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Abstract

We study the ergodic control problem related to stochastic production plan-
ning in a single product manufacturing system with production constraints.
The existence of a solution to the corresponding Bellman equation and the
optimal control are shown.
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1 Introduction

This paper deals with the following 1d order differential equation:

$\lambda=F(\frac{\partial v}{\partial x}(x,i))-i\frac{\partial v}{\partial x}(X, i)+Av(x, i)+h(x)$ , $x\in R^{1},$ $i=1,2,$ $\ldots,$

$d$. (1)

Here $\lambda$ is a constant, $F(x)=kx$ if $x<0,$ $=0$ if $x\geq 0$ for some positive constant
$k>0,$ $h$ is convex function, and $A$ denotes the infinitesimal generator of an irreducible
Markov chain $(z(t), P)$ with state space $Z=\{1,2, \ldots, d\}$ :

$Av(x,i)= \sum j\neq iq_{ij}[v(\mathcal{I},j)-v(_{\mathcal{I}},i)]$
, (2)

where $q_{ij}$ is the jump rate of $z(t)$ from $i$ to $j$ . The unknown are the pair $(v, \lambda)$ , where
$v(\cdot,i)\in C^{1}(R^{1})$ for every $i\in Z$ .

Equation (1) arises in the ergodic control problem of stochastic production plan-
ning in a single product manufacturing system and is called the Bellman equation.
The inventory level $x(T)$ of stochastic production planning modeled by Sethi and
Zhang [11] is govemed by the differential equation

$\frac{dx(t)}{dt}=p(t)-z(t)$ , $x(\mathrm{O})--X$ , $z(\mathrm{O})=i$ , P-a.s., (3)
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for production rate $0\leq p(t)\leq k$ , in which $z(t)$ is interpreted as the demand rate.
For ergodic control, the cost $J(p(\cdot) : x, i)$ associated with $p(\cdot)$ is given by

$J(p( \cdot) : x, i)=\lim_{T-}\sup_{\infty}\frac{1}{T}E[\int_{0}\tau_{h(x(t))dt}|x(\mathrm{O})=X, Z(\mathrm{O})=i]$, (4)

where $h(x)$ represents the convex inventory cost.
The purpose of this paper is to show the existence of a solution of Bellman equa-

tion (1) and to present an optimal control minimizing the cost $J(p(\cdot) : x, i)$ subject
to (3). In the control problem of manufacturing systems [5], [12] with discounted rate
$\alpha>0$ , many authors have investigated the Bellman equation

$\alpha u_{\alpha}(x, i)=F(\frac{\partial u_{\alpha}}{\partial x}(x, i))-i\frac{\partial u_{\alpha}}{\partial x}(X,i)+Au_{\alpha}(x, i)+h(x)$ . (5)

Our method consists in studying the limit of (5) as $\alpha$ tends to $0$ . This approach
develops the technique of Bensoussan-Frehse [2] concerning non-degenerate $2^{nd}$ order
partial differential equations to our degenerate case. We also refer to Ghosh et al.
[7], [8] in the case that the Brownian motion is added to (3) as sales returns and a
bounded restriction on production rate $p$ is made.

Section 2 is devoted to the existence problem of (1) under the convexity assump-
tion and others on $h$ , and properties of the solution are shown in \S 3. In \S 4 an
optimal control for the ergodic control problem and the value are given. In \S 5 we
present an example of the solution to (1).

