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1 Introduction

The analogy between convex/concave functions and submodular/supermodular functions
attracted research interest in the 80’s. Fujishige [4] formulated Edmonds’ intersection
theorem into a Fenchel-type min-max duality theorem. Frank [3] showed a separation
theorem for a pair of submodular/supermodular functions, with integrality assertion for
the separating hyperplane in the case of integer-valued functions. This theorem can also be
regarded as being equivalent to Edmonds’ intersection theorem. A precise statement, be-
yond analogy, about the relationship between convex functions and submodular functions
was made by Lovasz [5]. Namely, a set function is submodular if and only if the so-called
Lovész extension of that function is convex. This penetrating remark also established
a direct link between the duality for convex/concave functions and that for submodu-
lar/supermodular functions. The essence of the duality for submodular/supermodular
functions is now recognized as the discreteness (integrality) assertion in addition to the
duality for convex/concave functions.

In spite of these developments, our understanding of the relationship between con-
vexity and submodularity seems to be only partial. In the convex analysis, a convex
function is minimized over a convex domain of definition, which can be described by a
system of inequalities in (other) convex functions. In the polyhedral approach to matroid
optimization, a linear function is optimized over a (discrete) domain of definition, which
is described by a system of inequalities involving submodular functions. The relationship
between convexity and submodularity we have understood so far is concerned only with
the domain of definitions and not with the objective functions. In the literature, however,
we can find a number of results on the optimization of nonlinear functions over the base

- polytope of a submodular system. In particular, the minimization of a separable convex
function over a base polytope has been considered by Fujishige (1980) and Groenevelt
(1985), and the submodular flow problem with a separable convex objective function has
been treated by Fujishige (1991). Our present knowledge does not help us understand
these results in relation to convex analysis.

Quite independently of the developments in the theory of submodular functions, Dress
and Wenzel [1], [2] have recently introduced the concept of a valuated matroid, as a
quantitative generalization of matroid. A matroid (V, B), defined in terms of the family
of bases B C 2V, is characterized by the simultaneous exchange property:

1This is an extended abstract of [8].
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For X,Y ¢ Band u € X —Y thereexistsv € Y — X such that X —u+v € B
and Y +u—v €B.

A valuation of (V, B) is a function w : B — R which enjoys the quantitative extension of
this exchange property:

(MV) For X,Y € Band u € X — Y there exists v € Y — X such that X —u +v € B,
Y+u-veBand w(X)+w(lY) <wX —u+v)+wlY +u—v).

It has turned out recently that the valuated matroids afford a nice combinatorial
framework to which the optimization algorithms for matroids can be generalized. Variants
of greedy algorithms work for maximizing a matroid valuation, as has been shown by
Dress-Wenzel [1] as well as by Dress-Terhalle (1995) and Murota (1995). The weighted
matroid intersection problem has been extended by Murota [6] to what is called the
valuated matroid intersection problem.

This direction of research can be further extended by considering a functionw : B — R
defined on the set of integral points of an integral base polytope such that

(EXC) For z,y € B and u € suppt(z — y) there exists v € supp™(z — y) such that
z—U+v€B,y+8—v€ Band w(zr) +wy) <w(lz—T+7)+w(y+a—7),

where suppt(z —y) = {v € V | z(u) > y(u)}, supp~(z —y) = {v € V | z(v) < y(v)} and
% denotes the characteristic vector of u € V. We recall the following folk theorem, where

(B2) For z,y € B and for u € supp™(z — y), there exists v € supp~(z — y) such that
r—Uu+v€Bandy+u—-v€B.

Theorem 1.1 Let B be a finite nonempty subset of ZV. B satisfies (B2) if and only if
there ezists an integer-valued supermodular function g : 2V — Z with g(0) = 0 such that
B=Z"n{z e RV | z(X) 2 g(X) (VX C V),z(V) = g(V)}.

Functions with property (EXC) arise naturally in combinatorial optimization; for ex-
ample, a linear function on a matroid, a separable concave function on the integral base
polytope of a submodular system, and the maximum cost of a network flow that meets the
boundary requirement. It is remarked that a general concave function on a base polytope
does not satisfy (EXC) when restricted to ZV.

