts. However,
the adaptive methods based on the optimal ellipse have a defect of making the excessively large ellipse
compared with the distribution of the unwanted eigenvalues.

In this paper, we use the convex hull proposed for the solution of the nonsymmetric linear system [8]
instead of Manteuffel’s optimal ellipse. The least squares polynomials minimize the $L_{2}$ norm defined
on the boundary of the convex hull which encloses the unnecessary eigenvalues. From the maximum
modulus principle, the absolute value of the polynomial is guaranteed to take on a maximum on the
boundary of the convex hull. The polynomials can be generated without any numerical integration,
using the orthogonality of the Tchebychev functions. In the eigenvalue problem, we can directly use the
ortho-normal polynomial generated by the Tchebychev functions as the mini-max polynomial, since we
have no need to normalize the polynomial at the origin.

The numerical experiments show that the method is effective for this purpose. The iteration of the
Arnoldi method proposed by Saad is used in our algorithm and contributes to the economization of the
memory space, which is consumed mainly by the coefficients of the polynomials.

2 Background

This section gives an outline of the methods referred to in this paper. The Arnoldi method, which is a
variant of the projection method, plays the main role in our problem. The principle of the acceleration
technique using the optimal ellipse [5] is explained briefly, since the properties used in this method are
also important in our algorithm. We then describe the Tchebychev-Arnoldi method using the optimal
ellipse and the least-squares based method, which were developed for solving the linear system by Saad
$[7, 8]$ .

2.1 The Arnoldi method

If $u\neq 0$ , let $K_{l}=1\mathrm{i}\mathrm{n}$ ( $u,$ Au, $\cdots,$
$A^{\iota 1}-u$) be the Krylov subspace generated by $u$ . Arnoldi’s method

computes an orthogonal basis $\{v_{i}\}_{1}^{l}$ of $K_{l}$ in which the map is represented by an upper Hessenberg
matrix i.e., an upper triangular matrix with sub-diagonal elements:

1. $v_{1}=u/||u||_{2}$ , $h_{1,1}=(Av_{1}, v_{1})$ ;

2. for $j=1,$ $\cdots,$ $l-1$ , put

$x_{j+1}=Av_{j}- \sum_{i=1}$ h
$j$

ijvi, $h_{j+1,j}=||x_{j+1}||_{2}$ ,

$v_{j+1}=h_{j+1}^{-1}Xj+1$ , $h_{i,j+1}=(Av_{j1}+, vi)$ , $(i\leq j+1)$ .

The algorithm terminates when $x_{j}=0$ , which is impossible if the minimal polynomial of $A$ with respect
to $u$ is of degree $\geq l$ . If this condition is satisfied, $H_{l}=(h_{ij})$ is an irreducible Hessenberg matrix.

In the iterative variant [7], we start with an initial vector $u$ and fix a moderate value $m$ , then
compute the eigenvectors of $H_{m}$ . We begin again, using as a starting vector a linear combination of the
eigenvectors. No proof exists for the convergence of this method.
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2.2 The adaptive Tchebychev-Arnoldi method

The original idea of using the Tchebychev polynomial for filtering the desired eigenvalues was proposed
by Manteuffel in 1977 [5]. It was applied to the solution of nonsymmetric linear systems.

If $x_{0}$ is the initial guess at the solution $\mathrm{x}$, an iteration is defined with the general step $x_{n}=x_{n-1}+$

$\sum_{i1}^{n-1}=\gamma nir_{i}$ where the $\gamma_{ij}’ \mathrm{s}$ are constants and $r_{i}=b-Ax_{i}$ is the residual at step $\dot{i}$ . Let $e_{i}=x-x_{i}$ be
the error at the $\dot{i}\mathrm{t}\mathrm{h}$ step then an inductive argument yields $e_{n}=[I-As_{n}(A)]e0\equiv P_{n}(A)e0$ where $s_{n}(z)$

and $P_{n}(z)$ are polynomials of degree $n$ such that $P_{n}(0)=1$ . To make $||e_{n}||\leq||P_{n}(A)||||e_{0}||$ small, the
Tchebychev polynomial is used as the sequence of polynomials.

The Tchebychev polynomials are given by $T_{n}(z)=\cosh(n\cosh^{-1}(Z))$ . Let $F(d, c)$ be the member of
the family of ellipses in the complex plane centered at $d$ with the focal points at $d+c$ and $d-c$, where
$d$ and $c$ are complex numbers. Suppose $z_{i}\in F_{i}(0,1),$ $z_{j}\in F_{j}(0,1)$ ; then

$\Re \mathrm{e}(\cosh-1(z_{i}))<\Re \mathrm{e}(\cosh-1(z_{j}))\Leftrightarrow F_{i}(0,1)\subset F_{j}(0,1)$,

$\Re \mathrm{e}(\cosh^{-1}(Z_{i}))=\Re \mathrm{e}(\cosh-1(z_{j}))\Leftrightarrow F_{i}(0,1)=F_{j}(0,1)$ .
Consider the scaled and translated Tchebychev polynomials $P_{n}( \lambda)=T_{n}(\frac{d-\lambda}{c})/T_{n}(\frac{d}{c})$ . Using the

definition of the $\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}$ , we can see that

