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Ergodic control in a single product
‘manufacturing system

TERIARL K& 5F (Mamoru Ohashi)

Abstract

We study the ergodic control problem related to stochastic production plan-
ning in a single product manufacturing system with production constraints.
The existence of a solution to the corresponding Bellman equation and the
optimal control are shown.

1991 Mathematics Subject Classification. Primary 93E20, Secondary 93C40.

1 Introduction

This paper deals with the following 1** order differential equation:
Ov 0
A= F(o(2,) - i—a—g(x, i)+ Av(z,i) + h(z), zE€RY, i=12.,d (1)
z

Here X is a constant, F'(z) = kz if z < 0, = 0 if z > 0 for some positive constant
k > 0, his convex function, and ‘A denotes the infinitesimal generator of an irreducible
Markov chain (z(t), P) with state space Z = {1,2,...,d} :

A’U(III, 7’) = Z qij[’v(xa .7) —’U(IL‘, 7‘)]’ (2)
J#
where g;; is the jump rate of z(t) from i to j. The unknown are the pair (v, \), where
v(-,2) € C*(R?) for every i € Z.

Equation (1) arises in the ergodic control problem of stochastic production plan-
ning in a single product manufacturing system and is called the Bellman equation.
The inventory level z(t) of stochastic production planning modeled by Sethi and
Zhang [11] is governed by the differential equation ‘

da(t)

o~ PO —z(), z0)=z, 2(0)=i, P-as, ®3)



for production rate 0 < p(t) < k, in which z(t) is interpreted as the demand rate.
For ergodic control, the cost J(p(-) : z,%) associated with p(-) is given by

J(p(-) : z,2) = liqquolip %E[ OT h(z(t))dt | z(0) = z, 2(0) = 1], 4)

where h(z) represents the convex inventory cost.

The purpose of this paper is to show the existence of a solution of Bellman equa-
tion (1) and to present an optimal control minimizing the cost J(p(-) : z,%) subject
to (3). In the control problem of manufacturing systems [5], [12] with discounted rate
a > 0, many authors have investigated the Bellman equation

auy(z,1) = (Bua (z,1)) — z%(x i) + Aua(z,7) + h(z). (5)
Our method consists in studying the limit of (5) as a tends to 0. This approach
develops the technique of Bensoussan-Frehse [2] concerning non-degenerate 2™ order
partial differential equations to our degenerate case. We also refer to Ghosh et al.
[7], [8] in the case that the Brownian motion is added to (3) as sales returns and a
bounded restriction on production rate p is made.

Section 2 is devoted to the existence problem of (1) under the convexity assump-
tion and others on h, and properties of the solution are shown in § 3. In § 4 an
optimal control for the ergodic control problem and the value are given. In § 5 we
present an example of the solution to (1).

2 Existence

‘We are concerned with the equation

Ou,,

auy(z,1) = F( (x 1)) — (x i) + Aug(z,3) + h(z) z€R',i€Z, (6

and make the followmg assumptlons:

h(z) is nonnegative and convex on R!, (7
3C > 0; 0 < h(z) < C(1 + |z|®) for some positive integer &, (8)
k—d>0. 9

Theorem 2.1 We assume (7), (8) and (9). Then there exists a unique conver
solution ua(-,1) € C*(RY),i € Z of equation (6) such that

alltal M peor,y < Ko, (10)

c?ua .
I, ¢l < K,, (11)
Le(Iy)

||Au,,,( WNiwn,y < K, 1€7Z, (12)



where K, is a posilive constant depending only on r of I, = (—r,).

Proof. According to [11, Theorem 3.1], equation (6) has a viscosity solution [6] given
by .
ua(a,i) = il {E[[" e h(a(®)dt | 2(0) = z,2(0) =},
0

P()EP(z:4)
where z(t) is as in (3), and the infimum is taken over the class P(z, z) of control
processes p(-) such that 0 < p(t) < k and p(t) is adapted to F; = o(2(s),s < t).
Moreover, u,(z, %) is convex and hence a classical solution of (6) in C'(R?). As is well-
known [9], for the irreducible Markov chain (2(t), P) there exists a unique equilibrium

distribution m = (w1, m, - - -, mg) > 0 such that
mTA=0 and Y m=1. : (13)
icZ

Now, multiplying (6) by m; and summing up, we have
0 @
a) mia(z,) Zm{F & (z,1)) — (:r i)} + h(z). (14)

Since F'(z) — iz < 0 under (9), we have

a) maua(z,i) < h(z)
< K, onl,.
Thus we can obtain (10) by ua(z,2) > 0.
Next, note that : N
F(z) —iz < —alz|, (15)

where a = min{k — d,1} > 0. Hence, we have by (14)
aZml (x )| < h(z) — aZmua(x i).