The property (B2) is known to be (cryptomorphically) equivalent to sub/supermodularity
(see Theorem 1.1). With the correspondence between convexity and submodularity in
mind, we may then say that (B2) prescribes a certain “convexity” of the domain of def-
inition of the function w. The main theme of this paper is to demonstrate that the
property (EXC) can be interpreted as “concavity” of the objective function in the context
of combinatorial optimization. Three central questions are the following:
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e We know two characterizations of the base polytope of a sub/supermodular sys-
tem, namely, the exchange property (B2) for the points in the polytope and the
sub/supermodularity for (the inequalities describing) the faces of the polytope. The
property (EXC) is a quantitative generalization of (B2). Then what is the general-
ization of sub/supermodularity that corresponds to (EXC)? |

[Domain] ' [Function]
(B2) = (EXC)
) )

Sub/supermodularity = What ?

(1.1)

An answer is given in Theorem 4.2.

e Is a function with (EXC) can be extended to a concave function in the usual sense,
just as a submodular function can be extended to a convex function through the
Lovész extension? Theorem 3.4 gives a positive answer to this.

e Is there any duality for functions with the property (EXC) that corresponds to
the duality for convex/concave functions? The main concern here will be the dis-
creteness (integrality) assertion for a pair of integer-valued such functions. This
amounts to a generalization of the potential characterization of the optimality due
to Iri-Tomizawa (1976) and the weight splitting theorem of Frank (1981) for the
weighted matroid intersection.

2 Functions with the Exchange Property

Let B C Z" be a finite nonempty set with (B2). We are concerned with a function
w : B — R that satisfies (EXC), a variant of Steinitz’s exchange property. First we give
some fundamental properties of such w. (A convention: w(z) = —co for z ¢ B).

For p: V — R we define w[p] : B — R by w[p](z) = w(z) + (p, z).

Theorem 2.1 w(p] satisfies (EXC).

For z,y € B we consider a transportation problem on a bipartite graph G(z,y), which
has (V*+,V~) = (supp*(z — y),supp™(z — y)) as the vertex bipartition and A = {(u,v) |
u € Vtv e V7,x — 4+ 7 € B} as the arc set. Each arc (u,v) is associated with “arc
weight” w(z,u,v) = w(x — &+ 7) — w(z). We define

o(z,y) = max{ > w(z,u,v)A(u,) }\(u,v)ZO ((u,v) € A),

(uw)eA

> A, v) =z(w) —y(u) (we V), 3 Mu,v) =y@) —z(@) (ve V;)} :

veEV— ueV+
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It is known that such X € R4 exists, so that &(z,y) is defined to be a finite value. The
“upper-bound lemma” reads as follows.

Theorem 2.2 ([7, Lemma 2.4]) For z,y € B, w(y) < w(z) +&(z,y).
It follows from this that the local optimality implies the global optimality.
Theorem 2.3 ([7]) Let z € B. Then w(z) > w(y) (V y € B) if and only if
w(z,u,v) <0 (u,v € V). (2.1)

Just as the maximizers of a concave function form a convex set, the family of the
maximizers of w, denoted argmax (w), enjoys a nice property. By argmax (w) is meant
the convex hull of argmax (w).

Lemma 2.4 Ifw: B — R has the property (EXC), then argmax (w) satisfies (B2), that
is, argmax (w) is an integral base polytope.

This lemma implies furthermore that argmax (w([p]) is an integral base polytope for each
p: V — R, since w|p] also satisfies (EXC) by Theorem 2.1. This turns out to be a key
property for (EXC) as follows (the proof is nontrivial).

Theorem 2.5 Let w : B — R, where B C ZV is a finite nonempty set with (B2).

Then w satisfies (EXC) if and only if argmax (w[p]) is an integral base polytope for each
p:V —R.

3 Conjugate Function and Concave Extension

In line with the standard method in the convex analysis, we introduce the concept of
conjugate function. For a function g : B — R in general we define g° : RY — R by
9°(p) = min{(p, z) — g(z) | = € B}. (3.1)

We call g° the concave conjugate function of g. Since |B| is finite, g° is a polyhedral
concave function, taking finite values for all p. Furthermore we define § : RY — R by

§(b) = inf{(p,b) — ¢°(p) |[p € R} (3.2)

Obviously, § is a concave function, which we call the concave closure of g. By a standard
result from the convex analysis we see

max{}_ Ag(¥) | b= Ny, A€ A(B)} (b€ B)
a(b) = veB yeB . (3.3)
—00 (b ¢ B)
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where A = (A, | y € B) € R®, B denotes the convex hull of B, and A(B) = {\ € RB |
Sy Ay =1, Ay >0 (y € B)}. Define

argmax(g) = {z € B|g(z) > g(y) (Vy € B)}{ ’ (3.4)
argmax (§) = {b€ B|§() > g(c) (Vce B)}. - (3.5)

Lemma 3.1 (1) §(z) > g(z) for z € B.
(2) max{g(b) | b € B} =max{g(z) |z € B}. (8) argmax(§) = argmax (g).