$P_{n}( \lambda)=\frac{e^{n\cosh^{-}(}1\frac{d-\lambda}{c})+e^{-}\mathrm{s}n\mathrm{c}\mathrm{o}\mathrm{h}-1(\frac{d-\lambda}{\mathrm{c}})}{e^{n\cosh^{-}(}\frac{d}{c})+e1-n\cosh^{-}1(\frac{d}{c})}=$
. $e^{n} \cosh-1(\frac{d-\lambda}{c})-n\cosh-1(\frac{d}{\mathrm{c}})$

for large $n$ .
Let $r( \lambda)=\lim_{narrow\infty}|P_{n}(\lambda)^{\frac{1}{n}}|$, then we have $r( \lambda)=e^{\Re \mathrm{e}}(\cosh^{-}1(\frac{d-\lambda}{c})-\cosh^{-}1(\frac{d}{c}))$ . From the above lemma

and the definition of $r(\lambda)$ , we have that if $\lambda_{i}\in F_{i}(d, C),$ $\lambda_{j}\in F_{j}(d, c)$ , then

$r(\lambda_{i})<r(\lambda_{j})\Leftrightarrow F_{i}(d, c)\subset F_{j}(d, c)$, $r(\lambda_{i})=r(\lambda_{j})\Leftrightarrow F_{i}(d, c)=F_{j}(d, C)$ , $r(\lambda)=1\Leftrightarrow\lambda\in\hat{F}(d, c)$ ,

where $\hat{F}(d, c)$ is the member of the family passing through the origin. Thus we have

$\lim_{narrow\infty}P_{n}(\lambda)=\{$

$0$ $\lambda$ is inside of $\hat{F}(d, c)$

$\infty$
$\lambda$ is outside of $\hat{F}(d, c)$

Suppose that we can find the optimal ellipse that contains all the eigenvalues of $A$ except for the $r$

wanted ones [5]. Then the algorithm runs a certain number of steps of the Tchebychev iteration and
take the resulting vector $z_{n}$ as the initial vector in the Arnoldi process. From the Arnoldi purification
process one obtains a set of $m$ eigenvalues, $r$ of which are the approximation to the $r$ wanted ones, while
the remaining ones will be used for adaptively constructing the best ellipse.. Start: Choose an initial vector $v_{1}$ , a number of Arnoldi steps $m$ and a number of Tchebychev

steps $n$ .. Iterate:

1. Perform the $m$ steps of the Arnoldi algorithm starting with $v_{1}$ . Compute the $m$ eigenvalues of
the resulting Hessenberg matrix. Select the $r$ eigenvalues of the largest real parts $\tilde{\lambda}_{1},$ $\cdots,\tilde{\lambda}_{r}$

and take $\tilde{R}=\{\tilde{\lambda}_{r+1}, \cdots,\tilde{\lambda}_{m}\}$ . If satisfied stop, otherwise continue.
2. Using $\tilde{R}$ , obtain the new estimates of the parameters $d$ and $c$ of the best ellipse. Then

compute the initial vector $z_{0}$ for the Tchebychev iteration as a linear combination of the
approximate eigenvectors $\tilde{u}_{i}$ , $\dot{i}=1,$ $\cdots,$ $r$ .

3. Perform $n$ steps of the Tchebychev iteration to obtain $z_{n}$ . Take $v_{1}=z_{n}/||z_{n}||$ and back to
1.
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2.3 The least-squares based method

It has been shown that the least-squares based method for solving linear systems is competitive with
the ellipse based methods and are more reliable [8].

By the maximum principle, the maximum modulus of $|1-\lambda S_{n}(\lambda)|$ is found on the boundary of some
region $H$ of the complex plane that includes the spectrum of $A$ and it is sufficient to regard the problem
as being defined on the boundary. We use the least squares residual polynomial minimizing the $L_{2}$

norm $||1-\lambda_{S_{n}()}\lambda||_{w}$ with respect to some weight $w(\lambda)$ on the boundary of $H[8]$ . Suppose that the
$\mu+1$ points $h_{0},$ $h_{1},$ $\cdots,$ $h_{\mu}$ constitute the vertices of $H$ . On each edge $E_{\nu},$ $\nu=1,$ $\cdots,$ $\mu$ , of the convex
hull, we choose a weight function $w_{\nu}(\lambda)$ . Denoting by $c_{\nu}$ the center of the $\nu \mathrm{t}\mathrm{h}$ edge and by $d_{\nu}$ the
half width, i.e., $c_{\nu}= \frac{1}{2}(h_{\nu}+h_{\nu-1}),$ $d_{\nu}= \frac{1}{2}(h_{\nu}-h_{\nu-1})$ , the weight function on each edge is defined by
$w_{\nu}( \lambda)=\frac{2}{\pi}|d_{\nu}^{2}-(\lambda-C_{\nu})2|^{-\frac{1}{2}}$ . The inner product on the space of complex polynomials is defined by
$\langle p, q\rangle=\sum_{\nu=1}^{\mu}\int_{E}\nu p(\lambda)\overline{q(\lambda)}w_{\nu}(\lambda)|d\lambda|$ . An algorithm using explicitly the modified moments $\langle t_{i}(\lambda), t_{j}(\lambda)\rangle$ ,
where $\{t_{j}\}$ is some suitable basis of polynomials, is developed for the problem of computing the least
squares polynomials in the complex plane.

