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Numerical Calculation of Scattering State by
Means of Higher Order Radiation Boundary
Condition

LIU, Xiao-jin ( 2 /N, BSGBERFARF b Bk LFEHK)
KAKO, Takashi ( Idy #, BRGBRFEARF HHRLFEF )

1 Introduction

The stationary scattering state of an acoustic wave with a time frequency k scattered
by some bounded obstacle () in the Euclidean space R™ satisfies the following Helmholtz
- equation with the Sommerfeld radiation condition at infinity:

~Au—ku = 0 in Q°=R*/Q, A=Y7", 0% 022,
(H) u(z) = —wpo(z) on 69,
\/F(% —iku) — 0, r=|z| - oo.

Here § is a bounded obstacle with smooth boundary 0 and @o(z) is the boundary value
of some incident wave.

In this paper, we study the case where the space dimension n is two. In section 2, modifying
the Sommerfeld radiation condition, we find some higher order radiation condition. We
construct in section 3 a sequence of approximate solutions to the scattering state for which
the higher order radiation boundary condition is imposed on an artificial boundary. Our
radiation condition is non-local and contains only bounded operators in its expression.
Hence it is rather easy to calculate numerically. Applying the finite element method to
these auxiliary problems in section 4, we propose an algorithm to calculate approximate
numerical solutions to (H). We give error estimates for respective approximations and
show some numerical examples in section 5.
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2 Higher order radiation condition

Assume that  has a non-empty interior and includes the origin: 0 € {2. Choosing a
number R, with the property: QCBpg,={z||z|<Ro} and a smooth function xg,(z) such
that

_ (1 (|z|<Ro)

XRo(m)_ {0 (|.'L'|ZR0+1), (1)

we define a function v(z)=(1—xr, (z))u(z). From (H), the function v satisfies the equation:
—Av—k* = f, supp fCBRry41\Br,»

(Ht){ \/F(gf —ikv) — 0, r=|z|] > oo, (2)

where f = (A k2)(1 — XRo(z))u(z). When n = 2, the zeroth order Hankel function of
the first kind, H0 (kr) satisfies the equation:

{ —A ($H (kz — o)) — ¥ ($H (ke o)) = 8z —a),

(1) 1] .
(i Weme) e g (k| — 2'])) — 0, r=|z| - oo

(3)

This means that the function iH((,l)(kkt — a']), ' € BRy+1, is Green’s function of (Hg).
Noticing that

1, & dy(#, 2
m(klm ') ~ \/Fek ZP(—)

p=0

", r oo, (4)

Tf»'—l = ¢, we have the asymptotic expansion of v(z) as r tends

to inﬁnity' v(z) We“” 0 %Q, where a,(0) = [p, ., td,(%,2")f(2')da’. We define
(6

w(z) = Y52gap(0)/r? and p(r; A) = /re™*", then w(z) = p(r; M)v(z). Multiplying p(r; A)
to (2), we get pA(\};e"’"w) — Aw = pf. Finally the relation (2) is rewritten as

{_Aw+(_4—1?+(%—2z'k)§r—)w = pf,

w50, r=lz] — oo

for fixed z' with z =
o 1

(5)

In particular, when r is sufficiently large, we have pf = 0. From the definition of w, we
have the asymptotic relation:

S (-2 0) 4 2itp 0 1 L) - Lm0y = 06N,

p=0

This leads to the recursion formula:

1 1
aP(H) - Zk_p{A9 +p(p - 1) - Z}ap—l(o)’ p= 1)2731 cesy (6)



with Ag = 53525. We put B(0) = 1 and define the operators L(p) and B(p), p = 1,2,..., as
L(p) = 5z{As +p(p—1) - 1} and B(p) = L(p)L(p—1)...L(1). Then we have the following
expression: a,(0) = B(p)ao(d), p=0,1,2,... . Accordingly, the solution u(r,8) of (H)
has an asymptotic expansion as r tends to infinity:

u(r, ) = \/- ""(Z 6) +O(rN"171%), (7)

and we have the asymptotic expansions for Ju/dr:

ou .. eikr -N-2-1/2
o iku o \/_ (Z p+1 ao(0) + O(r ) (8)
In particular, we have, for N =1,
o . 1 1 i1 _ -7/2
F tku + 5t + \/Fe = B(1)ao(8) = O(r~"%) (9)

and

u(r,8) = %

Obviously, we have the estimate:

