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Analysis of Milne’s Device for the Finite Correction
Mode of the Adams PC Methods II
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1. Introduction

In the paper [1], the author discussed an accurete method for esti-
mating local truncation errors and, as its application, an accurate method
for estimating global truncation errors. In that paper, he mentioned two
theorems on the behavior of the difference between the values of the
predictor and of the corrector for the Adams PC methods both in the
P(EC)™E mode and in the P(EC)™ mode. The proofs, however, were
not given there. Recently, the author gave the proof of the theorm in the
P(EC)™ mode [2][3]. The purpose of this paper is to give the proof of
the theorem in the P(EC)™F mode.

2. Preliminaries
We consider the initial value problem of the differential equation

(1) y = f(z,y), yl@)=w (@z<D),

where we denote by y(z) the solution of this problem. The step points
are given by

Z,=a+nh (n=0,1,.,N), h=(b-a)/N,

where N is the total number of the steps. Let p be the order of the
Adams PC methods. Put

v=n+p-—1.



In what follows, we assume that f(z,y) in Eq.(1) is suficiently smooth
on the regions in question. We assume that the solution y(z) of Eq.(1)
erists. Let y, (0 =0,1,...,p — 1) are p starting values and let

en=ys—¥y(@) (0=0,1,....,p—1).
We also assume that y,s are chosen so that
e,=0Mh?) (g=p+Lp=0,1,...,p—1).
Let
9(z) = fy(z,y(@), ¢ =9"(@), go=9(x.).

The formulae of the Adams predictor—corrector method of order p in
the P(EC)™FE mode are given as follows:

2) Yl = gl +hzamf[m' ) +h27 AV

(3 M = kb f""‘”+thp o
= yv_1+hzv VI I 4 Rbyo (Fimt — £
=0

where ¢! is the i-th correction of T/ L iy |V is the back-
ward difference operator, :

’yj=/Ols(s+1)---(s+j—-1)ds/j!,

’7j=/01(5f1)3---(s+j—-2)ds/j!.

For the formulae Egs.(2) and (3), let us define the local truncation
errors at z, by

, ,
Tp1n = pl(m'lh y(mv); h) = y(azv)—y(:vv—h)—hZapjf(:z:,,—jh, y(xv'—Jh)) y
=
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and

p—1
Tp2n = p2(wva y(xv)§ h) = y(wv)_y(wv"h)—hz bpjf(xv_jhay(wv—jh))
=0

respectively.
For preparations of the succeeding discussion, we give two lemmas.

Lemma 1 ([1]) For the Adams-Bashforth-Moulton pair of order p in the
P(EC)™E mode, the identity

p_l . .
> VI = 4V fm) = VP £
=

holds and, for the ezact solution y(x), the identity

Tp2n - Tpln = ""Yp—lhvp'y, (xv)

also holds.
The following lemma plays an important role in the proof of Theorem 3.

Lemma 2 ([1]) For any polynomial P;(x) of degree i, the equality

Ep:(—l)jPi(j)(?) =0 for 0<i<p—1

J=0

holds.

3. Order of errors in the +th correction

For the convenience of the later discussion, let us suppose that

[

Y=y, (m=0,1,...,p—1;4=0,1,...,m)



and put

el =y —y(2a) (0=0,1,...,N;i=0,1,...,m).

Then we have the following theorem.

Theorem 1 In the P(EC)™E mode, under the assumptions in Section
2, for a suitably chosen h, there ezists a positive constant K such that

(4) lefl| < Kh? (n=0,1,...,N; i=0,1,...,m).
For the proof of this theorem refer to [4].

4. Asymptotic formula

For the asymptotic formula of e[™, we have the following theorem.

Theorem 2 In the P(EC)™FE mode, under the assumptions in Section
2, the relation

el™l = pPe(z,) + O(W*') (n=0,1,...)

holds. Here e(x) is the magnified error function, which is the solution of
the differential equation

e’ = g(x)e — Cy?*D(z), e(m) =0,

where C 1s the error constant.

For the proof of this theorem refer to [4].

5. Behavior of y0 — yIm
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Put , L
'w}z] :/0 fo(@5,y(z;) +06[;])d0,

1
'Yj(P,(I)Z/O fy x31y31+9( lal ?Jgp]))de,

k-1

Sj(k) = l:%’h'(i,i +1).

When m > 1, for 0 < j < p—1, suppose that y; = ygm] fi= fJ[.m],

w; = w}ml and e; = eg.m]. Put

Az = (bo) ™ 1:(0,m) S, (m)

and
Uz = (bo)™ Sz (m){1 — hbp.(0,m)},
then some manipulations, we have

(5) e = e+ thp,wLT‘, b — T pn
Jj=

- {h’"“Uz/ (1—Rh™A)}

N, ml i fm] Il

m m m m

X {D_ bpwz_jez—; — Zamw €2—j
=0

- {thz/ (1 - hmHAz)}(Tpl,z—ﬁl - Tp2,z—p+1) .

Here we give the following proposition.

Proposition 1 For z > p the relation
hbyo(fim — fm1) = Ok m+1)
holds.