We express the polynomial $t_{j}(\lambda)$ in terms of the Tchebychev polynomials $t_{j}( \lambda)=\sum_{i=0}^{j}\gamma_{i,j}T(\nu)(i\xi)$

where $\xi=(\lambda-C_{\mathcal{U}})/d_{\mathcal{U}}$ is real. The expansion coefficients $\gamma_{i,j}^{(\nu)}$ can be computed easily from the three
term recurrence of the polynomials $\beta_{k+1k+1}t(\lambda)=(\lambda-\alpha_{k})t_{k}(\lambda)-\delta ktk-1(\lambda)$ . The problem $\min_{S\in p_{n-1}}||$

$1-\lambda_{S_{n}()}\lambda||_{w}$ is to find $\eta=(\eta_{0}, \eta 1, \cdots, \eta_{n}-1)^{T}$ of $s_{n}( \lambda)=\sum_{i=0}^{n-1}\eta_{i}ti(\lambda)$ so that $J(\eta)=||1-\lambda_{S_{n}()}\lambda||_{w}$

is mimimum.

2.4 Approach

In the previous section we described the outline of the least-squares based method on any arbitrary
area. It has a difficulty on the application to other purposes due to the constraint $P_{n}(0)=1$ .

We use the fact that the eigenvalue problem does not require any such condition to the polynomial
and propose a new simple algorithm to get the mini-max polynomial to accelerate the convergence of the
projection method. The minimum property of the Tchebychev functions described below is important
to prove the optimality of this polynomial.

Let a non-negative weight function $w(\lambda)$ be given in the interval $a\geq\lambda\geq b$ . The orthogonal
polynomials $p_{0}(\lambda),p_{1}(\lambda),$ $\cdots$ , when multiplied by suitable factors $C$ , possess a minimum property:

the integral $\int(\lambda^{n}+a_{n-1}\lambda^{n-}1+\cdots+a_{0})^{2}w(\lambda)d\lambda$ takes on its least value when the polynomial in the
integrand is $c_{p_{n}}(\lambda)$ . The polynomial in the integrand may be written as a linear combination of the
$p_{i}(\lambda)$ , in the form $(c_{p_{n}}(\lambda)+c_{n-1}p_{n-}1(\lambda)+\cdots c_{0})$ . Since the functions $p_{n}(\lambda)\sqrt{w(\lambda)}$ are orthogonal, and
in fact, orthogonal if the $p_{i}(\lambda)$ are appropriately defined, the integral is equal to $C^{2}+ \sum_{\nu=0}^{n-}1c_{\nu}2$ , which
assumes its minimum at $c_{0}=c_{1}=\cdots=c_{n-1}=0$ .

Using the above property, we describe the new method to generate the coefficients of the ortho-normal
polynomials in terms of the Tchebychev weight below.

We use the three term recurrence $\beta n+1p_{n}+1(\lambda)=(\lambda-\alpha_{n})p_{n}(\lambda)-\beta_{n}p_{n-1}(\lambda)$, where $p_{i}(\lambda)$ satis-
fies the ortho-normality. Because of the condition of the use of the Tchebychev polynomial $p_{n}(\lambda)=$

$\sum_{i=0}^{n}\gamma_{i,n}(\nu)\tau i[(\lambda-c_{\nu})/d_{\nu}]$ , the constraints $\langle p_{0},p\mathrm{o}\rangle=2\sum_{\nu=1}^{\mu}|\gamma_{0,0}^{(\nu}|^{2})=1,$ $\langle p_{1},p_{1}\rangle=\sum_{\nu=1}^{\mu}[2|\gamma_{0^{\nu}1}^{()},|^{2}+$

$|\gamma_{1,1}^{(\nu)}|^{2}]=1$ , and $\langle p_{0},p_{1}\rangle=2\sum_{\mathcal{U}=1}^{\mu(}\gamma 0,0\overline{\gamma}\nu)(\nu)1,1=0$ must hold.

Moreover each expansion of $p_{i}(\lambda)$ at any edge must be consistent. The condition 2 $\sum_{\nu=1}^{\mu}|\gamma_{0}^{(\nu)},0|^{2}=$

$1$ derives $| \gamma_{0}^{(\nu)},0|=\frac{1}{2\mu},$ $\nu=1,$ $\cdots\mu$ , and we can choose $\frac{1}{\sqrt{2\mu}}$ as $\gamma_{0^{\nu}0}^{()},\cdot$ The consistency of $p_{1}(\lambda)=$

$\gamma_{0,1}^{(\nu)}+\gamma_{1,1}^{(\nu)}(\lambda-C_{\nu})/d_{\nu}=(\gamma_{1,1}^{(\nu)}/d_{\nu})\lambda+\gamma_{0}^{(\nu_{1}},-)\gamma 1(,\mathcal{U})1c\nu/d_{\nu}$ derives $\gamma_{1,1}^{(\nu}/$
)

$d_{\nu}=\gamma_{1,1}^{(\nu’)}/d_{\mathcal{U}}’,$ $\gamma_{0}^{(\nu_{1})},-\gamma_{1,1}^{(\nu)}c_{\nu}/d_{\nu}=$
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$\gamma_{0}^{(\nu_{1}’)},-\gamma_{1,1}^{(\nu’)}c\nu;/d_{\nu}’(\nu\neq\nu’)$ . It can be rewritten as $\gamma_{1,1}^{(\nu)}=d_{\nu}t,$ $\gamma_{0}^{(\nu_{1}},-C_{\nu}t$
)

$=\gamma_{0,1}^{(\nu’)}-c_{\nu’}t$ where $t$ is a real
number.

