
Parallel block methods for solving nonstiff equations
with stepsize control

Kazufumi OZAWA\dagger and Susumu YAMADA\ddagger
小澤–文 \dagger , 山田 進 \ddagger

\dagger Education center for information processing, Tohoku University
\ddagger Graduate school of information science, Tohoku University

E–mail: ozawa@dais.is.tohoku.ac.jp, yamada@ecip.tohoku.ac.jp

Abstract
Parallel block methods with a stepsize strategy are developed for solving nonstiff initial value
problems on parallel computers. The block methods use the predictor-corrector iteration,
which makes it easy to exploit the parallelism across the method, for the solutions of nonlin-
ear equations. The stepsize strategy used in the methods is based on Milne’s device which
estimates the local error of the overall method using the predicted and corrected values.
Numerical experiments are carried out on a KSR-I parallel computer in order to show the
performance of the block methods. The computational costs, errors and speed-up ratios of
the block methods are compared with those of the PIRK (parallel iterated Runge-Kutta) by
Houwen et al.

1 Introduction

Consider the initial value problems (IVPs)

$y’=f(x, y)$ , $y(x_{0})=\eta$ . (1.1)

Here the equation (1.1) is assumed to be nonstiff. We propose predictor-corrector (P-C)
type parallel block methods with a stepsize strategy for solving (1.1).

When solving nonstiff equations one often use explicit Runge-Kutta (ERK) methods.
For the parallelization of ERKs, Iserles and $\mathrm{N}\emptyset \mathrm{r}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{t}[9]$ has shown that the orders of
parallel ERKs never exceed the number of the effective stages in parallel execution. This
is a serious drawback since the higher the degree of parallelism (the lower the effective
stages), the lower the accuracy. Consider, for example, a five-stage ERK whose Butcher
array has the sparsity pattern

Figl. Butcher array of some parallel ERK

where the symbol $x$ denotes a nonzero element. In this method, the third, fourth and fifth
stages can be computed in parallel after the computations of the first and second stages,
if at least three processors are available. Therefore the number of effective stages of the
method is not 5 but 3, so that the speed-up ratio becomes 5/3. In this case, however,
the attainable order with the method is only 3, since the number of effective stages is
3. This result suggests that the parallel ERKs have nothing or little to recommend it,
particularly when the method is of order $\leq 4$ ; in such a case, as is well known, there exists
a sequential ERK of the order equal to the number of (effective) stages.
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Another possibility of constructing parallel methods for nonstiff ODEs is to use PIRK (par-
allel iterated Runge-Kutta) developed by Houwen and $\mathrm{S}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{i}\mathrm{i}\mathrm{e}\mathrm{r}[8]$ . Consider the follow-
ing $s$-stage (implicit or explicit) Runge-Kutta formula

$\{$

$yn+1=yn+hSi \sum_{=1}^{S}bif(X_{n}+Cih, Z_{i})$ ,

$z_{i}=y_{n}+hj=1 \sum aijf(xn+c_{j}h, z_{j})$
, $i=1,$ $\ldots,$

$s$ .
(1.2)

If the method (1.2) is explicit we must compute each stage sequentially, except for the
particular case that the Butcher array has the sparsity pattern as shown in Fig. 1. On
the other hand, if the method is implicit then (1.2) is a system of nonlinear algebraic
equations, which leads to the evaluation and LU decomposition of a Jacobi matrix. Thus,
in either case, it is difficult to parallelize the whole part of the scheme. However, the
fixed-point iteration

$\{$

$z_{i}^{[\nu]}=y_{n}+h \sum_{j=1}a_{ij}fS(x_{n}+c_{j}h, z_{j}^{[\nu}-1])$, $\nu=1,2,$ $\ldots$ ,

$z_{i}^{[0}yn[\nu]\mathrm{J}_{=}$
, $i=1,$ $\ldots,$

$s$ ,

$y_{n+1}=yn+hi=1 \sum^{s}bif(X_{n}+c_{i}h, z^{[\nu}i)]$

(1.3)

associated with the Runge-Kutta formula (1.2) is easy to carry out in parallel. Houwen
and Sommeijer [8] called the method (1.3) PIRK (parallel iterated Runge-Kutta). As was
pointed out by [8], although the PIRK do not have an excellent stability property such as
A- or $L$-stability, even if the underlying Runge-Kutta does, the PIRK can have the same
order as that of the underlying Runge-Kutta. It is shown by [7] and [8] that $y_{n+}^{[\nu]}1$ by (1.3)
is being an approximation to $y(x_{n}+h)$ of order