Forp:V — R (or p € R") we define g[p] : B — R and j[p] : B —» R by
glp(z) = g(z) + (p,z),  §lpl(b) = §(b) + (p, b). (3.6)
Lemma 3.2 (1) (g[po])°(p) = ¢°(p — po)- (2) (glpo])*(b) = §lpo] (b)-

We reveal a precise relationship between the exchangeabilty (EXC) and the concavity.
By Lemma 3.1(1) we know that & : B — R is a concave function such that &(z) > w(x)
for z € B. The exchangeabilty (EXC) guarantees the equality here as follows.

Lemma 3.3 Ifw: B — R has the property (EXC), then dz(x) =w(z) forz € B.

Theorem 3.4 (Extension Theorem) Let w : B — R, where B C ZV is a finite
nonempty set with (B2). Then w satisfies (EXC) if and only if it can be extended to
a concave function @ : B — R such that argmax (Wlp]) is an integral base polytope for
eachp:V — R. ’ |

(Proof) “only if”: We can take @ = &, which is an extension of w by Lemma 3.3 and meets
the requirement by argmax (&[p]) = argmax ((w[p]) ") = argmax (w[p]) and Theorem 2.5.

“if”: Obviously we have max(w([p]) = max{w[p](b) | b € B} > max{w(p|(z) | z € B} =
max(w(p]), since Wp|(z) = wlp](z) for z € B. On the other hand, argmax (@[p]) contains
an integral point, which belongs to ZVNB = B. Therefore we have max(@[p]) = max(w[p])
and ZV Nargmax (w[p]) = argmax (w[p]). Since argmax (@[p]) is an integral base polytope
by the assumption, it follows from Theorem 2.5 that w satisfies (EXC). -0

4 Supermodularity in Conjugate Function

In Theorem 1.1 we have seen that the exchange property (B2) of B is equivalent to the
supermodularity of the function g describing the face of the polytope B. As the property
(EXC) for w can be regarded as a quantitative extension of (B2) for B, it is natural to
seek for an extension of the above correspondence between the exchangeability and the
sub/supermodularity (see (1.1)). Theorem 4.2 below says that (EXC) for w is equivalent
to “local supermodularity” of the concave conjugate function w®.
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4.1 Exchangeability (B2) and supermodularity

We reformulate Theorem 1.1 into a form that is suitable for our subsequent extension.
We assume B C ZV is a finite nonempty set such that B = ZV N B.
We define ¢¥° : RY — R by

¥°(p) = min{(p,z) | z € B}. (4.1)

Note that 1)° is the concave conjugate function of 9 = 0 (on B) in the sense of (3.1), and
also that —y°(—p) agrees with the support function of B. Obviously, 4°(p) is concave,
1°(0) = 0, and positively homogeneous, i.e., ¥°(Ap) = Ay°(p) for A > 0.

Suppose B satisfies (B2). We first observe that the function g : 2 — R defined by
9(X) = 9¥°(xx) (X C V) is supermodular. In fact, we have

9(X) = min{(xx,z) | r € B} = min{z(X) | z € B}

and this is how the supermodular function g in Theorem 1.1 is constructed. Secondly, the
value of 9°(p) at arbitrary p can be expressed as a linear combination of ¥°(xx) (X C V).
In fact, the greedy algorithm for minimizing a linear function over the base polytope, say
B(g), of the supermodular system (2", g) shows

n
min{(p, z) | z € B(g9)} = >_(p; — pj+1)9(Vy), (4.2)
J=1
where, for given p € RV, the elements of V are indexed as {v1,va,- -, v,} (With n = |V])

in such a way that
p(v1) 2 p(v2) > -+ > p(va);

p; = p(vj), V; = {v1,v9,--+,v;} for j = 1,---,n, and pyy1 = 0. Noting B = B(g) we

obtain
n

¥°(p) = Y. (95 — Pi+1)¥°(xv3)- (4.3)

i=1
Conversely, suppose ¥°(p) defined from B by (4.1) satisfies the two conditions:

(C1) [supermodularity] g¢(X) = 9°(xx) is supermodular.

n

(C2) [greediness] °(p) = E(Pj = pi+1)¥°(xv;)-

j=1
Then Theorem 1.1 shows that B satisfies (B2).