Using the condition $\langle p_{0},p_{1}\rangle=\sum_{\mathcal{U}}^{\nu}=1\gamma^{(}0,0\gamma\mu)\overline{(\nu)0,1}=\sum_{\nu=1^{\frac{1}{\sqrt{2\mu}}}}^{\mu\overline{(}}\gamma_{0,1}\nu)=0$, the sum $\sum_{\nu=1}^{\mu}(\gamma 0(\nu_{1},)-c_{\nu}t)=$

$- \sum_{\nu=1^{Ct}}^{\mu}\mathcal{U}=\mu(\gamma_{0,1}^{()}\nu’-c_{\nu}\prime t)$ $(1 \leq\nu’\leq\mu)$ derives the relation $\gamma_{0,1}^{(\mathcal{U})}=c_{\nu}t-(\sum_{\nu=1^{C_{\nu}}}^{\mu},’)t/\mu$ . Putting

it into the equation $\langle p_{1},p_{1}\rangle=\sum_{\nu=1}^{\mu}[2|\gamma_{0}(,\nu_{1})|^{2}+|\gamma_{1}^{(\nu_{1})},|^{2}]=1$, we have 2 $\sum_{\nu=1}^{\mu}|c_{\nu}-(\sum_{\nu=1}^{\mu},Cl\nu)/\mu|^{2}t2+$

$\sum_{\nu=1}^{\mu}|d_{\nu}|^{2}t^{2}=1$ . It derives $t=1/\sqrt{S}$ where $S= \sum_{\nu=1}^{\mu}[2|C_{\mathcal{U}}-(\sum_{\nu=1}^{\mu},c_{\nu^{\prime)}}/\mu|^{2}+|d_{\nu}|^{2}]$ . From the above
constraints, we can determine the values of all the coefficients of the polynomial using the values of
$d_{\nu},$ $c_{\nu},\mathrm{a}\mathrm{n}\mathrm{d}\mu$.

3 Algorithm

We describe the details of our algorithm below. Following the definition of some notations, a mini-max
polynomial, which is derived from the definition of the new norm on the boundary, is combined with
the Arnoldi method as an accelerator. We also mention the block version of the Arnoldi method [9] in
order to increase parallelism and to detect the multiplicity of the computed eigenvalues.

3.1 The definition of the $L_{2}$ norm

This section defines the $L_{2}$ norm on the boundary of the convex hull and other notations. We described
in the previous section the outline of the method by the least squares polynomials, which is based on the
convex hull generated from the unwanted eigenvalues. In this section we begin with the computation of
the convex hull.

Suppose a nonsymmetric matrix $A$ is given. We must implement some adaptive scheme in order
to estimate the approximate eigenvalues. The combination of the eigensolver and the accelerating
technique is described subsequently.

Nonsymmetric matrices have complex eigenvalues which distribute symmetrically in terms of the real
axis. Hence we can consider only the upper half of the complex plane. Using the sorted eigenvalues,
we start from the rightmost point and make it the vertex $h_{0}$ of the convex hull $H$ . We compute the
gradient between $h_{i}$ and the other eigenvalues with smaller real parts, and choose the point with the
smallest gradient as $h_{i+1}$ .

Since the eigenvalues obtained by the Arnoldi method is roughly ordered in terms of the absolute
value, the adoption of the bubble sort is appropriate. This algorithm uses the property that only the
points in the upper half plane are concerned. It requires $O(n^{2})$ complexity in the worst case and $O(n)$

in the best case.
We then define the $L_{2}$ norm on the boundary of the convex hull $H$ constituted by the points $h_{0},$

$\cdots,$ $h_{\mu}$ .
On each edge $E_{\nu}$ $(\nu=1,2, \cdots\mu)$ , we denote the center and the half width by $c_{\nu}= \frac{1}{2}(h_{\nu}+h_{\nu-1})$ and
$d_{\nu}= \frac{1}{2}(h_{\nu\nu-1}-h)$ , respectively, and define the weight function by $w_{\nu}( \lambda)=\frac{2}{\pi}[d_{\nu}^{2}-(\lambda-C_{\nu})2]^{-\frac{1}{2}}(\lambda\in..E_{\nu})$ .
Using the above definition, the inner product on $\partial H$ is defined by

$\langle p, q\rangle=\int_{\partial H}p(\lambda)\overline{q(\lambda)}w(\lambda)|d\lambda|=\sum_{=1}\int_{E_{\nu}}p(\lambda)\overline{q(\lambda)}w\nu(\lambda)|d\lambda|\nu\mu=\sum_{\nu=1}^{\mu}\langle p, q\rangle_{\nu}$.