2 Existence

We are concerned with the equation

$\alpha u_{\alpha}(x,i)=F(\frac{\partial u_{\alpha}}{\partial x}(x,i))-i\frac{\partial u_{\alpha}}{\partial x}(X,i)+Au_{\alpha}(x, i)+h(x)$ $x\in R^{1},$ $i\in Z$, (6)

and make the following assumptions:

$h(x)$ is nonnegative and convex on $R^{1}$ , (7)
$\exists C>0;0\leq h(x)\leq C(1+|x|^{\kappa})$ for some positive integer $\kappa$ , (8)
$k$

.
$-d>0$ . (9)

Theorem 2. 1 We assume (7), (8) and (9). Then there enists a unique convex
solution $u_{a}(\cdot,i)\in C^{1}(R^{1}),$ $i\in Z$ of equation (6) such fhat

$\alpha||u_{\alpha}(\cdot,i)||_{L(I)}\infty r\leq K_{r},$ , (10)

$|| \frac{\partial u_{\alpha}}{\partial x}(\cdot,i)||L\infty(I_{\mathrm{r}})\leq K_{r}$ , (11)

$||Au_{\alpha}(\cdot,i)||_{L}\infty(I_{r})\leq K_{r}$ , $i\in Z$, (12)
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where $K_{r}$ is a positive constant depending only on $r$ of $I_{r}=(-r,r)$ .

Proof. According to [11, Theorem 3.1], equation (6) has a viscosity solution [6] given
by

$u_{\alpha}(x,i)= \inf_{p(\cdot)\in p(x,i)}\{E[\int^{\infty}\mathrm{o}e^{-}\alpha\# h(x(t))dt|x(\mathrm{o})=x, Z(\mathrm{O})=i]\}$ ,

where $x(t)$ is as in (3), and the infimum is taken over the class $P(x, i)$ of control
processes $p(\cdot)$ such that $0\leq p(t)\leq k$ and $p(t)$ is adapted to $\mathcal{F}_{t}=\sigma(z(s),S\leq t)$ .
Moreover, $u_{\alpha}(x, i)$ is convex and hence a classical solution of (6) in $C^{1}(R^{1})$ . As is well-
known [9], for the irreducible Markov chain $(z(t), P)$ there exists a unique equilibrium
distribution $\pi=(\pi_{1}, \pi_{2}, \cdots, \pi_{d})>0$ such that

$\pi A=0$ and $\sum_{i\in Z}\pi_{i}=1$
. (13)

Now, multiplying (6) by $\pi_{i}$ and summing up, we have

$\alpha\sum_{i}\pi_{i}u_{\alpha}(X,i)=\sum_{i}\pi_{i}\{F(\frac{\partial u_{\alpha}}{\partial x}(X, i))-i\frac{\partial u_{\alpha}}{\partial x}(X,i)\}+h(X)$. (14)

Since $F(x)-i_{X}\leq 0$ under (9), we have

$\alpha\sum_{*}\pi_{i}u_{\alpha}(_{X}, i)$
$\leq$ $h(x)$

$\leq$ $K_{r}$ on $I_{r}$ .

Thus we can obtain (10) by $u_{\alpha}(x, i)\geq 0$ .
Next, note that

$F(x)-i_{X}\leq-a|x|$ , (15)

where $a= \min\{k-d, 1\}>0$ . Hence, we have by (14)

$a \sum_{i}\pi_{i}|\frac{\partial u_{\alpha}}{\partial x}(_{X},i)|\leq h(x)-\alpha\sum_{i}\pi_{i}u_{a}(X, i)$ .

Thus we deduce $| \frac{\partial u_{\alpha}}{\partial x}(x, i)|\leq K_{r}$ on $I_{r}$ by (10) and then (11). Finally, (12) follows
from (6), (10) and (11) immediately.

Next we show the behavior of a solution to equation(6) as $\alphaarrow 0$ .