We say that a positively homogeneous function » : RY — R is “matroidal” if it satisfies
(C1) and (C2) with 9° replaced by h. By a result of Lovész [5] such h is necessarily
concave. The above observations are summarized in the following theorem.

Theorem 4.1 Let B C ZV be a finite nonempty set with B = ZY N'B. Then B satisfies
(B2) if and only if ¢° is “matroidal” (satisfying (C1) and (C2)).
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4.2 Exchangeability (EXC) and supermodularity

We now consider the concave conjugate function
w’(p) = min{(p, z) - w(z) | z € B} (4.4)

of w : B — R defined on a finite nonempty set B C ZV with the property (B2). As
opposed to ¥°, w°® is not a positively homogeneous function though it is concave.

Since w°(p) is a concave function, we can think of its subdifferential in the ordinary
sense in the convex analysis. Namely, the subdifferential of w® at py € RY, denoted
0w°(po), is defined by dw°(po) = {b € RV | w°(p) — w°(po) < (p — po,b) (Vp € RV)}.
Using this we define a positively homogeneous concave function f/(w°, ) : RV — R by

L(w®, p0)(p) = inf{(p, ) | b € 8w’ (p0)}, (4.5)

which we call the localization of w® at py (provided 8w®(po) # #). Note that

w°(p) < w*(po) + L(w®, po)(p — po) (4.6)

and that w°(p) is equal to the right-hand side in the neighborhood of py.

The following theorem allows us to say that the exchange property (EXC) is nothing
but “a collection of local supermodularity”, just as the exchange property (B2) corre-
sponds to supermodularity.

Theorem 4.2 (Local Supermodularity Theorem) Let w : B — R, where B C ZV
is a finite nonempty set with (B2). Then w satisfies (EXC) if and only if the localization

A

L(w®,po) of w® is “matroidal” (satisfying (C1) and (C2)) at each point py.

(Proof) It is not difficult to see L(w®,po)(p) = min{(p,z) | z € argmax (w[—po])}. By
Theorem 4.1, this is “matroidal” if and only if argmax (w[—po]) satisfies (B2), whereas
the latter condition for all py is equivalent to (EXC) by Theorem 2.5. a

As a corollary we obtain the following theorem.

Theorem 4.3 If w; : By —» R and wy : By — R satisfy (EXC), then the supremum
convolution wiOws : By + By — R satisfies (EXC), where

(w10ws)(z) = sup{wi1 (1) + wa(z2) | Z1 + 22 = 2,21 € By,z9 € Bo}.

(Proof) It follows from Theorem 4.2 that both i(w1°, po) and i(w2°, Do) are “matroidal”
for each po. This implies L(w;°, po) + L(ws®, po) = L(w1® + ws°, po) = L((w1Dws)°®, po) is
also “matroidal” for each py. Finally we use the other direction of Theorem 4.2. O
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5 Duality

Using the standard Fenchel duality framework of convex analysis, we derive a min-max
duality formula for a pair of functions with the exchange property (EXC). The content
of the min-max relation lies in the integrality assertion that both the primal (maximiza-
tion) problem and the dual (minimization) problem have the integral optimum solutions
when the given functions with (EXC) are integer-valued. = This min-max formula is a
succinct unified statement of the two groups of more or less equivalent theorems, (i) Ed-
monds’ polymatroid intersection theorem , Fujishige’s Fenchel-type duality theorem [4],
and Frank’s discrete separation theorem for a pair of sub/supermodular functions [3] and
(an extension of) (i) Iri-Tomizawa’s potential characterization of the optimality for the
independent assignment problem, Fujishige’s generalization thereof to the independent
flow problem and Frank’s weight splitting theorem for the matroid intersection problem.
The min-max formula can be reformulated also as discrete separation theorems, which
are distinct from Frank’s.