$p= \min\{\nu+1,p\}*$ , (1.4)

where $p^{*}$ denotes the order of the underlying Runge-Kutta. This means that the PIRK is
a kind of embedded method, and therefore it is easy to incorporate the stepsize control
mechanism into the method. It is also shown in [8] that the PIRK is equivalent to the
$(\nu+1)s$-stage Runge-Kutta formula whose Butcher array is given by

where $A=(a_{ij})_{i,=}^{s}j1’ b=(b_{1}, \ldots b_{S})^{\mathrm{T}},$ $c=(C_{1}, \ldots, C_{S})^{\mathrm{T}}$ , that is, the PIRK is a parallel
ERK with effective stage $\nu+1$ , if at least $s$ processors are available.

Since the PIRK is a parallel ERK, it has the same drawback as stated before. To
overcome this drawback, or to reduce the effective stages, it is necessary to start the
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iteration with the starting values $z_{i}^{[0]}$ of higher order. The parallel block methods presented
here are a predictor-corrector type, which consists of Runge-Kutta type correctors and
Adams type predictors of the same orders as that of the correctors.

2 Parallel P-C block method

Consider the set of $r(>1)$ abscissas

$X_{m}=\{x_{m,1}<x_{m,2}<\cdots<x_{m,r}\}$ , $m=0,1,$ $\ldots$ ,

which satisfy the following conditions:

$\{$

$x_{m,\nu}=x_{m-}1,r+\sigma_{\nu}h_{m}$ , $\nu=1,2,$ $\ldots,$
$r$ ,

$0\leq\sigma_{1}<\sigma_{2}<\cdots<\sigma_{r-1}<\sigma_{r}=1$,
$x_{0,1}=x_{0}$ ,
$x_{m-1},r\leq X_{m,1}$ .

(2.1)

We call $X_{m}$ the m-th block, and denote the length of the block by $h_{m}$ , i.e.,

$h_{m}=x_{m,r}-x_{m-1},r$ .
Hereafter we will refer to $h_{m}$ as stepsize, for brevity.

Consider the implicit one block method of the type

$\mathrm{Y}_{m+1}=y_{m,r}e+h_{m+1}BcF(\mathrm{Y}+1)m$ (2.2)

for solving Eq.(l.l), where $e$ is the $r$-dimensional vector with all entries equal to unity,
and $\mathrm{Y}_{m}$ and $F(\mathrm{Y}_{m})$ are the vectors defined by

$\mathrm{Y}_{m}=(ym,1, y_{m},2, ..*’ y_{m,\prime})^{\mathrm{T}}$ ,
(2.3)

$F(\mathrm{Y}m)=(f(y_{m},1),$ $f(y_{m},2),$
$\ldots,$

$f(ym,r))^{\mathrm{T}}$ ,

which approximate the solutions and its derivatives in the $m\mathrm{t}\mathrm{h}$ block $X_{m}$ , respectively.
The method (2.2) is considered to be a set of $r$ one step methods, and therefore each

of these methods is more stable than linear multistep methods. It is, however, almost
impossible to compute $r$ entries of $\mathrm{Y}_{m+1}$ in parallel, if $B^{c}$ is a full matrix, since we must
solve a system of the nonlinear algebraic equations in method (2.2) at each step of the
integration. On the other hand, if we take a diagonal or lower triangular matrix as $B^{c}$ ,
which makes it easy to carry out all the methods in parallel, then each of the methods
cannot have a high order; if, for example, $B^{c}$ is diagonal, the method has order at most 1.
A reasonable compromise is to take $B^{c}$ as a full matrix, and to use a fixed-point iteration
for the solution of the nonlinear algebraic equations.