$||p(\lambda)||_{w}=\langle p,p\rangle^{\frac{1}{2}}$ satisfies the following theorem.

Theorem 3.1 In an inner product space, the norm $||u||$ of an element $u$ of the complex linear space
has the following properties:
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1. $||ku||=|k|||u||$ .

2. $||u||>0$ unless $u=0$; $||u||=0$ implies $u=0$ .

3. $||u+v||\leq||u||+||v||$ .

3.2 The computation of the coefficient $\gamma$

We have mentioned the expression of the polynomial i.e., $p_{n}( \lambda)=\sum_{i=0}^{n}\gamma_{i,n}(_{U})_{T_{i}[\frac{\lambda-c_{\nu}}{d_{\nu}}]}$. Using the three
term recurrence of the Tchebychev polynomials, a similar recurrence $\beta k+1p_{k1}+(\lambda)=(\lambda-\alpha_{k})pk(\lambda)-$

$\delta_{kp_{k-1(\lambda)}}$ on the $p_{i}(\lambda)$ holds. Denoting $\xi_{\nu}$ by $\xi_{\nu}=(\lambda-C_{\nu})/d_{\nu}$ , the equation can be rewritten as

$\beta_{k+1p_{k1}}+(\lambda)=(d_{\nu}\xi+c_{\nu}-\alpha_{k})\sum_{i=0}^{k}\gamma i,Ti(\nu_{k})(\xi)-\delta_{k}\sum^{k}\gamma_{i,k-1}^{(\mathcal{U}})i=0-1(T_{i}\xi)$ .

Rom the relations $\xi T_{i}(\xi)=\frac{1}{2}[T_{i+1}(\xi)+\tau_{i-1(\xi)]},\dot{i}>0$ and $\xi T_{0}(\xi)=T_{1}(\xi)$ , it is expressed by

$\sum\gamma_{i}\xi\tau_{i}(\xi)=\frac{1}{2}\gamma_{1}\tau_{0(\xi)}+(\gamma 0+\frac{1}{2}\gamma 2)T_{1(\xi)}+\cdots+\frac{1}{2}(\gamma_{i}-1+\gamma i+1)T_{i(\xi})+\cdots+\frac{1}{2}(\gamma n-1+\gamma_{n}+1)T_{n}(\xi)$ $(\gamma_{n+1}=0)$

and arranged into

$(\nu)$ $(\nu)$

$\beta n+1p_{n}+1(\lambda)=d_{\nu}[\frac{\gamma_{1,n}}{2}T_{0(\xi})+(\gamma^{(}0,n\nu)+\frac{\gamma_{2,n}}{2})\tau_{1}(\xi)+\cdots+\sum_{=i2}^{n}\frac{1}{2}(\gamma_{i}-1,n\gamma^{(\nu)}i+1,)+nT(\nu)(i\xi)]$

$+(c_{\nu}- \alpha_{n})\sum_{0i=}^{n}\gamma i,niT((\nu)\xi)-\delta_{n}\sum_{i=0}\gamma_{i,1}(\nu)n-1(n-\tau_{i}\xi)$ $(T_{-1}=T_{1})$ .

Comparing the equation with $pn+1( \lambda)=\sum_{i=}^{n+1}0\gamma^{(\nu)}i,n+1\tau_{i}(\xi)$ , we find the following relations

$\beta n+1\gamma_{0}^{(\nu},n+1=\frac{1}{2}d)\nu,(\nu\gamma_{1}^{()}n+c\nu-\alpha_{n})\gamma 0,n-(\nu)\delta n\gamma \mathrm{o}(\nu,)-n1$
’

$\beta n+1\gamma_{1}^{(\nu},n+1)=d\nu(\gamma_{0,n}+\frac{1}{2}\gamma_{2},n(\nu)(\nu\rangle)+(_{C}\nu-\alpha n)\gamma_{1,n}(\nu)-\delta n\gamma 1,n(\nu)-1$
’

and
$\beta n+1\gamma_{i}^{()},\nu n+1=\frac{d_{\nu}}{2}[\gamma_{i+}^{(\nu}1,n\gamma)(i+-1,n]\nu)+(_{C_{\nu}}-\alpha_{n})\gamma i,n-(\nu)\delta_{n}\gamma_{i}(,\nu)n-1$

$i=2,$ $\ldots,$
$n+1$ $(\gamma_{-1,n}=\gamma_{1}(\nu)(,\nu)n$

’
$\gamma_{i,n}^{(\nu)}=0$ $i>n$).

The choice of the initial values $\gamma_{0,0}^{(\nu},$

$\gamma_{0,1}$

) $(\nu)$

and $\gamma_{1,1}^{(\nu)}$ is described in the previous section.