1 _
(1 + ;B(l)) Ylr2(st)—m2(s1) < oo. (11)

Hence, from (10) we have the following asymptotic relation in L?(S!):

(1 -+ 2B)ao(8) + O, (10)

—ikr 1 - -
Hag —_ \/Fe k (1 + ;B(l)) 1u||H2(51) = O(r 2). (12)
Putting (12) into (9), we get the estimate:

o . 1 1 1 _
(5, = ik + 5o)u+ B+ = B1) ullzsy = O(r 7). (13)

We define an operator T, as T, = 1B(1)(1+ 2B(1))~'. Then we have the following lemma,
and theorem:

Lemma?2.1 The operator T, is bounded in L?(S') with norm ||T;||z2(s1) < 1.
Theorem?2.2 There exists one and only one solution of the Helmholtz equation (H) which
satisfies the followings:

—Au(z) - Ku(z) = 0 in {1,
(K) U(IE) = —q on 6“, (14)
15 — iku + gru+ ITullisy = O(r™™?2), r=lz| — oo.
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3 Analytical approximation problem
We put R > 1, and let ug be the solution of the boundary value problem:

—Aug —k*ug = 0 in Q% =0Q°N Bg,
(Kr) { (po +ur)lae = 0, (15)
Dyup = 0 Sr = OBp.
Here Dy = 8/8r —ik+1/(2R) + (1/R)Tx. Using the same function p(r; \) = /re™"*" as in
section 2, we put, for Ry < R, vr(z) = p(r; \)(ur(z) + X, (#)@o(z)). Then vg(z) satisfies
the following equation

—Avgp + ( &+ (2 = 2ik) & ) = ¢ in 0%,
(KR) vRlan = 0
(@E—I- 1TR'UR)|SR = 0.
(

with g = — A(p(r N (@)pol)) + (=1/47% + (11 — 26k)8) ) (p(rs Nxm, ()0(2)). Since
the operator T is bounded, we can define bounded operator eU'/BTr r ¢ R. Put wg(r,0) =

e(/BTryp(r, 0). Then we have

(16)

wrlaa = on 01,
ai'ﬂ on Sg,
(17)
with fr = e("/FTrg We introduce two operators Hg and Qg as follows: D(Hg) = {u| u €
HZ(QR) ulag =0 and 8u|sR 0 on SR}, HRU = —Au, D(QR) = D(HR), QRu,:
—2TR — TAu — 2ikTru — sz-—— — 4?“ +1 gz; — u. Then the equation (17) becomes an
operator theoretical equation:

—Awgr + { 2Tr + (— — 21’6)}—3‘ {TR -|— 2 + ZZkTR}wR = fg in Q%,
(KR) 0
0

|5R

(Hr+1)wr + Qr@wr = fr. (18)
Putting wr = (Hg + 1)wg, we have the equation in L?(Q%) for wg:

wr+ Qr(Hr + _1)_1wR = fr. (19)
Theorem 3.1 The equation (18) has a unique solution in L?*(Q2%) given by

wr=(Hr+1)" (1 + Qr(Hr+1)™") ' fr. (20)

Proof. By Rellich’s compactness theorem, the operator Qg is relatively compact with
respect to Hr + 1 and hence Qr(Hg + 1)™! is compact. In order to prove the existence of
the solution of the equation (19) , we use the Fredholm alternative theorem. Hence we have



only to show that the solution wg of equation (19) is zero when the right hand of (19) fr is
zero. Let wg is a solution of (19) with fgr = 0. Put ug = r‘%e"’"{e"(’"/R)TR(HR + 1) twg}.
Then from (19), we have (15) and :