Let the entries of $B^{c}=(b_{ij}^{c})_{i}^{\gamma},j=1$ in (2.2) be

$b_{ij}^{\mathrm{C}}= \int_{0}^{\sigma_{i}}kk=1\prod_{\neq}r\mathrm{j}\frac{t-\sigma_{k}}{\sigma_{j}-\sigma_{k}}\mathrm{d}t$
, $i,j=1,2,$ $\ldots,$

$r$ , (2.4)

then each of the methods is of order at least $r$ , since if the exact solution $y(x)$ is a
polynomial of degree $r$ , then, by assumption (2.1), there exists a unique polynomial
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$\varphi_{m+1}(X)$ of degree $r-1$ which interp.olates $y’\langle_{X}$ ) $=f(x, y)$ at $x=x_{m+1,\nu}(\nu=1,2, \ldots , r)$ ,
so that

$y(_{X_{m}}+1,i)-y(Xm,r)$ $=$ $\int_{x_{m,\Gamma^{+1}}}^{x}m,:m\varphi+1(_{X)}\mathrm{d}x$

$=$ $h_{m+1} \int_{0}^{\sigma:}\varphi_{m+}1(x_{m},r+h_{m+1}t)\mathrm{d}t$

$=$ $h_{m+1} \sum_{1j=}rbijcf(Xm+1_{\dot{\theta}}, y(x_{m}+1\dot{o}))$ . (2.5)

Although the particular choice of $\sigma_{\nu}’ \mathrm{s}$ leads to a higher order corrector, it is not neces-
sary desirous that one of the $r$ methods is of higher order than that of the others, since if
this is the case, it is difficult to supply the set of starting values of the same order as that
of the highest corrector; the values $y_{m,\nu},$ $f_{m,\nu}(\nu=1, \ldots, r)$ are used in the predictor for
the calculation of the starting values (predicted values) at the next block.

Therefore we take the following sets of equally spaced data points:
$\bullet$ Type 1 $\sigma_{\nu}=\nu/r$ , $\nu=1,2,$ $\ldots,$

$r$

$\bullet$ Type 2 $\sigma_{\nu}=(\nu-1)/(r-1)$ , $\nu=1,2,$ $\ldots,$
$r$

Note that Type 2 is equivalent to the $r$-point Newton-Cotes formulae of numerical quadra-
ture, and therefore the order of the methods are $r$ and $r+1$ when $r$ is even and odd,
respectively. Note also that the number of processors required for the parallel execution
of Type 2 is not $r$ but $r-1$ , since $x_{m-1,r}=x_{m,1}$ .

Next we consider the predictor for our P-C scheme. The coefficient matrix of the
predictor must be determined as a function of the stepsize ratio, so as to supply the
sufficient starting values for any stepsize ratio. We consider the one block predictor of the
type

$\mathrm{Y}_{m+1}=y_{m,r}e+\theta_{m+1}h_{m}Bp(\theta_{m}+1)F(\mathrm{Y}_{m})$ , (2.6)
$\theta_{m+1}=h_{m+1}/h_{m}$ .

which gives a set of starting values at block $X_{m+1}$ , using the previously calculated values
at $X_{m}$ . In (2.6) the entries of the coefficient matrix $B^{p}(\theta)=(b_{ij}^{p}(\theta))$ are given by

$b_{ij}^{\mathrm{p}}( \theta)=\int_{0}\sigma_{i}kk\prod^{r}=1\neq \mathrm{j}\frac{1+\theta t-\sigma_{k}}{\sigma_{j}-\sigma_{k}}\mathrm{d}t$
, $i,j=1,2,$ $\ldots,$

$r$ . (2.7)

It is easily shown, as is the case for the corrector, that each of the methods in predictor
(2.6) is of order $r$ for any $\theta>0$ and any types of the abscissas.

3 Local truncation error and stepsize strategy

In what follows we assume that the solution of (1.1) has as many higher derivatives as
required. Then the analysis of the orders in the previous section leads to the following
the asymptotic expansions of the local errors:

$\{$

$y(x_{m,\nu})-y_{m,\nu}=C_{\nu}^{p}(p\theta m)h^{r+1}y)m-1((r+1)Xm,\nu+o(hrm+2-1)$ ,

$y(x_{m,\nu})-y_{m,\nu}=c_{\nu}(cc\theta m)h_{m}’+1r+1)-1y^{(}(_{X_{m,\nu}})+o(h_{m}\mathrm{r}+2)-1$
’ $\nu=1,2,$ $\ldots,$

$r$ ,
(3.1)
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where $y_{m,\nu}^{p}$ and $y_{m,\nu}^{c}$ are the values calculated by the predictor and corrector, respectively,
and $c_{\nu}^{p}(\theta_{m})$ and $c_{\nu}^{c}(\theta_{m})$ are the constants independent of $h$ . We call these constants the
error constants of the methods. The next theorem gives the basis on which the stepsize
strategy used in this paper is valid.