Let B; and B, be finite nonempty subsets of ZV, each enjoying the exchange property
(B2). For w: B; — R and ¢ : B, — R, we define the conjugate functions w® and
¢* by (3.1) and ¢*(p) = max{(p,z) — {(z) | = € By} with reference to B, and By,
respectively, and also the concave/convex closure functions & and ¢ by (3.2) and ((b) =
sup{(p,b) — ¢*(p) | p € RV}, respectively. We sometimes use the following convention:
w(z) = —c0 (¢ ¢ Bi),((z)=+00 (z¢By)

We define a primal-dual pair of problems and a relaxation as follows.

[Primal problem] Maximize ®(z) = w(z) —((z) (z € BiN By).
[Dual problem] Minimize ¥(p) = (*(p) —w°(p) (p€RY).
[Relaxed primal problem| Maximize &) =w®d) - () (e BinB,).
The following identity is known as the Fenchel duality:
max{@(b) — {(b) | b € Bi N By} = inf{¢*(p) — w(p) [P € RV}, (5.1)

which holds true independently of (EXC). Here we assume the convention that the max-
imum taken over an empty family is equal to —oo. With this convention, the above
formula implies that By N By # @ if the infimum on the right-hand side is finite.

Combining (5.1) with the obvious inequalities (cf. Lemma 3.1(1)): w(z) < &(z)
(z € By), ¢(z) > {(z) (z € By), we obtain the following weak duality.

Lemma 5.1 For any functions w: By - R and (: B, = R,

max{w(z) — {(z) | z € B1 N By}
< max{@(b) — () | b€ Bin By} = inf{(*(p) — w’(p) | p € R"}.
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Naturally, we are interested in whether the equality holds in the weak duality above.
The next theorem shows that this is indeed the case if w and —¢ enjoy (EXC).

Theorem 5.2 Letw : By — R and { : By — R be such that w and —( satisfy (EXC).
(1) [Primal integrality]

max{w(z) — {(z) | z € B; N By}
= max{&(b) - {(b) | b € By N Bz} = inf{¢*(p) —~ w°(p) | p € RV}

To be more precise, ,

(P1) inf{¢*(p) — w°(p) | p € RV} # —o0 if and only if By N By # 0,

(P2) If By N By # 0, all these values are finite and equal.

(2) [Dual integrality] If w and { are integer-valued, the infimum can be taken over
integral vectors, i.e., max{w(z) — ((z) | * € By N By} = inf{¢*(p) — w°(p) | p € ZV}.

Before giving the proof, we observe that the essence of the first half of Theorem 5.2 lies
in the integrality of the relaxed primal problem. Since B; = ZV N B; (i = 1,2), we have
By N B, = ZV N (B; N By). Hence, if the relaxed primal problem has an integral optimal
solution, say b, then b belongs to B; N By. Furthermore, w(b) = &(b) and ¢(b) = (b) by
Lemma 3.3. Hence follows Theorem 5.2(1).

The proof of Theorem 5.2 relies on Frank’s discrete separation theorem for a pair of
sub/supermodular functions and a recent theorem of the present author. '

Theorem 5.3 (Discrete Separation Theorem [3]) Let f:2¥ > Randg:2V - R
be submodular and supermodular functions, respectively, with f(0) = g(0) =0. If g(X) <
f(X) (X C V), there exists z* € RV such that

gX) < (X)) f(X) (XcV) (5.2)
Moreover, if f and g are integer-valued, there exists such x* € ZV.

Theorem 5.4 ([7, Theorem 4.1]) Assume that wy : By —» R and w, : By — R satisfy
(EXC) and let * € By N By. Then

wi(a*) + wa(z%) > wy(z) +we(z)  (z € By N By)
if and only if there exists p* € RV such that
wi[-p")(z") 2 wi[-p|(z) (€ B1),  wp’](z") Z wap*](z) (2 € By).

Moreover, if wy and wq are integer-valued, there exists such p* € ZV.
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Remark 5.1 When w; and w, are affine functions, the above theorem agrees with the
optimality criterion for the weighted intersection problem. When By, By C {0,1}V, on
the other hand, the above theorem reduces to the optimality criterion [6, I, Theorem 4.2]
for the valuated matroid intersection problem. If, in addition, w, is affine and wy = 0, this
criterion recovers Frank’s weight splitting theorem for the weighted matroid intersection
problem, which is in turn equivalent to Iri-Tomizawa’s potential characterization of the
optimality for the independent assignment problem. a

We now prove (P1) of Theorem 5.2(1). Recall Theorem 1.1 and let g; be the super-
modular function describing B; and f; be the submodular function describing B,. We
have g,(0) = fo(@) = 0. We also introduce (cf. (4.1))

¥:1°(p) = min{(p,z) |z € B}, " (p) = max{{p, ) | x € By}.