Proof. Since

(™ = ) = o (m = 1,m) (el — el 71),
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by some manipulations and Lemma 1, it follows that

hboo (fI™ — fIm=1) = (Rbyo)™S.(m) (e} — el
= (hbpo)™Sz(m){1 — hbyr(0,m)}
X (h’)’p—lvaim]e!zm] + Tp1,2-pt+1 — Tp2,z—p+1)
/{1 — (hbyo)™*17,(0,m)S,(m)}
= O™

This completes the proof.

For yl% — yIml ' we have the following theorem.

Theorem 3 In the P(EC)™E mode, under the assumptions in Section
2, the relation

o — Y™ = Than — Tyin + €ppo + O(H*H)
holds, where p = min(m,p) and
Eppy = O(hp+i+i) for v>i(p—1)+1;1<i<p.
Proof. From Egs.(2) and(3), by Lemma 1, we obtain
6) v -yl = —hypa VP = (i, ()

~ b1 VP{f (0, y(20))} = hbyo (£ — £;71)
= — by VPWl™el™ + T — Thia

= hbyo (£ = £771)
For v >0 k >0, we have

[m]

eore = hPe(z,) + O(RP)
= Py(k) + O(h**1),

From Eq.(5) and Lemma 2, we see that

k p—1 k
[m]  _  Im] [m] Im]
eprk = € +hY D bpwite jegvs i — D Tpprt—pit



k
= Y W Uuga/ (1 = K™ Ayg) (hryp—1 VPl el
=1

+ Tpl v+Hl—p+1 — Tp2 'u+£—-p+1)
k p—-1

= e[m] +h Z Z bPngJrl—JevH—J Z Trote—pi1
£=1 j=0

- Z hbpo)™ (1 — hbyogute)/{1 - (hbpogv+e)m+ )}

(h’)’p—lv gv+£egiz + Tprpte—pt1 — Tpoote—pt1)
+ O(h*Pt1) + O(R¥P+mt),
For v > p, we obtain |

CLT_];C = [m] + khgv+1ev+1 kTp2,0-pt2
+ k(hbpo)™ (Tp1,0-pt2 — Tp2o-pt2)
+ O(RP*?) + O(RPY™2) + O(RPPTY)  (p > 1).

For v > 2(p — 1) + 1, put Pi(k) = ap + aqk, it follows that

k p—-1
>3 byi{g + (£ — §)hg, + O(R2)H{Py(£ — 5) + O(hP*2)}
=1 j=0
k p—1
= Z Z bpj{ gvao + (£ — J)(aohg,, + gv0t1) + O(hp+2)}
= 13—0 ‘
1 , o .
= Z{gvao + (£ = 5)(aohg, + ar) + O(A"#)}
=1 |
k(k+1 k /
= kgoao+{ ( 2 ) _}(aﬂhgv + goon) + O(RP?),
u k(k +1), o
Y Tpivtt—ptt = Kl pip—pi1 + ———hT iy py1 + ORPT) (i=1,2
=1
where Ty, 1 = Ty(@o, y(@0)ih) (i=1,2) ,
k

Z(hprgv+£)m(1 - hbp0.gv+l)(h'Yp—lvpgv-I-eeEﬁ]E)/ {1‘ - (hbpogv+1f)m+1}

=1
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=0 ( hp+m+3 )

and

k
> " (hbpogote)™ (1 — hbyogote)/{1 — (hbpogure)™ '}
=1

X (Tpl,v+£—p-|—1 - Tp2,v+€—p+1)
k
= Y [{(hbyogs)™ — (hbogs)™*" + (Rbp)™ thmgy'gy" '}

X (Tpl,v—p+1 - Tp2,v-—p+1)
+ (hbpogv)mgh(]—;)l,fu—;&l - T;2,11——p+1) + O(hPH™+9)]
m m k(k+1 m m—
= {(bpog)"™ — (htpog)™} + BV gy mhomgy g
X (Tpl,'v—p+1 - iTp2,v—-p+1)

Kk + 1 m , .
4 T o (T pss — Tigo-prs) + OUPH™).

P P
Hence we see that
elth = Pa(k) +O(Y)  (p22),

where Py(k) is a polynomial of k degree at most 2. By induction on j, if
v > j(p—1)+ 1, we can show that

M = Pi(k) + O(RPHHY)  (p> ),

where P;(k) is a polynomial of k degree at most j. For v > 0, we see
that
el = KPe(,) + O(RPHY) = Po(k) + O(RPH).

hence For v > p, by Lemma 2, it is seen that

P _ -
VpgveLm] = Z(_l)J ( P ) gv—yeL—]g

7=0 J
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= 207 (B) o+ OHelan) + 0P

7=0 J
- é(—l)”' ( j ) {gohPe(z,) + O(AP*)}
= O(k*).

Therefore, from Eq.(6) and Proposition 1, we have
yl — b = Toon — Ty + O(RP2) + O(WPH™ 1) + O(RZPHY)  (p > 1).
For v > i(p — 1) + 1, it follows that

p .
Vel = -1y ()l - nal 4o

3=0 J |
+ (=D)7HGR) /6 - 1)1V + O(h)][Pe1(—4) + O(RPH))]
= O(hF*).

Hence, we have

Yy — U™ = Tpan — Tyra + O(RZHH) + O(RPT™1) + O(K®HY)  (p 2 i)
Therefore the proof is completed.
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