Theorem 2. 2 Under the assumptions of Theorem 2. 1 , there exists a $\mathit{8}ub_{Seq}uence$

$\alphaarrow \mathit{0}$ such that

$v_{\alpha}(x,i)$ $:=$ $u_{\alpha}(x,i)-u(\alpha \mathrm{O},i)$ $arrow$ $v_{0}(X,i)\in C^{1}(R^{1})$ ,
$\mu(\alpha)$ $:=$ $\alpha u_{\alpha}(0,i)-Au(\alpha 0, i)$ $arrow$ $\mu_{i}\in R^{1}$ ,
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unifomdy on each $\overline{I}_{r}$ . The limit $(v_{0}(\cdot, i),\mu i),$ $i\in Z$ , satisfies
$\mu_{i}=F(\frac{\partial v_{0}}{\partial x}(x,i))-i\frac{\partial_{U_{0}}}{\partial x}(X,i)+Av_{0}(x,i)+h(x)$ , $x\in R^{1}$ . (16)

Proof. Let us note that $(v_{\alpha}(\cdot,i),\mu(\alpha))$ satisfies

$\alpha v_{a}(x,i)+\mu(\alpha)=F(\frac{\partial_{U_{\alpha}}}{\partial x}(x, i))-i\frac{\partial v_{a}}{\partial x}(X, i)+Av_{\alpha}(x,i)+h(x)$. (17)

By (11) it is obvious that

$||v_{\alpha}( \cdot,i)||_{L^{\infty}(I_{\mathrm{r}}})+||\frac{\partial v_{\alpha}}{\partial x}(\cdot, i)||L\infty \mathrm{t}I_{\gamma})\leq K’$

’
$i\in Z$. (18)

Hence $\{v_{a}(\cdot, i)\}$ is equicontinuous on $\overline{I_{l}}.$ .
Let us define

$B_{\alpha}(x)=\alpha v\alpha(x,i)+\mu(\alpha)-Av(\alpha x,i)-h(x)$ .

We recall that, by assumption, $h(x)$ is Lipschitz continuous on $\overline{I_{l}}.$ . Then, by (18)

$|B_{\alpha}(X)-B_{\alpha}(y)|\leq C|x-y|$ , ($C>0$ : indep. of $\alpha$),

From (17) it follows that

$B_{\alpha}(x)=F( \frac{\partial v_{a}}{\partial x}(x,i))-i\frac{\partial v_{\alpha}}{\partial x}(x, i)$ ,

Then we have

$\frac{\partial v_{\alpha}}{\partial x}=\{$

$\frac{B_{\alpha}\langle x)}{k-i}$ if $\frac{\partial v_{\alpha}}{\partial x}<0$

$- \frac{B_{\alpha}(x)}{i}$ if $\frac{\partial v_{\alpha}}{\partial x}\geq 0$ ,
Since $\frac{\partial v_{\alpha}}{\partial x}$ is nondecreasing, we can see

$| \frac{\partial v_{\alpha}}{\partial x}(_{X,i})-\frac{\partial v_{\alpha}}{\partial x}(y, i)|\leq C|x-y|$.

Thus $\{\frac{\partial v_{\alpha}}{\partial x}$ (., $i$) $\}$ is also equicontinuous on $\overline{I}_{r}$ . By the Ascoli-Arzel\‘a theorem, there
exists a subsequence $\alphaarrow 0$ such that

$v_{\alpha}(X,i)$ $arrow v_{0}(X,i)$ , (19)
$\frac{\partial v_{\alpha}}{\partial x}(x,i)$

$arrow$ $\frac{\partial v_{0}}{\partial x}(x, i)$ , uniformly on $\overline{I}_{r}$ . (20)

By a standard argument, we can choose a subsequence $\alphaarrow 0$ , independent of $r$ , such
that (19) and (20) are fulfilled on every $\overline{I}_{r}$ . Further, by (10) and (12)

$\mu(\alpha)$ $arrow$
$\mu_{i}$ .

Letting $\alphaarrow 0$ in (17), we deduce (16). The proof is complete.

Now let us show the existence of a solution to equation (1).
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$\mathrm{T},\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.3$ We assume (7), (8) and (9). Then there exists a solution $(v, \lambda)$ of
equation (1) such that $v(x, i)$ is convex on $R^{1}$ and $v(\cdot, i)\in C^{1}(R^{1})$ .