Theorem 1
(i) The error constants $c_{\nu}^{c}(\theta)(\nu=1,2, \ldots , r)$ of the corrector formula are of the form

$C_{\nu}^{c}(\theta)=M\nu\theta^{r}+1$ , $\nu=1,2^{\mathfrak{l}},$

$\ldots,$
$r$ ,

where $M_{\nu}$ are constants independent of $\theta$ .
(ii) For any choice of $\sigma_{\nu}(\nu=1, \ldots , r)$ satisfying the condition (2.1), we have $c_{r}^{p}(\theta)\neq$

$c_{r}^{c}(\theta)$ , if $\theta>0$ .

Proof
(i) Using the error formula of interpolating polynomials, we can express the error constants
$c_{\nu}^{c}(\theta)$ in the form

$c_{\nu}^{C}( \theta)=\frac{1}{r!}\int_{0}^{\theta\sigma_{\nu}}(x-\theta\sigma_{1})\cdots(X-\theta\sigma_{r})\mathrm{d}_{X}$

$= \frac{\theta^{r+1}}{r!}\int_{0}^{\sigma_{\nu}}(x-\sigma_{1})\cdots(x-\sigma_{t})\mathrm{d}X$ , (3.2)

which proves the assertion.

(ii) For given $\sigma’ \mathrm{s}$ and any $a’ \mathrm{s}$ , we define the constants $w_{i}$ and $f_{i}$ by

$\{$

$w_{i}= \int_{0}^{1}\prod_{j=1}(t-a_{j})\prod_{+j=i1}(t-\sigma_{j})\mathrm{d}tir$, $i=0,$ $\ldots,$
$r$ ,

$f_{i+1}(X)= \int_{0}x\prod_{1j=}(t-i)ajj\prod_{=i+2}^{r}(t-\sigma_{j})\mathrm{d}t$, $i=0,$ $\ldots,$ $r-1$ ,
(3.3)

where we use the convention that

$j1 \prod_{=}^{0}(t-a_{j})=j=r\prod_{+1}^{\mathrm{r}}(t-\sigma j)=1$ .

Integration by parts leads to the following relations for $w_{i}’ \mathrm{s}$

$w_{i}=(1- \sigma_{i+}1)fi+1(1)-\int_{0}^{1}f_{i+}1(_{X})\mathrm{d}x$ ,

$w_{i+1}=(1-ai+1)f_{i+}1(1)- \int_{0}^{1}f_{i+1}(x)\mathrm{d}X$ .
(3.4)

If we take the constants $a_{i+1}(i=0, \ldots, r-1)$ in such a way that

$a_{i+1}=\{$
$0$ , $f_{i+1}(1)\geq 0$ ,
1, $f_{i+1}(1)<0$ , (3.5)
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then we have

$w0 \leq w_{1}\leq\cdots\leq wr=\int_{0}^{1}t^{r-k}(t-1)k\mathrm{d}t$

$=(-1)^{k} \frac{(r-k)!k!}{(r+1)!}\leq\frac{1}{r+1’}$ (3.6)

where $k$ denotes the number of $a_{i}’ \mathrm{s}$ which satisfy $a_{i}=1$ . It follows from (3.2) and (3.6)
we have

$c_{r}^{c}( \theta)=\frac{\theta^{r+1}}{r!}w_{0}\leq\frac{\theta^{r+1}}{(r+1)!}$ . (3.7)

On the other hand, the error constant $C_{r}^{\mathrm{P}}(\theta)$ of the predictor is given by

$d_{r}^{J}( \theta)=\frac{1}{r!}\int_{0}^{\theta}(t+(1-\sigma 1))\cdots(t+(1-\sigma r))\mathrm{d}t$

$= \frac{1}{r!}\int_{0}^{\theta}(t^{r}+s1t^{r-1}+\cdots+sr-1t)\mathrm{d}t$

$= \frac{1}{r!}(\frac{1}{r+1}\theta^{r+1}+\frac{s_{1}}{r}\theta^{r}+\cdots+\frac{s_{r-1}}{2}\theta^{2})$ , (3.8)

where $s_{i}$ is the $i\mathrm{t}\mathrm{h}$ fundamental symmetric expression consists of

$0=1-\sigma r<1-\sigma_{r-1}<\cdots<1-\sigma_{1}\leq 1$ .