/Q _((Aup)uR — upBug)dz = 0. (21)
R
Using Green’s formula, we obtain
_oun_ Tam,
/S (@R —ung e =0, (22)

and, from the boundary condition Dyug =0,
. 1, '
O = [9 {21k|uR|2 + E(UIRTR’U,R -— (TR’LLR)W)}dSR
R
Hence, using Lemma 2.1, we have

_ 2
lurllZs (s = /SRIUR| dSr

SR /5 {(Trur)ur — (TrRuR)UR}dSR

R
< zallurllizgsy)-

Then ug =0 on Sk when kR > 1, and we also have a—gf = (tk — §1§ - %TR)uR =0 in Sg.
Finally from the unique continuation property, we have ug = 0 in Q%. This proves the
uniqueness and hence the existence of the solution of the equation (19).

Next, we estimate the difference between u and ug. Putting eg = u — ug, we have the
equation for er(z):

—-ACR - kzeR =0 in Q%, (23)
Dyer = Dyu on Sp.
In the same manner as in the proof of Theorem 3.1, we obtain
—_ , 1 _
0= / {(D)\CR)'G—E— eRD,\eR}dSR - 2Zk/ IeRIZdSR - —/ ((TR6R)€R — (TRBR)'Eﬁ)dSR.
Sk Sr R Sr

Hence we have the estimate:
lealitsisy = [, lealdSn < gial [ {((Taenler ~ (Tnen)em}dSx|
%[ {(Daw)er — eaDru}dSil

R
7;}"i|ITRe;%I|L2(SR)|1|6RHL2(SR) + 2 Dxull2spyllerllrz(sp)
wallerllizsp) + £l1Daullz2(sp)llerlrz(sp)-

ININ +
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Combining the estimate for ||Dyul|z2(sp) in (K), in section 2, we have
1 —7/2
llerllzz(sn) < 77l IDaurllrz(sm) < O(RT)-
(1 - zp)k

Theorem 3.2 When R > 1, with some constant C, the estimates

/ ler|2dSr < CR™" (24)
Sr
and, for a fixed Ry,
sup ler(z)| < CR™3 (25)
ar:EQ‘I’i
hold.
|

4 Discrete approximation

For large enough R, we consider the weak formulation of the boundary value problem

(KR):

ar(u,v) + br(u,v) = (g,v), for allv € Vr. (26)
Here, ar(u,v) = foe, (g’;’ ey ;1;%—%— + uv) rdrdf, and br(u,v) = bk(u,v) + bk(u,v), with
bg(u,v) = Joo (((;—2zk) 3 - 472) )vrdrdﬂ, bh(u,v) = [g, sTrRuTdSR, and u €

Vr = HH(Q% ) {u|uveH (Q° ), ulsq = 0}. We consider the finite element method for
this equation in the same way as in [4]. But we have to treat the term b% appropriately.
For this purpose we approximate b%(u,v) in the following way. Consider the problem:

(14 (s = Duil0) = 916, B 1)
wi(0) = wi27), oy = S (28)

The weak formulation of the above equation is to find w’ such that
¢ 0 ,'6_
/0 1 Ow; Ov +(+

e w;v) — @i(0, R)7)do = 0, (29)

8kR)
for all v € Hy(Sr).
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Here, Hy{(Sr) = {v | v € H'(Sg), v(0) = v(27), ¥|sm0 = Z|4=2~}. The approximation of
w;(0) is calculated by the following set of linear equations:

n(h) or ; -
S (i PANONO) | (14 Ly 00 - 0, OO =0 (30

for all 94(8) € Wy C HX(Sg), k=1,2,...,n(h).

Here W, is a n(h)—dimensional subspace of Hj(Sg), whose basis functions are piccewise
linear on Skg.

5 Numerical results
We set an another boundary value problem (cf [4]):

—AuR-kZuR = 0 in Q%EQCHBR,

(GR){ vo+ur = 0 on 09, (31)
D,\— —zkuR+2RuR = 0 on Sg=0Bpg.