Proof. Let us define

$v(x,i)=v_{0}(X,i)+f(i)$ ,

$\lambda=\sum_{i}\pi_{i}\mu i$
,

where $(v_{0}(., i),\mu_{i})$ is as in (16) and $f(i)$ is a solution of

$Af(i)=-\mu i+\lambda,$ $i\in Z$. (21)

Then it is easily seen that $(v, \lambda)$ satisfies (1). The convexity of $v(x, i)$ and $v(\cdot,i)\in$

$C^{1}(R^{1})$ are $\mathrm{i}\mathrm{m}\mathrm{m}\epsilon A$ iate from Theorems 2.1 and 2.2.
To complete the proof, it is sufficient to check the existence of $f(i)$ . By the

irreducible Markov chain $(z(t), P)$ it follows that for any $g\in R^{d}$

$E[g(z(s/ \alpha))]arrow\sum_{i}\pi_{i}g(i)$ as $\alphaarrow 0$ .

Hence

$\alpha G_{\alpha}g(i)$ $=$ $\alpha E[\int_{0}^{\infty}e^{-}g(\alpha lZ(t))dt]$

$=$ $\int_{0}^{\infty}e^{-s}E[g(z(_{S/}\alpha))]d_{S}$

$arrow$
$\sum_{\dot{l}}\pi_{i}g(i)=\pi g$

,

where $G_{\alpha}$ denotes the resolvent operator of the Markov chain $(z(t), P)$ . According
to [4, Lemma $7.3(\mathrm{c},\mathrm{d})$ , p.39], we can obtain the relation:

$\{g\in R^{d}|\pi g=0\}=\{Ag\in Rd|g\in Rd\}$.

We notice by (13) that
$\pi(-\mu$ . $+\lambda)=0$ .

Therefore we conclude that equation (21) admits a solution $f(i)$ .

3 Properties

We investigate properties of a solution to the Bellman equation (1). Now we make
the assumption:

$h(x)/|x|$ $arrow$ $\infty$ as $|x|arrow\infty$ . (22)
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Lemma 3. 1 Under (22), the convex solution $v(\cdot,i)\in C^{1}(R^{1})$ of equation (1) sat-
isfies

$| \frac{\partial v}{\partial x}(x, i)|$ $arrow$ $\infty$ as $|x|arrow\infty$ . (23)

Proof. It is sufficient to show (23) in the case $xarrow-\infty$ . By the convexity of $v(x,i)$ ,
we can define $M_{i}$ by

$M_{i}=-x arrow\lim_{-\infty}\frac{\partial v}{\partial x}(_{X,i})$ .

For any sequence $x_{n}arrow-\infty$ , we can easily see

$\frac{v(x_{n},i)}{|x_{n}|}$ $arrow$ $M_{i}$ .

Suppose that $M_{i}<\infty$ for some $i\in Z$ . Then, dividing (1) by $|x_{n}|$ and passing to the
limit, we have by (22)

$\lambda/|x_{n}|=[F(\frac{\partial v}{\partial x}(Xn’ i))-i\frac{\partial v}{\partial x}(_{X_{n},i})+\sum_{\neq ji}q_{i}jv(x_{n},j)$

$- \sum_{j\neq i}q_{i}jv(_{X}n’ i)+h(X)n]/|x_{n}|$
$arrow\infty$ ,

since $v(x,j)\geq ax+b$ for some constants $a$ and $b$ . This is a contradiction. Hence
$M_{i}=\infty$ for all $i\in Z$ , and thus the assertion follows.

Lemma 3. 2 For the convex solution $v(\cdot,i)\in C^{1}(R^{1})$ of equation (1), there is a
constant $C>0$ such that

$|v(x,i)|\leq C(1+|x|^{\kappa+1})$ . (24)

Proof. From (1) and (15) it follows that

$\lambda\leq-a|\frac{\partial v}{\partial x}(x, i)|+Av(x, i)+h(x)$ .