We have thus for $\theta>0$

$c_{r}^{\mathrm{P}}( \theta)-c_{r}c(\theta)\geq\frac{1}{r!}(\frac{s_{1}}{r}\theta^{r}+\cdots+\frac{s_{r-1}}{2}\theta^{2)}>0$ , (3.9)

since $s_{i}>0(i=1, \ldots, r-1)$ , which proves the assertion. QED

Using (3.1) the maximum local truncation error at $X_{m}$ of the corrector can be approx-
imated by

$\max_{1\leq\nu\leq r}|y(X_{m,\nu})-y_{m},\nu|c\approx\max 1\leq\nu\leq r|c_{\nu}^{C}(\theta_{m})y((r+1)X_{m,\nu})|h_{m}r+1-1$

$\approx\max_{1\leq\nu\leq r}|c_{\nu}^{C}(\theta m)||y^{(r+1)}(x_{m},r)|h^{r+}m-11$ ’ (3.10)

and the $(r+1)\mathrm{s}\mathrm{t}$ derivative of the solution at $x=x_{m,r}$ is estimated by

$h_{m-1}r+1y((r+1)x_{m},r) \approx\frac{y_{m,r}^{p}-y_{m}rc}{C_{r}^{C}(\theta_{m})-d(\theta_{m})},$ , (3.11)

which is valid because of the result of Theorem 1. We have thus

$\max_{1\leq\nu\leq r}|y(x_{m,\nu})-ym,\nu|c\approx\max_{1\leq\nu\leq r}|c_{\nu}^{c}(\theta_{m})||\frac{y_{m,r}^{p}-y_{m,r}^{C}}{C_{r}^{C}(\theta_{m})-d(\theta_{m})}|$ . (3.12)

Therefore, using (3.12), we can estimate the maximum local truncation error of the cor-
rector by sampling the predicted and corrected values only at $x=x_{m,r}$ .
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Here we consider the implementation of our P-C scheme. Our P-C scheme based on
(2.6) and (2.2) is

$\{$

$\mathrm{Y}_{m+1y_{m},r}^{[]}=e+0\theta m+1hmB_{p}(\theta m+1)Fm$
’

$\mathrm{Y}_{m+1}^{[\kappa]}=y_{m,r}e+\theta_{m+1}hmB_{C}F(\mathrm{Y}_{m+1}[\kappa-1])$ , $\kappa=1,2,$
$\ldots,$ $\mu_{m}$ ,

$m=0,1,$ $\ldots$ ,

(3.13)

where $\mathrm{Y}_{m}^{[\kappa]},$ $F(\mathrm{Y}_{m}^{[\hslash}]),$ $\mathrm{Y}_{m}$ and $F_{m}$ are given by

$\mathrm{Y}_{m}^{[\hslash]}=(ym,1’ ym,2’\ldots, y[_{\hslash}]1\kappa][\kappa]m,r)^{\mathrm{T}}$ , $F(\mathrm{Y}_{m}^{[\kappa]})=(f_{m,1}[_{\hslash}], f[m,2\kappa], \ldots, f[_{\hslash,m},]r)^{\mathrm{T}}$ ,
$f_{m,\nu}^{1\kappa]}=f(Xm,\nu’ ym,\nu)[\hslash]$ , $\nu=1,2,$ $\ldots,$