Thus we deduce |2 (z,i)| < K, on I, by (10) and then (11). Finally, (12) follows
from (6), (10) and (11) immediately.

Next we show the behavior of a solution to equation(6) as a — 0.

Theorem 2.2 Under the assumptions of Theorem 2. 1, there exists a subsequence
a — 0 such that '

Va(Z,2) = ua(x,7) —ua(0,5) —  wo(x,i) € CYRY),
pla) = au,(0,7) — Auy(0,7) —  p; € RY,



uniformly on each I,. The limit (vo(-,1), us), i € Z, satisfies
6’1)0
F(5-

Proof. Let us note that (va(-,%), ;L( )) satisfies

( ,i)) — 0(1:, i) + Avg(z,i) + h(z), z € R. (16)

ave(z, 1) + p(a) = ( (x i) — (a: i) + Avg(z,7) + h(z). (17)

By (11) it is obvious that

lva-, z)IILm(erII 5y (i) < Ki, i€Z. (18)

Hence {va(-,2)} is equicontinuous on I,.
Let us define

Bo(z) = ava(z,3) + p(a) — Ave(z, i) — h(z).
We recall that, by assumption, h(z) is Lipschitz continuous on I,. Then, by (18)
|Ba(z) — Ba(y)| < Clz —y|,  (C>0: indep. of a),
From (17) it follows that
o . Ovg .
Bale) = F(52(,0)) ~ i (1),

Then we have

Bcz(z') r Ov,
. if 2« <0
a’Ua k—i ox

Oz Ba(®) :f O
—=== if P >0,

1

Since aa—": is nondecreasing, we can see

l (x i) — (y,z)I<CIx—yI

Thus {2%(-,4)} is also equicontinuous on I.. By the Ascoli-Arzela theorem, there
exists a subsequence a — 0 such that

Ua(.’l,', 7’) - 'UO('T: 7’)7 (19)
Ov,, . 0 -
B (z,2)) — % (z,%), uniformly on I,. (20)

By a standard argument, we can choose a subsequence a — 0, independent of 7, such
that (19) and (20) are fulfilled on every I,. Further, by (10) and (12)

pl@) —
Letting a — 0 in (17), we deduce (16). The proof is complete.

Now let us show the existence of a solution to equation (1).



Theorem 2.3 We assume (7), (8) and (9). Then there exists a solution (v,)) of
equation (1) such that v(z,i) is convez on R' and v(-,i) € C'(R").

Proof. Let us define
’U(IE, 7’) = 'UO(x7 1’) + f(ll’)a
A= Zﬂiﬂi,
where (vg(-,%), ;) is as in (16) and f(%) is a solution of
Af(@) = —pi+ A, 1€ Z. (21)

Then it is easily seen that (v, ) satisfies (1). The convexity of v(z,%) and v(-,%) €
C'(R!) are immediate from Theorems 2.1 and 2.2.

To complete the proof, it is sufficient to check the existence of f(i). By the
irreducible Markov chain (z(t), P) it follows that for any g € R¢

Blo(=(s/a)] > Xmgli) as a—0.
Hence
aGagli) — aBl[ e 'g(a(t)dt]
= [ e Elg(a(s/a)lds
— ;mg(i) = mg,

where G, denotes the resolvent operator of the Markov chain (z(t), P). According
to [4, Lemma 7.3(c,d), p-39], we can obtain the relation:

{g € R*| mg = 0} = {Ag € R% g € RY}.

We notice by (13) that
T (—p. +A) = 0.

Therefore we conclude that equation (21) admits a solution f(z).