If $\frac{\partial v}{\partial x}(x, i)<0$ on some interval $(-\infty, x_{1})$ with $x_{1}<0$ , then by (8)

$- \frac{\partial v}{\partial x}(x, i)\leq\frac{1}{a}Av(x,i)+C(1+|x|^{\kappa})$ (25)

Multiplying (25) by $\pi_{i}$ and summing up, we get by (13)

$- \sum_{i}\pi_{i}\frac{\partial v}{\partial x}(X,i)\leq C(1+|_{X|^{\kappa}})$ .
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Integrating over $(x,x_{1})$ , we have

$\sum_{1}\pi_{i}(v(X,i)-v(X1,i))\leq c(1+|_{X|}k+1)-$.

This relation can be obtained in the case that $\frac{\partial v}{\partial x}\geq 0$ on some interval $(x_{2}, \infty)$ with
$x_{2}>0$ . Therefore we can obtain the desired result by $\pi>0$ .

Next, we consider the equation

$\frac{d_{X^{*}}(t)}{dt}=p^{*}(x(*t), Z(t))-z(t),$ $x^{*}(\mathrm{O})=x$, $z(\mathrm{O})=i$ , P-a.s., (26)

where

$p^{*}(x, i)=\{$

$k$ if $\frac{\partial v}{\partial x}(x,i)<0$

$i$ if $\frac{\partial v}{\partial x}(x,i)=0$

$0$ if $\frac{\partial v}{\partial x}(x,i)>0$ .
(27)

Lemma 3. 3 Equation $(\mathit{2}\theta)admit\mathit{8}$ a unique solution $x^{*}(t)$ , which satisfies
$\sup_{t}||X^{*}(t)|.|_{L}\infty<\infty$ .

Proof. Since $p^{*}(x, i)$ is nonincreasing in $x$ , the differential equation (26) has a unique
solution by [6, Theorem 6.2].

To complete the proof, let $\overline{x}=\sup${$x\in R^{1}$ : $p^{*}(x,i)\geq i$ for some $i\in Z$}.
Obviously, $\overline{x}$ is finite, because $p^{*}(x, i)$ is nonnegative. Similarly, let $\tilde{x}=\inf\{x\in R^{1}$ :
$p^{*}(x, i)\leq i$ for some $i\in Z$}. Suppose that $\tilde{x}$ is not finite. Then there exists $i\in \mathrm{Z}$ such
that $\frac{\partial v}{\partial x}(X, i)\geq-2i$ for all $x\in R^{1}$ . On the other hand, by Lemma 3.1, $\frac{\partial v}{\partial x}(x, i)arrow-\infty$

as $xarrow-\infty$ . This is a contradiction.
Now, if $x^{*}(t)>\overline{x}$ (resp. $x^{*}(t)<\tilde{x}$), then $\frac{dx^{*}}{dt}(t)<0$ (resp. $\frac{dx^{*}}{dt}(t)>0$). Hence

the interval $[\tilde{x},\overline{x}]$ is an attracting set for (26). Thus the $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{n}\in \mathfrak{B}\mathrm{S}$ of $x^{*}(t)$ is
immediate.

Lemma 3. 4 The constant solution $\lambda$ of equation (1) satisfies
$\lambda=\inf_{xp(\cdot)\in P(i)},\lim_{\alphaarrow}\sup_{0}\alpha E[I_{0}\infty xe^{-}((\alpha_{h}tt))dt|x(\mathrm{O})=x, z(\mathrm{O})=i]$ . (28)

Proof. For the convex solution $v(\cdot, i)\in C^{1}(R^{1})$ , let us apply an elementary rule and
Dynkin’s formula to the first and the second variables of $v(x(t), z(t))$ respectively.
Then we have the relation:

$E[e^{-\alpha t}v(x(t), z(t))|x(\mathrm{O})=x, z(\mathrm{O})=i]$

$=v(x,i)- \alpha E[\int^{t}0)e^{-}\alpha sv(x(S), z(s)dS|x(\mathrm{O})=x, z(\mathrm{O})=i]$

$+E[I_{0}^{t}e^{-\alpha} \frac{\partial v}{\partial x}S(X(S), Z(S))dX(s)|x(\mathrm{O})=x, z(\mathrm{O})=i]$ (29)

$+E[ \int_{0}^{l}e-\alpha sAv(X(S), z(s))dS|x(\mathrm{O})=x, z(\mathrm{O})=i]$
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We notice that the minimum of

$\min_{0\leq P\leq k}p\frac{\partial v}{\partial x}=F(\frac{\partial v}{\partial x})$

is attained by $p^{*}(X, i)$ . By (1), we have

$\lambda\leq\frac{\partial v}{\partial x}(x,i)(p-i)+Av(x,i)+h(x)$ , (30)

and the equality holds for $p=p^{*}(x,i)$ . Clearly, by (3)

$|X(t)|\leq C(t+1)$ for all $p(\cdot)\in P(x, i)$ .

By Lemma 3.2

$E[e^{-\alpha t}|v(X(t), z(t))||x(\mathrm{O})=x, z(\mathrm{O})=i]$

$\leq CE[e^{-\alpha}(t1+|x(t)|^{\kappa+}1)|x(\mathrm{O})=x, z(\mathrm{O})=i]$

$\leq Ce^{-\alpha}(t1+(t+1)^{\kappa+1})arrow 0$ as $tarrow\infty$ .

Hence, substituting (30) into (29), we get

$\lambda$

$\alpha$

$\leq$ $-v(X,i)+ \alpha E[\int^{\infty}0(e-\alpha sv(_{X}(s), zs))ds|x(0)=X, Z(0)=i]$

$+E[ \int_{0}\infty e-\alpha sh(x(S))dS|x(\mathrm{O})=x, z(\mathrm{O})=i]$.

We note that by Lemma 3.2 and 3.3

$\alpha^{2}E[\int_{0}^{\infty}e^{-}|v(x(s), z(aSs))|d_{S}|x(0)=x, Z(0)=i]$

$\leq\alpha^{2}C\int_{0}^{\infty}e-\alpha s(1+|x^{*}(S)|\kappa+1)dsarrow 0$ as $\alphaarrow 0$ .

Thus we deduce

$\lambda\leq\inf_{Pp(\cdot)\in(x,i)}\lim_{\alphaarrow 0}\sup\alpha E[\int 0h\infty e^{-}\alpha S(X(_{S}))d_{S}|x(0)=X, z(0)=i]$ ,

and the equality holds for $p(t)=p^{*}(x^{*}(t), z(t))$ of (27).

4 An application to ergodic control
We shall study the ergodic control problem to $\dot{\mathrm{m}}\mathrm{m}$imize the cost:

$J(p( \cdot) : x,i)=\lim_{Tarrow}\sup\frac{1}{T}E[\infty\int^{T}\mathrm{o}h(x(t))dt|x(\mathrm{O})=x, z(\mathrm{O})=i]$
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over all $p(\cdot)\in U$ subject to

$\frac{dx(t)}{dt}=p(t)-z(t)$ , $x(0)=x,$ $z(\mathrm{O})=i$ , P-a.s.,

where $U$ is the set of all nonnegative progressively measurable processes $p(t)$ such

that

$p(t)$ is adapted to $\mathcal{F}_{t}$ ,

$0\leq p(t)\leq k$ ,

$\sup_{t}E[|X(t)|^{\kappa+1}|x(0)=x, Z(\mathrm{o})=i]<\infty$ for $\kappa$ in (8).