3.3 The computation of the coefficients in the three term recurrence

Using the relation $\beta k+1pk+1(\lambda)=(\lambda-\alpha_{k})pk(\lambda)-\delta_{k}p_{k-1}(\lambda)$ and the orthogonality of the Tchebychev
polynomials, we derive

$\beta k+1=\langle p_{k+}1,p_{k+}1\rangle^{1}/2=\sum_{\nu=1}\int_{E_{\nu}}p_{k}+1\overline{p_{k}+1}w\nu(\lambda)|d\lambda|=\sum_{\nu=1}^{\mu}\sum_{i}=0\gamma_{i}\mu/k+1(,\nu_{k})+1\overline{\gamma i(,\nu_{k+1})}$
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where we denote by $\sum_{i=}^{\prime n}\mathrm{o}a_{i}=2a_{0}+\sum_{i=1}^{n}a_{i}$ .
$\alpha$ and $\delta$ are computed similarly:

$\alpha_{k}=\langle\lambda pk,p_{k}\rangle=\sum_{1\nu=}^{\mu}(_{C_{\mathcal{U}}}\sum i=0i,k)(\prime k,\prime ik+d\nu 0^{\gamma^{(\nu_{k}}}\gamma^{(\nu}\gamma_{i}\sum\overline{\nu)})k=i,\overline{\gamma^{(}i+1,k\nu)})$ , $\delta_{k}=\langle\lambda p_{k},p_{k1}-\rangle=\sum_{\nu=1}^{\mu}d_{\nu}v\nu$

where $v_{\nu}= \gamma_{1,k}^{(\nu)}\overline{\gamma^{(\nu)}0)k-1}+(\gamma_{0,k}^{(\mathcal{U})}+\frac{1}{2}\gamma_{2}^{()\overline{(}},\nu_{k})\gamma_{1},\nu)k-1+\sum_{i=2}^{k-1_{\frac{1}{2}}}(\gamma i-1,k(\nu)+\gamma_{i+k}^{(\nu)}1,)\overline{\gamma i,k(\nu)-1}$.

3.4 The polynomial iteration

The polynomial obtained in the above procedure is applied to the matrix of the problem. We describe
the algorithm combined with the Arnoldi method. The Arnoldi method is expressed as follows.

$\hat{v}_{j+1}=Av_{j}-\sum_{i=1}^{j}$ hijvi, $h_{ij}=(Av_{j}, v_{i})$ , $i=1,$ $\ldots,j$ ,

$h_{j+1,j}=||\hat{v}_{j+1}||$ , $v_{j+1}=\hat{v}_{j+1}/h_{j+1,j}$

where $v_{1}$ is an arbitrary non-zero initial vector. The eigenvectors corresponding to the eigenvalues which
have the largest real parts are selected and combined linearly. The remaining eigenvalues constitute the
convex hull. Suppose we have each coefficients of the polynomial $p_{n}(\lambda)$ , where $n$ is some appropriate
integer. Put the combined vector into $v_{0}$ and we obtain the new vector $v_{n}$ in which the components of
the necessary eigenvectors are amplified by operating the following recursion:

$p\mathrm{o}(A)v_{0\gamma^{(\nu}}=v0,00)_{E}$ $(1\leq\nu\leq\mu)$

$p_{1}(A)v0=\gamma_{0,1}^{(\nu)_{E}}v_{0}+\gamma_{1,1}^{()}\nu/d_{\nu}\cdot(A-c_{\nu}E)v_{0}$

$p_{i+1}(A)v_{0}=[(A-\alpha_{i}E)pi(A)v0-\delta_{i}p_{i}-1(A)v\mathrm{o}]/\beta i+1$ .
Denoting $p_{i}(A)v0$ by $w_{i}$ , the above recurrence is transformed into

$(\nu)$

$w_{0}=\gamma_{0,0}v0$

$w_{1}=\gamma_{0^{\nu}1}^{(},v0+\gamma 11/)(\mathcal{U})d\nu$ .$(Av0-c_{\nu}v\mathrm{o}))=(\gamma_{0,1}^{(}-\nu)\gamma_{1},c/(\nu_{1\nu})d\nu)v0+\gamma^{(}1,/\nu_{1})d_{\nu}\cdot Av0$

$w_{i+1}=[Aw_{i}-\alpha_{i}wi-\delta_{i}wi-1]/\beta i+1$ $(\dot{i}=2, \cdots, n_{T})$ .

3.5 The block Arnoldi method

Suppose that we are interested in computing the $r$ eigenvalues with largest real part. If $V_{1}\in R^{n,r}$

is a rectangular matrix having $r$ orthonormal columns and $m$ is some fixed integer which limits the
dimension of the computed basis, the iterative block-Arnoldi method can be described as follows:

for $k=1,$ $\ldots,$ $m-1$ do

1. $W_{k}=AV_{k;}$

2. for $\dot{i}=1,$
$\ldots,$

$k$ do
$H_{i,k}=V_{ik;}^{\tau_{W}}$ $W_{k}=W_{k}-V_{i}H_{i},k$ ;
end for
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3. $Q_{k}R_{k}=W_{k}$

4. $V_{k+1}=Q_{k;}$ $H_{k+1,k}=R_{k;}$

end for

The restriction of the matrix $A$ to the Krylov subspace has a block-Hessenberg form:

$H_{m}=U^{T}AUmm=($ $H_{2,1}H_{1,1}00.\cdot$

.

$H_{2.2}H_{1.2}.\cdot.\cdot$

”

$.0^{\cdot}$

.

$H_{m,m-1}$

$H_{m,m}H_{2,m}H_{1,m}.\cdot.$ ) .