3 Properties

We investigate properties of a solution to the Bellman equation (1). Now we make
the assumption:

h(z)/|z] — oo aslz|— oo. (22)



Lemma 3.1 Under (22), the convex solution v(-,i) € C*(R") of equation (1) sat-

isfies
ov

|—(.'I: i)] — oo as|z|] > 0. (23)
Oz

Proof. It is sufficient to show (23) in the case £ — —oo. By the convexity of v(z,1),
we can define M; by

M; = — lim @(a:z)

$—>OO

For any sequence z, — —o00, we can easily see

V(Zn, 1)
lxnl

M;.

Suppose that M; < co for some ¢ € Z. Then, dividing (1) by |z,.| and passing to the
limit, we have by (22)

M1l = [F(o2 () — o (@) + 3 (@ )
J#i
- Zqijv(xmi) + h(zp)|/|2a]  — oo,

J#L
since v(z, j) > az + b for some constants a and b. This is a contradiction. Hence
M; = oo for all 1 € Z, and thus the assertion follows.

Lemma 3.2 For the convex solution v(-,i) € C'(R') of equation (1), there is a
constant C' > 0 such that

lv(z,3)] < C(1 + |z|**). (24)
Proof. From (1) and (15) it follows that
o, . .
A < —a|—(z,7)| + Av(z,1) + h(z).
Oox
If 22(z,4) < 0 on some interval (—oo, ;) with z; < 0, then by (8)
ov, . 1 ) .
- B_x(x’ 1) < EA'U(:E, 1) + C(1+ |z|*) (25)
Multiplying (25) by 7; and summing up, we get by (13)

——Zm (xz ) <CQA+ |z|f).



Integrating over (z,z1), we have

Yo m(v(z,i) — vl(z1,9) < OO+ |2/,

This relation can be obtained in the case that 22 > 0 on some interval (z2,c0) with
T3 > 0. Therefore we can obtain the desired result by = > 0.

Next, we consider the equation
dz*(t) _

7 p'(z*(t), 2(t)) — 2(t), z*(0) ==z, 2(0)=1i, P—a.us., (26)

where
kEoif 2(z,0) <0

pz,i)= ¢ if 2(z,)=0 (27)
0 if 2(z,5)>0.
Lemma 3.3 Equation (26) admits a unique solution x*(t), which satisfies

sup [° (8) = < oo.

Proof. Since p*(z,1) is nonincreasing in z, the differential equation (26) has a unique
solution by [6, Theorem 6.2].

To complete the proof, let Z = sup{z € R' : p*(z,i) > iforsomei € Z}.
Obviously, z is finite, because p*(z,%) is nonnegative. Similarly, let £ = inf{z € R' :
p*(z,1) <1 for some 7 € Z}. Suppose that Z is not finite. Then there exists 7 €Z such
that 2%(z,1) > —2 for all z € R'. On the other hand, by Lemma 3.1, ®(z,i) > —o0
as r — —oo. This is a contradiction.

Now, if z*(t) > Z (resp. z*(t) < %), then £-(¢) < 0 (resp. Z-(t) > 0). Hence
the interval [£,Z] is an attracting set for (26). Thus the boundedness of z*(t) is
immediate.

Lemma 3.4 The constant solution X\ of equation (1) satisfies
A= inf limsupaE[[ e *h(z(t))dt | z(0) = z,2(0) = i]. (28)
0

PO)EP(24) a0
Proof. For the convex solution v(-,z) € C*'(R'), let us apply an elementary rule and
Dynkin’s formula to the first and the second variables of v(z(t), 2(t)) respectively.
Then we have the relation:

Ele™*v(z(t), 2(t) | 2(0) = z,2(0) = 4]
= v(z,i) — aE[/O e **v(z(s), z(s))ds | z(0) = =, 2(0) = 1]
JrE[/Ot e_“s%(:c(s), z(s))dz(s) | z(0) = =z, 2(0) = 1] (29)

+E[[: e **Av(z(s), z(s))ds | z(0) = =, 2(0) = 1]



We notice that the minimum of

Ov ov

B =5,
is attained by p*(z,). By (1), we have

A< g—:(x, i)(p — 1) + Av(z,1) + h(z), (30)

and the equality holds for p = p*(z,1). Clearly, by (3)
lz(t)| < C(t+1) forall p(-) € P(z,q).
By Lemma 3.2

Ele*v(z(t), 2(1))| | 2(0) = =, 2(0) = i]
< CE[e (1 + |z()|"*") | z(0) = z,2(0) = 1]
<Ce ™1+ (t+1)*1) — 0 as t — oo.