We express the boundary condltlon in (31) as A;, and the one in (Kg) as A;. The
weak formulation of (Ggr) is the same as (26) with #%(u,v) = 0. We have made two
algorithms by FEM to calculate the solutions of the two boundary value problems and
compare the two numerical results calculated by these algorithms. We consider 2D star-
shaped obstacles. Then its boundary can be expressed by a function f(#) of §: 90 =
{(2,9)| 2 = F(8)sin(0), y = F(6) cos(®), 0 < 6 < 2r}.

Example 1 When f(0) = 1 and @o(r,0) = HM(kr) cos(nh), we put uh,i = 1,2 to be
the solutions of the boundary value problem with boundary condition A4;, and uﬁ%’h,i =1,2
to be the numerical solutions with boundary condition A;. Suppose the following order
relations:

|luf — ui%,h”B(BR) ~ Co b, (32)
and . .
Bi(h) = Huiq,.zfz — upp|lr2Bg) >~ Cih™, (33)
then we have »
~_ log(B(2h)) — log(B(h))
Yi = oz (?) . (34)

We get numerically the order 2+ as follows:
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Table 1 Convergence order 2y
Ajy: High order boundary condition

1 2 3 4 5
3.978 | 3.894 | 3.816 | 3.814 | 3.859
3.988 | 3.892 | 3.554 | 3.366 | 3.418
3.990 | 4.048 | 3.682 | 2.858 | 2.652
3.982 | 4.011 | 4.573 | 3.416 | 1.819
3.975 | 3.845 | 3.689 | 5.329 | 3.167
3.976 | 3.935 | 3.539 | 3.071 | 4.749
3.973 | 4.034 | 4.079 | 3.314 | 2.685
3.960 | 3.912 | 4.084 | 4.246 | 3.340
3.956 | 3.839 | 3.727 | 3.736 | 4.014
3.962 | 3.928 | 3.761 | 3.618 | 3.333

Example 2 Putting A = {(r,0) | 1 < r < 2} and u be the solution of (H), uj the
solutions of (Ki) and (Gr) ¢ = 1,2, and uj, the solutions of the weak fomulation of
(Kr) and (Gr). we get the estimate:

k

=

e Isad Il Sl Nl Ml e Bl Rl

._.
e

e = winglzz,, =l v e — vz,
oyt T gt
< supgep |u — ukl(m(A))7 + Ca(ug)h?
~ CiR~(+) 4 Cy(ui)h?.
We try to confirm it by numerical calculation. The following table shows
e = |ju— u}é’hHL?A) when k = 5,n = 1 and @o = H (57) cos(6).

Table 2 Error ek
A;: Lower order boundary condition o '
(A/AN\R| 2. | 3. | 4 5. 10. | 20. 30. 40.
8 3.45 | 1.55 | 1.38 | 1.49 | 0.917 | 0.868 | 0.921 0.903
16 3.39 | 0.648 | 0.33 | 0.143 | 0.052 | 0.0709 | 0.0608 | 0.0648
32 3.08 | 0.548 | 0.238 | 0.0618 | 0.0046 | 0.0044 | 0.00395 | 0.00442
64 2.97 | 0.573 | 0.197

Table 3 Error eb
Aj: High order boundary condition
(1/R\ R | 2. 3. 4. 5. 10. 20. 30. 40.
8 0.72 | 0.96 | 1.14 1.30 0.92 0.87 0.92 0.903
16 0.20 | 0.17 | 0.17 | 0.098 | 0.053 | 0.0703 | 0.0609 | 0.0647
32 0.106 | 0.098 | 0.094 | 0.0248 | 0.0038 | 0.00435 | 0.00395 | 0.0044
64 0.086 | 0.109 | 0.0695




From the estimate (35), we get, when R — oo,

e = wllzz, = Calufe )b (36)

The numerical results are consistent with this assumption with Cy(uy ;) ~ C-
[Ju — U*R,hIngA) ~ Ch", R > 10. (37)

Table 4  Convergence order 2y
7 \R| 40 30 20 10
Ay 3.8744948 | 3.9444391 | 4.009577997 | 3.49959478
As 3.8770147 | 3.9456009 | 4.013786059 | 3.6851072
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