The above algorithm gives:

$AV_{k}= \sum_{i=1}V_{i}H_{i,k}+kV_{k}+1H_{k}+1,k$ , $k=1,$ $\ldots,$
$m$

which can be written in a form as $AU_{m}=U_{m}H_{m}+[\mathrm{o}, \ldots, 0, V_{m}+1H_{m+1,m}]$ , where $U_{m}=\{V_{1}, \ldots, V_{m}\}$ . If
$\Lambda_{m}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\lambda_{1}, \ldots, \lambda_{m})$ denotes the diagonal matrix of eigenvalues of $H_{m}$ corresponding to the eigenvec-
tors $\mathrm{Y}_{m}=[y_{1}, \ldots, y_{mr}]$ then the above relation gives $AU_{m}\mathrm{Y}_{m}-UmHm\mathrm{Y}m=[0, \ldots, 0, V_{m}+1H_{m}+1,m]\mathrm{Y}_{m}$.
Denoting by $X_{m}=U_{m}\mathrm{Y}_{m}$ the matrix of approximate eigenvectors of $A$ and by $\mathrm{Y}_{m,r}$ the last $r$ block of
$Y_{m}$ , we have $||AX_{m}-X_{m}\Lambda m||_{2}=||Hm+1,m\mathrm{Y}m,r||_{2}$ . It is used for the stopping criterion.

We compute the $r$ eigenvalues of large real parts by the following algorithm:
Choose an orthogonal basis $V_{1}=[v_{1}, \ldots, v_{r}]$ , an integer $m$ which limits the dimension of the computed

basis, and an integer $k$ which stands for the degree of the computed Tchebychev polynomials:

1. Starting with $V_{1}$ , obtain the block-Hessenberg matrix $H_{m}$ using the Arnoldi method. Compute
the eigenvalues of $H_{m}$ using the QR method and select $\lambda_{1},$

$\ldots,$

$\lambda_{r}$ the eigenvalues of largest real
part. Compute their Ritz vectors $x_{1},$

$\ldots,$
$x_{r}$ . Compute their residual norms for convergence test.

2. From $\mathrm{s}\mathrm{p}(H_{m})-\{\lambda_{1}, \ldots, \lambda_{r}\}$ get the optimal ellipse.

3. Starting with $x_{1},$
$\ldots,$

$x_{r}$ and using the parameters of the ellipse just found, perform $k$ steps of
Tchebychev iteration to obtain an orthonormal set of vectors $v_{1},$

$\ldots,$
$v_{r}$ and go to 1.

4 Evaluation

4.1 Complexity of the algorithms

The cost in terms of the number of floating-point operations are as follows: We denote by $n,$ $nz,$ $m,$ $r,$ $k$

respectively the order of the matrix, its number of nonzero entries, the number of block Arnoldi steps,
the number of required eigenvalues, and the degree of the Tchebychev polynomial. The block Arnoldi
method costs $\sum_{j=1}^{m}\{2rnZ+4nr^{2}j+2r(r+1)n\}=2rmnz+2mr(mr+2r+1)n$ flops. $10r^{3}m^{3}$ flops
are required for the computation of the eigenvalues of $H_{m}$ of order $mr$ by the QR nlethod, $r^{3}O(m^{2})$ for
the corresponding eigenvectors by the inverse iteration, and $2krnz+O(n)$ for the Tchebychev iteration
$[3, 9]$ . The computation of the coefficients costs approximately $O(\mu k^{2})$ flops, where $\mu$ is the number of
the vertices of the convex hull.
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The total superfluous complexity of the least-squares based method by Saad is $O(k^{3})$ flops, while
Manteuffel’s adaptive Tchebychev method requires the solutions of the equations of up to the fifth
degree for $O(k^{2})$ combinations of every two eigenvalues on the convex hull.

4.2 Numerical results

This section reports the results of the numerical experiments of our method and evaluates its perfor-
mance. The experiments are performed on $\mathrm{H}\mathrm{P}9000/720$ using double precision. The time unit is $\frac{1}{60}$

second.
We start with the decision of each element of the matrix given in the problem. In this section, the

scaled sequences of random numbers are assigned respectively to the real and the imaginary parts of
the eigenvalues except for those which are to be selected. The matrices are block diagonals with $2\cross 2$

or 1 $\cross 1$ diagonal blocks. Each block is of the form $[-2ba$ .
$b/2a]$ to prevent the matrix to be normal

and has eigenvalues $a\pm bi$ . It is transformed by an orthogonal matrix generated from a matrix with
random elements by the Schmidt’s orthogonalization method. $m_{A}$ and $n_{T}$ denote the order of the
Arnoldi method and the maximum order of the Tchebychev polynomials respectively. We compare this
algorithm with the double-shifted QR method. The error is computed by the $L_{2}$ norm.

In this section we test the some variations of the distribution of the eigenvalues using the matrices of
order 50, the cases of $\lambda_{\max}=2,1.5$ , and 1.1 while the distribution of the other eigenvalues is $\Re \mathrm{e}\lambda\in[0,1]$ ,
$\mathrm{a}\mathrm{n}\mathrm{d}_{S}^{\alpha_{\mathrm{m}\lambda}}\in[-1,1]$ . We denote the number of the iterations by $i_{A}$ .