$r$ ,
$\mathrm{Y}_{m}=\mathrm{Y}_{m}^{[\mu_{m}]}$ , $F_{m}=F(\mathrm{Y}_{m}[\mu_{m}])$ ,

and $\mu_{m}$ is the maximum number of iterations, which will be stated later.
Let Err be the estimate of the maximum local truncation error at $X_{m}$ given by (3.12),

i.e.,

Err $:= \max_{1\leq\nu\leq r}|c_{\nu}^{c}(\theta_{m})||\frac{y_{m,r}^{p}-y^{c}m,r}{\mathrm{c}_{r}^{c}(\theta_{m})-d(\theta_{m})}|$ , (3.14)

then the stepsize ratio which guarantees a local truncation error at $X_{m+1}$ less than a
prescribed tolerance $TOL$ is

$\theta_{m+1}=\alpha(\frac{TOL}{Err})^{\frac{1}{r+1}}$ , (3.15)

where $\alpha$ is a safety factor such that $0<\alpha<1$ .
There remains the problem how to stop the iteration for our predictor-corrector scheme.

Here we $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}6^{r}$ the corrector iteration by

$\mathrm{Y}^{[\kappa]}=hB_{c}F(\mathrm{Y}^{[\hslash-}1])+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$, $\kappa=1,2,$ $\ldots$ , (3.16)

and denote its exact solution by $\mathrm{Y}^{*}$ . In principle, we must use the exact $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{Y}^{*}$ ,
which is also the exact value satisfying the corrector equation (2.2), in order to get Err
by (3.14), but it is almost impossible to get $\mathrm{Y}^{*}$ in a finite iterations. To avoid this difficulty
it is desirous to use the $\mathrm{Y}^{[\kappa]}$ satisfying

$||\mathrm{Y}^{[\kappa}]-\mathrm{Y}*||<TOL$ , (3.17)

where $TOL$ is the tolerance for the local error. As is easily shown from (3.16), the error
norm $||\mathrm{Y}^{[\kappa \mathrm{J}}-\mathrm{Y}^{*}||$ is bounded by

$||\mathrm{Y}^{[_{\hslash}]*}-\mathrm{Y}||\leq(hL||B_{c}||)\kappa||\mathrm{Y}[0]-\mathrm{Y}^{*}||$, (3.18)

where $L$ is the Lipschitz constant of $f(x, y)$ with respect to $y$ . If the right-hand side in
(3.18) is bounded by $TOL$ , then we have

$||\mathrm{Y}^{[\kappa][-11}-\mathrm{Y}\kappa||$ $\leq$ $||\mathrm{Y}^{[\kappa}]-\mathrm{Y}^{*}||+||\mathrm{Y}^{*}-\mathrm{Y}^{[\kappa-1}]||$

$\leq$ $(hL||Bc||)^{\kappa}-1(hL||B_{c}||+1)||\mathrm{Y}^{[0]}-\mathrm{Y}^{*}||$

$\leq$ $TOL(hL||B_{c}||+1)/(hL||Bc||)$ . (3.19)
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Therefore we adopt the stopping criterion such that
$||\mathrm{Y}[\kappa]-\mathrm{Y}[\kappa-1]||\leq TOL(1+hL||B_{C}||)/(hL||B_{c}||)$ , (3.20)

and use the $\mathrm{P}\mathrm{E}(\mathrm{c}\mathrm{E})\mu_{m}$ mode, where $\mu_{m}$ is determined adaptively.

The parallel block method with stepsize strategy is executed as follows:
1. Chose an initial stepsize $h_{0}$ by the procedure developed by [6] so that all the entries

in $\mathrm{Y}_{0}$ , which are calculated any of one-step methods with constant stepsize $h_{0}$ , have
local truncation errors less than $TOL$ .

For $m=1,2,$ $\ldots$ repeat the following steps:

2. Calculate the predicted value $\mathrm{Y}_{m}^{1^{0}\mathrm{J}}$ by the predictor.

3. For $\kappa=1,2,$ . .., calculate the corrected values $\mathrm{Y}_{m}^{[\kappa]}$ by the corrector repeatedly until
the condition (3.20) is satisfied. We set here the maximum iteration number 3; if not
satisfied with the condition even for $\kappa=3$ then stop the corrector iteration.

4. Compute Err by (3.14), where $y_{m,r}^{p}$ and $y_{m,r}^{c}$ in (3.14) are the $r\mathrm{t}\mathrm{h}$ components of $\mathrm{Y}_{m}^{[0]}$

and $\mathrm{Y}_{m}^{[\mu_{m}]}$ , respectively, and
$\bullet$ If $Err\leq TOL$ then change the stepsize ratio to the one with which the maximum

truncation error in the next block is of modulus less than $TOL$ .
$\bullet$ If $Err>TOL$ then reject this block.