Hence, substituting (30) into (29), we get

2— < —v(z,i) + aE[Aoo e **v(z(s), z(s))ds | z(0) = z, z(0) = 1]
VE| fo ” e~ h(x(s))ds | 2(0) = z, 2(0) = i.
We note that by Lemma 3.2 and 3.3
(;22E[£oo e **|lv(z(s), 2(s))|ds | z(0) = z, 2(0) = 4]
< aZC/OOO e 1+ |z*(s)[*)ds — 0 as a — 0.

Thus we deduce

A< inf limsupaFE|

T p()EP(zE)  a—0 0

e **h(z(s))ds | z(0) = z, z(0) = i,

and the equality holds for p(t) = p*(z*(¢), 2(t)) of (27).

4 An application to ergodic control

We shall study the ergodic control problem to minimize the cost:

J(p(-) : z,2) = ligl—fol;p %E[ OT h(z(t))dt | z(0) = z,2(0) = 4]



over all p(-) € U subject to

( ) =p(t) — 2(t), z(0)==z, 2(0) =1, P-as,

where U is the set of all nonnegative progressively measurable processes p(t) such
‘that

p(t) is adapted to F,
0<p(t) <k,
SlipE“.’E(t)IK+l | 2(0) = ,2(0) = 4] < oo for & in (8).

Theorem 4.1 We assume (7), (8), (9) and (22). Then the optimal control p*(t) is
given by
p'(t) = p* (= (1), 2(%)),

and the value by

J(p*() - 2,9) = A,
where p*(z*(t), 2(t)) is as in (27).
Proof. From the same formula as (29) it follows that

E(z(T),2(T)) | z(0) = z,2(0) = 1]
T ov
= v(z,) + B[ 5o(2(s), 2(5))da(s) | #(0) = z,2(0) =1

m " Av(z(s), 2(s))ds | 2(0) = =, 2(0) = i].
We recall (30) to obtain
Efv(z(T),2(T)) | z(0) = z, 2(0) = 1|
> (zi) + B[ (A~ h(a(s)ds | 2(0) = 2,2(0) = i,

where the equality holds for x = z* and p = p*of (27). By Lemma 3.2 and the
definition of U

1 .
7 Ellv((T), (1) | 2(0) = =, 2(0) = 1]
< %E[l + |2(T)[*' | 2(0) = z,2(0) =45] — 0 asT — co.
Also, by Lemma 3.3, p*(t) belongs to U. Thus we deduce

Jo() i 2,) = lmoup B[ a(s))ds | 2(0) = 2,2(0) =

> A=J@(): z,i).

The proof is complete.



10

5 An Example

In this section we present the example of an solution to the Bellman equation:

81_) .
A= F(%(l‘,i)) — i%(z, i) + Av(z,i) + h(z), z€R', icZ, (31)

in the case that

h(z) = 2%,k =3, (32)
Z = {1,2},Q12 =g = 1. (33)

Figure Solution v(x,i), i=1,2, to
the Bellman Equation(31)



11

We remark that the matrix induced by A is given by

-1 1
S

and the equilibrium distribution 7 is
11
T - (i’ 5)
Therefore the assumptions of Theorem 4.1 are fulfilled.
Now, recalling the form of optimal control p* and solving the Bellman equation

(31) with (32) and (33), we have

A =0,
1) L (1823 + 182> — 242 + 16 — 16e73%) if £ >0
v(z,1) =
’ — L (182% + 922 + 122+ 8 —8e3®)  ifz <O,
L (1823 — 922 + 127 — 8 + 8e~37) if >0
v(z,2) =< 3] 3 9 YR
| —5r(182° — 182% — 24z — 16 + 16e27) if z <O.
Then the optimal control p* is given by
0 if z>0
p(z,i)={ 1 if =0
3 if z<0.

The solution v(z, ) with (23) - (24), i = 1, 2 can be shown in Figure.
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