Lemma 5.5

inf{¢*(p) —w’(p) [p€ RV} # —o0 (5.3)
< P'(p)2°(p) (peRY) (5.4)
<= fo(X) 2 n(X) (X CV), f(V) =a(V).

Moreover, (5.3) <= inf{¢*(p) —w°(p) |p € ZV} # —o0.

(Proof) Since |w°(p) — ¥1°(p)| < maxeep, [w(z)l, [(*(p) — %2°(p)| < maxsep, |((2)], and
1:°(p) and 1,°(p) are positively homogeneous, we have inf{¢*(p) — w°(p) | p € RV} #
—oo <= inf{1h°(p) — 91°(p) | p € RV} # —00 = %°(p) = ¥:°(p) (p € RY).
By Theorem 4.1 it suffices to consider the last inequality for p = xx (X C V). A
straightforward calculation using (4.3) shows this is further equivalent to (5.5). O

If (5.5) is true, we can apply Theorem 5.3 to obtain z* € B; N B,. The converse is
obvious, since By N B, # @ implies (5.5). [End of proof of (P1)]

Next, we prove (P2) of Theorem 5.2(1). By Lemma 5.1 we see that (P2) is equivalent
to the existence of z* € B; N B, and p* € RY such that w(z*) — {(z*) = ¢*(p*) —
w°(p*). Put w; = w and wy = —( and denote by z* a common base that maximizes
wi(z) + wa(z). By Theorem 5.4 we have wi[—p*|(z*) = max{w,[-p*|(z) | z € B},
wa[p*](z*) = max{ws[p*](z) | z € By} for some p* € RY. This implies w(z*) — ((z*) =
wi(z*) + we(z*) = wi[-p*](z") + wa[p*](2*) = maxsep, wi[—p*|(2) + maxqep, wolp*)(z) =
maxaes, (—(0% ) + w(2)) + maxeen, (5, 7) — ((2)) = (") — w*(2").

The second half of Theorem 5.2 follows from the second half of Theorem 5.4 that
guarantees the existence of integral p*. [End of proof of Theorem 5.2]

The min-max identity of Theorem 5.2 yields a pair of separation theorems, one for the
primal pair (w, () and the other for the dual (conjugate) pair (w°,¢*). It is emphasized
that these separation theorems do not exclude the case of B; N By = §.
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Theorem 5.6 (Primal Separation Theorem) Let w : B, — R and ( : B, — R be
such that w and —( satisfy (EXC). If w(z) < {(z) (z € BN By), there exist o* € R and
p* € RY such that w(z) < o* + (p*, 1) < {(z) (z€ZV).

[This is a short-hand expression for

w(z) <a*+ (p*,z) (z € By), o'+ (p*,z) <{(z) (z€B). ]
Moreover, if w and ¢ are integer-valued, there exist such o* € Z and p* € ZV.

Theorem 5.7 (Dual Separation Theorem) Let w : By — R and ¢ : By — R be
such that w and —( satisfy (EXC). If w°(p) < ¢*(p) (p € RY), there ezist * € R and
z* € By N By such that w°(p) < B* + (p,z*) < ¢*(p) (p € RY).

Moreover, if w and ( are integer-valued, there exists such §* € Z.

Remark 5.2 The dual separation theorem for w = 0 and ¢ = 0 reduces to the discrete
separation theorem (Theorem 5.3) for sub/supermodular functions. In fact, the assump-
tion reduces to (5.4), which is equivalent to (5.5), and we have §* = 0. O

Finally we schematically summarize the relationship among the duality theorems. Tt
is emphasized that the “equivalence” relies on Lemma 3.3 and Lemma 5.5.

Primal separation
(Theorem 5.6)

)

(P1) <= Discrete separation
Min-max duality (Theorem 5.3)
(Theorem 5.2) (P2) <= Weighted intersection
(Theorem 5.4)

)

Dual separation
(Theorem 5.7)
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