Case 1. $\lambda_{\max}$ is 2, while the distribution of the other eigenvalues is $\Re \mathrm{e}\lambda\in[0,1],$ $s^{\infty}\mathrm{m}\lambda\in[-1,1]$ .
The effect of the iteration is significant, especially for the orthogonality-based method. This tendency
becomes sharper as the maximum eigenvalue gets closer to the second eigenvalue.

Case 2. The maximum eigenvalue is 1.5, while the distribution of the other eigenvalues is $\Re \mathrm{e}\lambda\in$

$[0,1],$ $\propto s\mathrm{m}\lambda\in[-1,1]$ . Some variations of the combination of the parameters $\dot{i}_{A}$ and $n_{T}$ are examined.
Case 3. The maximum eigenvalue is 1.1, while the distribution of the other eigenvalues is: $\Re \mathrm{e}\lambda\in$

$[0,1],$ $\propto s\mathrm{m}\lambda\in[-1,1]$ . In this test we examine the relation between the parameter $\dot{i}_{A}$ and the order of
the Arnoldi method $m_{A}$ . The table shows that it is more effective to decrease the order of the Arnoldi
method than to decrease the number of the Arnoldi iteration.

4.3 Comparison with the adaptive method

Some test problems from the Harwell-Boeing sparse matrix collection [2], the spectra of which are shown
in the following eight figures, are solved using the block Arnoldi method. Ho’s algorithm is used for
reference.

The stopping criterion is based on the maximum of all computed residuals $\max_{1\leq i\leq r}\frac{||Ax_{i}-\lambda ixi||_{2}}{||x_{i}||_{2}}$

$\equiv\max_{1\leq i\leq r}\frac{||H_{m+mm}1,Yr,i||_{2}}{||Y_{m,i}||_{2}},\leq\epsilon$. $Y_{m,r,i}$ and $Y_{m,i}$ stand for the i-th column of the $\mathrm{Y}_{m,r}$ and $Y_{m}$ .
The following table indicate that Ho’s algorithm shows better performance than the orthogonality-

based method in most conditions except for the cases where the moduli of the necessary eigenvaiues
are much larger than those of the unnecessary eigenvalues. We may derive from the result the poor
optimality of the convex hull despite its low computation cost.
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orthogonality-based Arnoldi QR
$i_{A}$ $m_{A}$ $n_{T}$ error time $i_{A}$ $m_{A}$ error time error time$- 15112$

Table 1. $\lambda_{\max}=2$ , while the distribution of the other eigenvalues is $\Re \mathrm{e}\lambda\in[0,1],$ $\propto s\mathrm{m}\lambda\in[-1,1]$ .

Table 2. $\lambda_{\max}=1.5$ .

Table 3. $\lambda_{\max}=1.1$ .

problem west0067 west0132 west0156 west0167 west0381 west0479 west0497 west0655

$\ovalbox{\tt\small REJECT}_{101}^{\mathrm{S}\mathrm{i}_{\mathrm{Z}}}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{m}\mathrm{e}31224537201199519367233537632085765217216\mathrm{n}\mathrm{b}1\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}_{\mathrm{b}\mathrm{f}}\mathrm{r}\mathrm{o}\mathrm{f}\mathrm{m}\mathrm{a}_{\mathrm{i}^{\circ}\mathrm{t}\mathrm{e}}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}671\deg_{\mathrm{C}}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{u}\mathrm{m}\circ \mathrm{k}_{\mathrm{S}\mathrm{i}_{\mathrm{Z}}\mathrm{e}}\mathrm{p}\mathrm{o}\mathrm{f}1\mathrm{y}\mathrm{n}\mathrm{o}_{\mathrm{i}}\mathrm{m}\mathrm{i}\mathrm{a}1100101010101\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{b}\mathrm{a}s_{\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{t}}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{s}5\mathrm{r}_{\mathrm{i}}\mathrm{a}\mathrm{t}\circ \mathrm{n}\mathrm{S}32101010101163111232321021561167342152810_{7}20501522864794976552322251\mathrm{o}\mathrm{o}_{3}42$

Table 4. Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection. The results by
Ho’s algorithm (left) versus those by the orthogonality-based method (right) are listed.
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5 Conclusion

This method requires the computation of $2rmnz+2mr(mr+2r+1)n$ flops for the block Arnoldi
method, $r^{3}[10m^{3}+O(m^{2})]$ for the computation of the eigenvalues of $H_{m}$ , and $2krnz+O(n)$ for the
Tchebychev iteration.

It is less than those of the adaptive method, which requires the solutions of nonlinear equations for
$O(k^{2})$ combinations of the eigenvalues in most cases, and the least-squares based method, which costs
$O(k^{3})$ superfluous complexity.

We examined the other problems such as computational error by numerical experiments. The validity
of our method was confirmed by the experiments using the Harwell-Boeing Sparse Matrix Collection,
which is a set of standard test matrices for sparse matrix problems.

However, it can not show better performance than the adaptive algorithm in some cases where the
moduli of the necessary eigenvalues are not larger than those of the unnecessary ones. A more detailed
analysis of the precision of the methods is required.
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