5. Let $\mathrm{Y}_{m}:=\mathrm{Y}_{m}^{[\mu_{m}]},$ $F_{m}:=F(\mathrm{Y}_{m}^{1\mu_{m}}])$ .
In the above procedure the function evaluations $F(\mathrm{Y}_{m}^{[\kappa]})$ are carried out in parallel.

4 Numerical experiments

Let consider the differential equation

$\{$

$y_{1}’=-y_{1}+y_{1}^{2}y_{2}+\cos x-\cos^{2}x\sin x-\sin X$,
$y_{2}’=-y_{2}+y1y_{2}^{2}+\sin X-\cos x\sin^{2}X+\cos x$ , (4.1)

$y_{1}(0)=1,$ $y_{2}(0)=0$ ,
which has the exact solution

$y_{1}(x)=\cos x$ , $y_{2}(x)=\sin x$ .
Here we integrate the equation from $x=0$ to $15\pi/4$ by the block methods, PIRKs and
RKF45, and for each of the methods compute ‘global error’ at $x=15\pi/4$ , i.e.,

global error $= \max\{|y_{1}-y_{1}(15\pi/4)|, |y_{1}-y_{2}(15\pi/4)|\}$ ,
$y_{1}$ and $y_{2}$ are the numerical solution at $x=15\pi/4$ .

The stepsize control mechanisms are incorporated into all the codes. Here we compare
the number of total steps, function evaluations, and etc of the block methods with those
of PIRKs and RKF45. The results are shown in Table 1.

It follows from the results that the number of function evaluations of the block method
of Type 2 with $r=5$ is the smallest for all $TOL$ .
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$TOL$: tolerance for local errors

total: number of total steps

reject: number of rejected steps

$GE$ : $\log_{10}$ global error

serial: number of function calls in serial
computations

parallel: number of function calls in parallel
computations
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Next we consider the system of $2N$ differential equations which describes the behaviour
of the electric currents in a linear lattice circuit with $N$ closed loops (see Fig. 2). The
numerical results by the P-C block methods and the PIRKs on a KSR-I parallel computer
are shown in Table 2. The equation to be solved is

$\{$

$y_{j+1}’=y_{j}$ , $j=1,3,$ $\ldots,$ $2N-1$ ,

$y_{j}’=- \frac{y_{1}-y_{3}}{LC}-\frac{y_{2}R}{L}-\frac{2\pi f\sin(2\pi fX)}{L}$ , $j=2$ ,

$y_{j}’= \frac{y_{j-3^{-}}2yj-1+yj+1}{LC}-\frac{y_{j}R}{L}$ , $j=4,6,$ $\ldots,$ $2N-2$,

$y_{j}’= \frac{y_{2}N-3^{-}2y2N-1}{LC}-\frac{y_{2N}R}{L}$ , $j=2N$,

(4.2)

$y_{j}(0)=0(j=1,2, \ldots, 2N)$

$\mathrm{r}_{\mathrm{l}}\mathrm{g}$. $\mathrm{d}$ LKU ClrCult of AV closed loops

Table 2. CPU-times $(\sec)$ , speed-up ratios, and efficiencies for problem (4.2).

Type 1 ($r=4$, order$=4,$ $P=4$)

$T_{\epsilon}$ : CPU-time in serial computation,
$T_{p}$ : CPU-time in parallel computation,
$S$ : speed-up ratio,
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$P$ : number of processors,
$E$ : efficiency.

It follows from the experiments that our block methods are much $\mathrm{f}\mathrm{a}s$ter than the
PIRKs, and that the block method of Type 2 with $r=5$ is the fastest one although
this method is the most inefficient. It is, in general, true that the smaller the number
of processors, the higher the efficiency, and that the greater the dimension of the equa-
tion, the higher the efficiency. This may be caused by the unavoidable overheads, like
communication and sequential parts in the algorithm.

5 Conclusion

The detailed discussions on the stability and stepsize control mechanism of the block
methods are shown in [10]. Further extension for reducing the overheads in parallel
computations will be expected.
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