Theorem 4. 1 We assume (7), (8), (9) and (22). Then ffie optimal control $p^{*}(t)$ is
given by

$p^{*}(t)=p*(x*(t), z(t))$ ,

$atd$ ffie value by
$J(p^{*}(\cdot) : x,i)=\lambda$,

where $p^{*}(x^{*}(t), z(t))$ is as in (27).

Proof. From the same formula as (29) it follows that

$E[v(X(\tau),\mathcal{Z}(T))|x(\mathrm{O})=x, z(\mathrm{o})=i]$

$=v(x,i)+E[ \int_{0}^{T}\frac{\partial v}{\partial x}(x(\mathit{8}), z(S))dx(s)|x(\mathrm{O})=x, z(\mathrm{o})=i]$

$+E[ \int_{0}T(Av(x(s), Zs))dS|x(\mathrm{O})=x,z(\mathrm{o})=i]$ .

We recall (30) to obtain

$E[v(X(\tau), Z(T))|x(\mathrm{O})=X, Z(\mathrm{O})=i]$

$\geq v(x, i)+E[\int_{0}^{\tau}(\lambda-h(x(s)))ds|x(\mathrm{O})=x, z(\mathrm{o})=i]$ ,

where the equality holds for $x=x^{*}$ and $p=p^{*}of(27)$ . By Lemma 3. 2 and the
definition of $U$

$\frac{1}{T}E[|v(x(\tau), \mathcal{Z}(T))||x(\mathrm{O})=x, z(\mathrm{O})=i]$

$\leq\frac{C}{T}E[1+|x(\tau)|^{k+1}|x(\mathrm{O})=x, z(\mathrm{O})=i]$ $arrow$ $0$ as $Tarrow\infty$ .

Also, by Lemma 3. 3 , $p^{*}(t)$ belongs to $U$ . Thus we deduce

$J(p(\cdot) : x,i)$ $=$ $\lim_{Tarrow}\sup_{\infty}\frac{1}{T}E[I_{0}\tau)h(X(S)d_{S}|x(\mathrm{O})=x,z(\mathrm{O})=i]$

$\geq$ $\lambda=J(p^{*}(\cdot):X,i)$ .

The proof is complete.
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5 An Example

In this section we present the example of an solution to the Bellman equation:

$\lambda=F(\frac{\partial v}{\partial x}(x,i))-i\frac{\partial v}{\partial x}(X,i)+Av(x, i)+h(x)$, $x\in R^{1},$ $i\in Z$, (31)

in the case that

$h(x)=x^{2},$ $k=3$, (32)

$Z=\{1,2\},$ $q_{1}2=\infty 1=1$ . (33)

Figure Solution v(x, i) , $\mathrm{i}=1$ , 2, to
the Bellman Equation(31)
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We remark that the matrix induced by $A$ is given by

$A=$ ,

and the equilibrium distribution $\pi$ is

$\pi=$ .

Therefore the assumptions of Theorem 4.1 are fulfilled.
Now, recalling the form of optimal control $p^{*}$ and solving the Bellman equation

(31) with (32) and (33), we have

$\lambda=0$ ,

$v(x, 1)=\{$
$\frac{1}{81}(18x^{3}+18x^{2}-24x+16-16e^{-\frac{3}{2}x})$ if $x\geq 0$

$- \frac{1}{81}(18x^{3}+9x^{2}+12x+8-8e^{\frac{3}{2}x})$ if $x<0$ ,

$v(x,2)=\{$
$\frac{1}{81}(18x^{3}-9x2+12x-8+8e^{-\frac{3}{2}x})$ if $x\geq 0$

$- \frac{1}{81}(18x^{3}-18X-224x-16+16e^{\frac{3}{2}x})$ if $x<0$ .

Then the optimal control $p^{*}$ is given by

$p^{*}(x,i)=\{$

$0$ if $x>0$
$i$ if $x=0$

3 if $x<0$ .

The solution $v(x, i)$ with (23) $-(24),$ $\mathrm{i}=1,2$ can be shown in Figure.
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